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Abstract

Let E be a vector bundle over an algebraic manifold X. An explicit local construction of
characteristic classes c,(F) with values in Bigrassmannian cohomology that are defined in
8 1 is given. In the special case n = dim E it reduces to the construction of c,(E) with
values in the Grassmannian cohomology given in [BMS].

Our construction implies immediately an explicit construction of Chern classes with values
in H" (X,éf) , where gf is the sheaf of Milnors K -groups.

A construction of classes c,(E) with values in motivic cohomology is given for n < 3 .
For n = 2 it could be considered as a motivic analog of the local combinatorial formula
of Gabrielov, Gelfand and Losik for the first Pontryagin class ([GGL}]). The reason for the
restriction n < 3 is the absence of a good theory of n-logarithms for n > 4 today.
Explicit constructions of the universal Chern classes ¢, € H" (BGLm-, K nM and for

n<3 c, € HR(BGLm»,1(n)) ( H}, : motivic cohomology) are given.



§ 1 Introduction

1. Chern classes with values in H"(X,K) . Let L be a line bundle over X. There
is the following classical construction of c;(L) € H*(X,0") . Choose a Zariski covering
{U;} of X such that L|y, is trivial. Choose non-zero sections s; € I'(U;, L) . Then
si/sj € T(U; N U;,0*) satisfies the cocycle condition and hence define a cohomology class
a(L) € HY(X,0*) .

Let us define the presheaf of Milnor’s K -groups on X as follows: its section over an open set
U is the quotient group of O*(U)® .- ® O*(U) by the subgroup generated by elements

nf:i‘.rme&
gl®...®gk®f®(1—f)®gk+3®'”®gﬂ7 gl’fal—fEO*(U)

Let us denote by éﬁf the sheaf associated with this presheaf. We will denote by {f1,---, fn}
the image of f1 ® -+ ® fn € O*(U)®" in _g_f(U) .

In § 3 for any vector bundle £ over X an explicit construction of the Chern classes
ca(E) € H" (ng) will be given.

The construction of c,(E™) for an n-dimensional vector bundle E" follows from [S1]

and [BMS], ch. 1. More precisely, let U; be a Zariski covering such that E"|y, is trivial.

Choose a section s; € ['(U;, E™) such that s;,(z),---,s;,,,(z) are in generic position on
n

Uiping, = Uy N---NU;,,, . Then s, (z) = kE a;,(z) - si,(z) and
=1

{a’i1 (.’B), Ty G4, (:r)} € Kﬁd(Uil"'in+l)

is a cocycle in the Cech complex.
I will gencraiize this construction to vector bundles of arbitrary dimension and show that for
c1(E) it gives exactly the described above cocycle for ¢;(det E) .

2, Applications. There is a canonical map of sheaves
KM S0l —ah—
{fl:"'yfn} = dlogfl A"‘/\C“ngn

Here (O, (respectively Q2 ) is the sheaf of n -forms with logarithmic singularities at infinity
(respectively closed n -forms). Therefore we get a construction of characteristic classes with
values in H™ (X, Qﬂ)g) and H™(X,Q%) . Note that the Atiyah’s construction provides us
characteristic classes in H"(X, Q") ([A], see also [Har]).

3. The Grassmannian bicomplex and Bigrassmannian cohomology (see [G1], [G2],
compare with [GGL] and [BMS]). Let Y be a set and C,(Y) be a free abelian group
generated by elements (yg,---,yn) of Y™! := Y x...xY . There is a complex

| A

(C’,.(Y), d) where "

d(yo: e :yﬂ) = Z: (—l)i(y07 v 1'.6'!')' v 1yn) (11)
t=0



This is just the simplicial complex of the simplex whose vertices are labeled by elements of
Y. Suppose that a group G acts on Y. Let us call elements of the quotient set G \ Y"*!
by configurations of elements of Y. Denote by C,(Y') a free abelian group generated by
configurations of (n + 1) elements of Y. There is a complex (C.(Y'),d) , where d is defined
by the same formula (1.1) and C.(Y) = C‘.(Y)G . We will also apply this construction to
subsets of G \ Y"1 of “configurations in generic position”.

Now let us denote by C,(m) a free abelian group generated by configurations of n + 1
vectors in generic position in an m-dimensional vector space V'™ over F' (ie. any m
vectors of the configuration are linearly independent). In this case there is another map:

d: C,,(m) — Cpr—1(m —1)
dl : (an’ v ,'Un) = Z (—l)i(v()lvﬂa e aﬁi’ e avn)

1=0
Here (vilvo, -, ®;,+,va) is a configuration of vectors in V™ /,,,, obtained by projection
of vectors v; € V™, j # ¢ . Then there is the following bicomplex

o Copa(n+2) S Copa(n+2) S Coga(n+2)
ldl -l- dl l dl
d d (1.2)
v = Cpg3(n+1) = Cpy2(n+1) = Chyr(n+1)
id ld ld
o> Capa(n) S Can(n) 2 CGaln)
We will call it the Grassmannian bicomplex (over X = SpecF ).
There is a subcomplex (Ci(n),d)
— Chta(n) 4 Cnt1(n) 4, Cn(n) (1.3)

of the bicomplex (1.2). This is the Grassmannian complex introduced in [S2], [BMS], see
also [Q2].
Let us denote by (BC.(n),d) the total complex associated with the bicomplex (1.2):

BCyr(n) := Cp(n) . We will suppose that BCp(n) placed in degree n and & has degree
+1 .

Now let us give a more geometrical interpretation of the Grassmannian bicomplex that also
explains the name.

Let (€1,-,€p4q+1) be a coordinate frame in a vector space V. Let us denote by G the
open subset of the Grassmannian of g -dimensional subspaces of PP*¢ which are in transverse
to the coordinate hyperplanes. R. MacPherson constructed in [M] an isomorphism
R P2 {conﬁgura.tions of p+ g+ 1 vectors in generic }

m:G e : . 1.4
position in a p—dimensional vector space 1.4



Namely, m(¢) is a configuration formed by images of ¢; in V/¢ .
Let
Z:Var — Ab (1.5)

be a functor from the category of algebraic varieties over F' to the one of abelian groups
that sends a variety X to the free abelian group generated by F -points of X. Applying it
to (1.4) we get an isomorphism

2[GI] = Cpralp) (1.6)

For each integer ¢ such that 0 < : < p+ ¢, there are intersection maps a; and projection
maps b;

AP 3 AP
Gy = Gq—l

1 b (1.4)
Go-!

Here the subspace a;(£) is the intersection of ¢ with the ¢ — th coordinate hyperplane and
the subspace b;(£) is the projection of ¢ on the ¢ — th hyperplane by the projection with
the center at i — th vertex of the simplex. We get a Bigrassmannian G(n) :

4
= G61+2
A U bo Il bas1
G(n): = (;,vlz+1 f‘__"; c‘;8+1 (1.7)
An+41
U . bo b1 N bo L} b
N i} -~ . -
=3 G} = G} =3 Gj
an+l On

Applying functor (1.5) to it, considering differentials d = 2(—1)ia; and d' = 2(*1)‘6; and
using isomorphism 1.6 we get the Grassmannian bicomplex.

Now let us sheafefy these constructions.
A bicomplex of sheaves on X called the Grassmannian bicomplex ;[G(n)] is constructed

~

as follows: For a point z € X , the stalk of ;[G(n)] at z is the formal linear combinations
of germs at = of maps from X to Gg . The corresponding bicomplex looks as follows

4



;[G(n)]: TN él[ﬁ;ll,“] d ;[f;;n] (1.8)
- zer] & 26y

Here ;[GS’] placed in degree (n,0) and d (respectively d’ ) has degree (1,0) (respectively
(0,1) ). The hypercohomology of the total complex associated with this bicomplex of sheaves
is the Bigrassmannian cohomology of X. We will denote it as H* (X,;[G(n)]) . Note
that the Grassmannian cohomology of [BMS] maps canonically to the Bigrassmannian one,
but there is no inverse map.

In § 2 we will construct explicitely characteristic classes c,(E) € H*" (X ,;[G(n)]) . There
is a homomorphism of complexes of sheaves

Z|G(n)| - EM[-n] (1.9)
(see § 3), that provides a construction of characteristic classes
ca(E) € H" (\1=<M)

4. Polylogarithms (compare with [GGL], [BMS], [HM]). Now let FF = C . Note that G{]’ is
almost canonically isomorphic to (C*)" . Indeed, according to (1.4) a point £ € Gf} defines
an (ordered) configuration of n+ 1 vectors in generic position in C" : m(€) = (vp, -, vy) .
So vp = 3 zv; and the map £ — (z1,-+-,2,) provides an isomorphism Gg S (CH)” .
=1
Therefore there is a canonical multivalued holomorphic n — 1 form
1 n . e
wy = - Zl (=1)'log zydlogzy A--- Adlogzi A --- A 2y (1.10)
=
on Gg :
Consider the mulivalued Deligne complex @(n) on a variety ¥ ( Q placed in degree
0, d has degree +1 ):
Q" Q) @)L A ariy) o0

Here ' represents multivalued holomorphic differential forms, i.e. holomorphic differential
forms defined on the universal covering space Y of Y. We wish to consider a triple complex
D which is the mulivalued complex Q(n) in the vertical direction and is a double complex
constructed from the Bigrassmannian G(n) in the horizontal directions. All differentials
have degree +1 .



A 2n-cocycle in the complex D is just a collection of (n — 1 —p — ¢)-forms {w}} such
that

dwf = T(=1)' eje_y + (=1)'bjuf ! (111

Conjecture 1.1 There exists a 2n-cocycle | in the triple complex D such that its wj -
component is given by formula (1.10).

The collection of forms {w}} is, of course, the Grassmannian n -logarithm conjectured
in [BMS], [HM]. However for an explicit construction of the Chern classes in Deligne
cohomology we have to construct the whole Bigrassmannian n -logarithm and it is not
sufficient to construct only its Grassmannian part. The main construction of this paper (see
§ 2) gives a construction of

ca(E) € HEH(X, Q(n))

using the Bigrassmannian polylogarithm L, . The coincidence of this class with the one
constructed by A.A. Beilinson [B2] is provided by formula (1.10) (see theorem 5.11). The
problem of construction of a collection of forms {w}} satisfying the condition (1.11) goes
back to [GGL], see also [You], where the real-valued forms on the corresponding manifolds
over R were considered, (forms SP? ),

The most interesting component of L, is a multivalued function P, := w”_, on G!_; .
The cocycle condition means that it should satisfy two “2n + 1 -term” functional equations

2n

Y (~1)a Py = (271)*qy ‘ (1.122)
1=0

2n )

Y (~1)'b Py = (2m) gy (1.12b)

1=0
where ¢1,¢q2 € Q. Note that af, b} have sense after lifting of maps «;, b; to the simply
connected covering spaces.

Instead of the Deligne complex Q(n)p one could consider the real Deligne complex R(n)p
that is the total complex of the following bicomplex

s9 ilr S%( i; Li, SY{, _d> gnt+l ii,

R(n)p : T ay T a, (1.13)
T n a n+1 d

A U
where ( ,'\”d) is the de Rham complex of the real-valued forms, (2*,9) is the de Rham
complex of holomorphic forms with logarithmic singularities at infinity, a, = (—1)"_1 - Re
for odd n and (~1)"Im for even and 5% placed in degree 1.

One can consider the triple complex D which is the complex R(n)p in the vertical
direction and is a double complex constructed from the Bigrassmannian g(n) in the
horizontal directions. In fact it is more naturally to consider complex for computation of
the hypercohomology of the Bigrassmannian G(n) with coefficients in R(n), (for this we



should replace the complex (Q_%",B) in (1.13) by its Dolbeaux resolution ('DJ%""’) for
example), but it is not important for our purposes.

Conjecture 1.1 ' There exists a 2n-cocycle L, in the triple complex D' such that its
component over GS is given by the following formulas:

, ] — -
n — ' N ., N - . n_l
Wy = Qp (;1-;(—1) log zidlogz; A -+ - Adlog z; A /\dlogzn) € Sc’;g

" - 1.14
wyp =dlogz1 A--- Adlogz, € Q% (1.14)

(duf + an (") = 0)

The corresponding component P,', of L; on G?_, should satisfy the “clean” (2n + 1)-term

equations
2n

Y (-1)aiP, =0 (1.14a)
=0
2n

Y (-1)'6iP, =0 (1.14b)
=0

From the other hand there are the classical polylogarithms Li,(z) that are functions of
one complex variable z. They were defined by Joh. Bernoulli and L. Euler on the unit disc
[z < 1 by absolutely convergent series

: — 2*
Lin(2) = ) o=
k=1

and can be continued analytically to a multivalued function on CP!\ {0,1,c0} using the
inductive formulas

Liy(z) = —log(l - 2)
Lip(z) = /Lin_]_(t)%
0

It turns out that Li,(2) has a remarkable single-valued version (By =1, By = —1/2, By =
1/6,-- are Bernoulli numbers) ([Z])

. n .ok
Lo(z) = Felnodd) (Z By -2 logklz|-Lin_k(z)), n>2

- Im(n : even) pord k!

L1(z) = log ||

For example
L2(2) = Im(Liz(z)) + arg(1 ~ z) - log |2

is the Bloch-Wigner function, and

L3(z) =Re (Lig(z) — log|z| - Liy(2) + % log2 l2| - Li1|z|)



was used in [G1]. The functions L£,(z) for arbitrary n were written by D. Zagier, [Z1].

Explicit formulas expressing the Bigrassmannian polylogarithms L, , L;, by the classical
polylogarithms for n < 3 were given in [G1] (see also [G2] and § 5 of this paper). For
example L;3 , that is a function on the 9-dimensional manifolds G% , is expressed by
L3(z) . However for n > 4 the “natural” cocycle L, can not be expressed by the classical
polylogarithms (the reason was explained in S. of § 1 in [G1]).

An interesting geometrical construction of the Grassmannian 2 and 3-logarithms was suggested
by M. Hanamura and R. MacPherson [Han-M]. The existence of the Grassmannian n -
logarithms for n < 3 was proved in [HM].

In formulas for L, , (n < 3), givenins. 9 of [G1]. It is interesting that all forms w?*+' are
equal to zero for : > 0. This means that the Bigrassmannian 7« -logarithms for n» < 3 reduces
essentially to its Grassmannian part {w}} . Thus is a nontrivial fact about the Grassmannian
n-logarithms, n < 3 . But this is not true for n > 4 . For example, already forms w{‘“
can not be choosen equal to zero for n > 4 . This is another important difference between
cases 7 < 3 and n > 4 . It shows why we have to enlarge the Grassmannian polylogarithms
to the Bigrassmannian one.

5. The universal Chern classes ¢, € H” (BGLm, K ﬁl) . Recall that the classifying space
for a group G can be represented by the simplicial scheme

BG,: =G« G?...

In § 4 I will construct explicitely the universal Chern classes ¢, € H" (BGL,,.(F) Ii’M) , m >

[ ] ==n
n . This is a refinement of the construction from § 2 and, of course, implies it immediately.

More precisely, a Zariski covering {U;},c; defines a simplicial scheme U, :

HU,' p = H Uisiy E H Uigigig-

el o< €l fg<i1<ig€S
A G-bundle E over X given by its transition functions g;; € I'(U;;, G) defines a canonical
map of simplicial schemes « : Uy — BG, . Our G -bundle is the inverse image of the

canonical G -bundle EG, S BG, over BG, and ¢,(E) = U*c, .

As a byproduct I get an explicit algebraic construction of cohomology classes generating the
ring H*(GL,,) . The existence of such a style description of the usual topological cohomology
of GL,, was conjectured by A.A. Beilinson [B3].

6. The universal motivic Chern classes. In § 4 an explicit construction of such Chern
classes

€ H3(BGLype,Z(n)), n<3

will be given. It implies, in particularly, an explicit construction of the Chern classes ¢, (&)
with values in Deligne cohomology HZ'(X,Z(n)) by means of the classical n -logarithms
(n £3) . A cocycle representing the ususal topological characteristic class c,(E) €
H?™(X,Z) in the Cech comples was constructed by J.L. Brylinsky and D. MacLaughlin
[B-M1.

A local combinatorial formula for all Pontryagin classes was suggested by .M. Gelfand and
R. MacPherson [GM2].



Let Hg, (G, R) be the ring of continuous cohomology of 2 Lie group G. It is known that
H2GLu(©), 1) = A (07,2 8,)
o5y, € HENGLm(C), R)

cts

As a byproduct of the construction of the universal Chern classes ¢, € HE'(BGLm(C), R(n)) ,
we get an explicite formula for (measurable) cocycles representing classes bg:ll for n < 3
and arbitrary m > 2n — 1 by means of the classical n -logarithm. The formula for b; is
well-known: bi(g) := log|detg| , ¢ € GL,,(C), is a 1-cocycle. The formula for bgz)
was found by D. Wigner in the middle of 70-s, and for b?) by the author ([G1], see also

[G2]). A formula for bgm) was written also by Kioshi Igusa (unpublished ?).

Note that there is a canonical map
Ha (X K)Y) = (X L)

and it was shown by Soule ([Sou]) and by Nesterenko and Suslin [NS] that this map is an
isomorphism modulo torsion. This together with characetristic classes c,(E) € H" (X ¥ n)

of Gillet ([Gil]) proves the existence of c,(E) € H" (X, K nM ) but does not give any precise
construction.

This work was initiated by A.A. Beilinson who explained to me that there are no explicit
construction of the Chern classes with values in H" (X S ﬂd ) as well as in H® (,\', ;gg)

or H" (X , Qg,) and emphasized importance of such a construction.

I hope it is clear from the introduction how much I benefited from paper of A.M. Gabrielov,
I.M. Gelfand and M.V. Losik [GGL].

The final draft of this paper was prepared during my stay at MIT and Max-Planck-Institut
fiir Mathematik. I am grateful to both institutions for their hospitality and to S. Bloch, J.-
L.Brylinski, D. Kazhdan, R. MacPherson, V.V. Schechtman and especially A.A. Beilinson
for useful conversations and encouragement to publish this paper. Finally I am grateful to
Frau Sarlette from MPI for excellent typing of the manuscript.



§ 2 Affine flags and Chern classes in Bigrassmannian cohomology

1. Affine flags. Let V' be a vector space over a field F. By definition a p-flag in V is
a sequence of subspaces

0ocLlcIL®*c---cLP, dimL' =1,

An affine p-flag L* is a p-flag together with choice of vectors /' € L/L"! | i =
1,---,p (L9=0) . We will denote affine p-flags as (/1,---,IP) . Subspaces L' can
be recovered as the ones generated by *,---,I' : L' = (I},... ') . We will say that an
(n + 1) -tuple of affine flags

L6=(I(]j’”'?lg)"”’L;:(lfln"'vlﬁ) 2.1
are in generic position if
dim (Ll +- -+ Ly ) =do -+ +in whenever ig+-+in <dimV.  (22)

Let AP(m) be the manifold of all affine p-flags in an m -dimensional vector space Vi,
It is a GL(V;,) -set, so as usual (see 5.3 of the Introduction) one can consider free abelian
groups Cp(AP(m))of configurations of (n + 1)-tuples of affine p-flags in generic posmon
in Vi, . Further, there is a complex of affine p-flags C.(AP(m)) :

- 5 Casa (47(m)) = Ca(A7(m)) = Comy(AP(m)) & -
— 23
d: (LY, L.)HZ (Lo, } ,L:,---,L;) 2.3)
1=0 .

In particularly C.(Al(m)) = C,(m) . Let us define a map of complexes
T : Co(AP*(n +p)) = BCu(n) (2.4)
as follows: for .
afH = (v},,-«- ,vgﬂ;---;vi,w-,viﬂ) € Cx(4" (n+p)) (k>n)

set

() =@ ¥ (oo it i) e

q=0 io+-+ig=p—e
iy20 (2.5)
k-n -

€ @ Ci(n + q) =: BCk(n)

q=0

Key lemma 2.1 T is a homomorphism of complexes.

Proof: Let Ti.(n + q) : Ci (AP (n +p)) — Ci(n + q) be the Ci(n + ) -component of the
map P. We have to prove that (see 2.6)

doTi(n+q) = Tha(n+q) - d o Ty(n+q+1)

10



afﬂ € Cr (AP (n+gq)) — Ck(ﬁ+q+1)
l N\ l (2.6)
Cr(n+9) = Craln+q)
For a given partiion ig + - - + 2 = p — ¢ let us consider the expression

. r ot (41
d(LE)o @”'@L;:|UE)°+ ,---,'U;:+ ) —

k ———
" o TR am
=S -0 (L e Ll o)
=0

2.7)

If z; = 1 then the corresponding term in 2.6 will appear in formula for Ty_1(n + ¢) (a{’*‘ 1) .
In the case i; > 1 such term will be in formula for

dl(LSJ P - @L;1—1® eLi&',U(i)o-I-l’.“ ’Uij .“,.U;'ck-l-l) )

aja

O
2. A construction of Chern classes in Bigrasémannian cohomology. Let us denote by

A%(X) the bundle of affine p-flags in fibers of a vector bundle E over X. Choose a
Zariski covering {U;} of X such that E/U; is trivial. Choose sections

Li(z) € T (U, AR(w))
such that for any 19 < -+- < i, affine p-flags L} (z),---,L] (z) are in generic position
for every z € Uj,,..i, -

‘Theorem 2.2 'I'(L,’0 (z),---, Lt (7)) € ;[C}(n)}(U,o,“) is a cocycle in the Cech complex
for the covering {U;} with values in the Bigrassmannian complex.

Proof: Follows immediately from the Key lemma 2.1. [

A different choice of sections L] (x) gives a cocycle that is canonically cohomologous to the
previous one. So the cohomology class ¢,(E) of this cocycle is well-defined.

11



§ 3 Chern classes with values in H" (X KM )

'=n

1. In § 2 we have constructed Chern classes with values in /%" (g*(n)) . To obtain Chern

classes with values in H" (X y K nM ) it is sufficient to define a homomorphism

BC.(n) = KM(F)[-n] (3.1)

i.e. a homomorphism f,(n): Cy(n) — KM(F) such that f,(n)od= fu(n)od =0,

L
Chya(n+1) 4 Cat1{n + 1)
Ld Ld
_'d" Cn+1(n) _d’ C"i(n)
1
K!(F)

Now let us define a homomorphism
fu(n): Cp(n) —» A"F*

as follows (compare with s. 2 of § 3 in [G2]). Choose a volume form w € det(V")* =
AMV™)* (where dim V"™ = n ). Set

Ay, - ) = {w,m A---Avp) € F*, v eV"

fa(m)(vo,-- - vn) == Alt \ Alvo, -+, B, va) € AMF? (3.2)
1<i<n
Here Alt g(vo,---,vn) := 2 (‘U'Ulg(”a(O)s"',Ua(n)) . For example, up to a 2-torsion
TESn41

f2(2)('f)01 v1,v2) =
2(A(vg, v2) A Alvg,v1) — Alvy,v2) A Alvg, v1) + Alvg, v2) A Alwy, vg))

Lemma 3.1 f,(n)(vo, -, vn) does not depend on w.

Proof: Let f,(n) be a homomorphism defined using another volume form w’ = Aw . Then

(#(m) = £u(m)) (o0, ) = AN 2

where A;; € A"1F* and depends on vg,---, i, - U3, v . S0 Aj; is symmetric on
v;, vj . But the left-hand side is skew-symmetric by definition. So A; ; = 0.
O
Lemma 3.2 The composition
d' n *
Copi(n+1) L Co(n) ™5 pAnp (3.2)

is equal to zero modulo 2-torsion.

12



Proof: (Compare with proof of lemma 3.4 in [G1])

n+l
fﬂ(n) o dl(‘UO)' e 1vn+1) = Alt A A(UCHUI)” : 1’5:1.1' v 1Un+1) =0
=2
because A(vg,v1,-:-,0;,¢ -+, Un41) is invariant under the switch of vgp and v; modulo
2-torsion.
O

Proposition 3.3 The composition

Cas1(n) S Ca(n) 25

K (F)
is equal to zero.

Proof: (Compare with proof of proposition 2.4 in [S1}). There is a duality * : Cpypp~1(m) =
Cmsn-1(n), *2 =1id that satisfies the following properties (see s.8 of § 3 in [G2]).

1. * commutes with the action of the permutation group Sm4n -

’

2. If (I, lngn) = (l'l,...,zm+n) then

*(11’” : ai;v'“ 7lm+n) = (l:ll,la' v )f:'a' . aTm+n)
3. Choose volume forms in V;, and V,, ; consider partition

(Lo man} = (i1 <o <imPU {1 <o <Ja)

Then does not depend on a partition.

A I.h v"'sljn
This duality can be defined as follows. A configuration of {m +n) vectors in an m-
dimensional coordinate vector space can be represented as columns of the m x (m +n)
matrix ([, A) . The dual configuration is represented by n x (m + n) matrix (—A4!I,) .
Using the duality we can reformulate proposition 3.3 as follows: the composition

d n(n
Cas1(2) S Ca(1) 8 KM ()

is equal to 0. Here
Fa(R)(vg, -+, vn) := AltA(v) AA(v1) A--- A Alvp—y) € APF*
Consider the following diagram

Cn+1(2) Cn(1)

! fn-i-l(n) l fn(n)

Z[PL\{0,1,00}] @ A™2F* & Anpr
Here Z[P}\ {0,1,00}] is a free abelian group generated by symbols {z} where z €

PIN{0,1,0}, 6:{z}@m A - AYp_ar (1=z)AzAyr A - Ayn_z . Note that by
definition Coker§ = K¥(F) . The homomorphism f,+1(n) is defined as follows:

Ja1(n)(vo, - - -, vnt1) 1= nllvg, -, Uny1]
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where [vg, - ,vn+1] is defined by induction:

[vo,v1,v2,v3) = {r(vg,v1,v2,v3)} € Z[P} \ {0, l,oo}]

[vo,++, Ung1) i= vt - Alt(er - Chpq[vn, -+, Vag1] ® Alvp, v1)
n—2

+ Y erCh L [v0, Vkgt, s Vng1] ® Alvo, v1) A -+ A Ao, vg)
k=2

Here ¢; = 1. More precisely, v, = 2"t — (2+CFH +CP, +CF71), €1 =+1 and
e; = (=1)", is for even n and 7, = 2"*! — (C™H + €7y, +C,’1‘;11), e =-1, &=
+1, ¢>1 for odd n . To prove the last formula one can wright

['00,3- < vng1] = Alt(ar - fvr, - Ung1] @ Alvg, v1)+
-

+ 3 agfvo, Uk, -+ vng1] ® Alwo,v1) A+ A Alwg, vr))
k=2

with some unknown coefficients ¢; . Then the condition é[vg, -+, vn41] = #Alt&(uo, v1) A
<+ A A(vp,vn) gives exactly n — 3 simple linear equations on «; .

2. We get the following construction of the Chern classes c,(F) € H" (X K ff ) . Choose
a Zariski covering {U;} of X such that Fly, is trivial. Choose sections L{(z) €
(Ui, A% (x)) such that for any g < --- < i, affine flags L} (z),---,L} (z) are in generic
position for every = € Uy, ..i, .

Theorem 3.4

Fan)(P(L(2), -, L} (2))) € EM(O"(Us,..i.)) (3.5)

is a cocycle in the Cech complex for the covering {U;} .
Proof: Follows immediately from lemmas 3.2, 3.3 and theorem 2.2.
O

By definition ¢,(£) is the cohomology class of the cocycle from theorem 3.4. It does not
depend from the choice of sections Lj(z) .

Example 3.5 Recall that ¢;(E) = ci{detE) . So ¢i(F) can be computed as follows:
choose m = dim E linearly independent sections {(z) (1 <« <m) of El|y, . Then

(12(2)) = gij(z) - (1P(x)) where gij(x) € GLu(F) is the transition matrix and det gij(z)
is a 1-cocycle representing ¢1(E) .

Now let (11,---,I™) is the affine flag corresponding to the m -tuple of vectors (I};
Let us prove that the cocycle 3.5 we get for these flags is exactly detg;; .

Proposition 3.6 fl(l)(c((z},--.,z;n), (z}.,---,z;ﬂ))) = det g;; .
Proof: Let us say that a frame (f';---; f™) is associated with an affine m -flag (I*,.--,{™)

if
<f1"_'7fk>=<ll}”_lk>ELk

and the images of f**! and [**! in L**1/LF are coincide.

ey

The set of all frames associated with a given affine m -flag is a principal homogeneous space
over the group of upper triangular matrices.
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Lemma-construction 3.7 For 2 affine m-flags in generic position in V'™ .

=(v11"'$vm) and L;:(wl,--.’iwm)

there are just 2 frames associated with both of them.

Proof: We have the following isomorphisms of 1-dimensional vector spaces:

sy: LE/LAY 5 Lhn ppke
sg 1 Lkt pm=k 2 [k gkl

Put ff i= sa(wn) , S5 i= sa(Wmoker) . Then the frames (ff;---; f")
(£3;--+; fi?) associated with both L} and L3 .

Let fF=X-fF, MeF*, and
(vi;-svm) =g - (w1, -+, wm), ¢€GLR(F).

m
Then detg = [] Ax because g = nqy - A-n—

k=1
@) (#) "2 () = )

where n_(n4) is a lower (upper) triangular matrix and ) isa diagonal one with entries Ay
(the Gauss decomposition).

From the other hand the left-hand side in proposition 2.4 is equal to

fl(l)(imj(Li‘eLf"lz{',I;"""“)) AW A#) = HAk

k=1
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§ 4 The universal Chern class ¢, € H" (BGL(m).,gnM )

1. The Gersten resolution to Milnor’s K -theory ([Ka]). Let F be a field with a
discrete valuation v and the residue class F,(= F) . The group of units U has a natural
homomorphism U — F, wu+ . Anelement 7 € F* is prime if ord,(7) = 1. There
is a canonical homomorphism (see [M1]):

8: KM (F)=KM(F,) (n20)
uniquely defined by properties (u; € U)

1. 3({71’,111,---,11,,})={ﬂl,---,ﬁn}

2. O{u1, - Un41}) =0

Let X be an excellent scheme (EGA [3] IV § 7), X(;) the set of all codimension : points
z, F(z) the field of functions corresponding to a point z € X(; .

There is a sequence of group K(n) . (Here KM(2) := KM(F(z)) )

KMFX) S @ KM@ > P KMo~~~ P T @D

z€X() z€X(2) z€X(r)

We will follow [Ka] in the definition of d . Let us define for y € X(;) and z € X;4; a
homomorphism )
0¥ : KX, (v) - KM(z)

as follows. Let Y be the normalisation of the reduced scheme {7} . Set

8}{ : Z NF(J:’)/F(m) o} azr

where z’ ranges over all points of Y lying over z, &, : K;’”_{l(y) — K,(z) is the tame
symbol associated with the discrete valuation ring Oy, and Np(;1)/p(s) is the norm map
KM(z') - KM(z) (see [BT], ch. I § 5 and [Ka), § 1.7). The coboundary 9 is by definition
the sum of these homomorphism &Y .

Proposition 4.1 8% = 0 .

Proof: See proof of proposition 1 in [Ka].

Theorem 4.2 The complex K(n), is exact.

O
2. Explicit formula for a class ¢ € H" (BGL(m),,gM) . Set G = Gx---xG

n times

Recall that

S0 -
BG. :=pttG4——G2---

2

is the symplicial scheme representing the classifying space for a group G. We will compute
H"? (BG., éiu ) using the Gersten resolution (4.1). So cochain we have to construct lives
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in the following bicomplex (G := GL(m))

@ KXy(F(=) = @ KL(F)
z€Gey” €G!
10 . 4.2)
@ Kn I(F( )) - @ f\’n I(F(m))
xEGE‘l)' IEG
10
KM(F(G™)

For each partition jo 4+ - + j, = m — n a codimension (n — r) irreducible subvariety
D(jo,"-,Jjr) € Gf,_,, and an element w(jo, -+, jr) € KM(D{jo,---,3r)) will be defined
such that a collection of all these elements forms a cocycle in (4.2).

Recall that A™~"+1(m) be the manifold of affine m — n + 1 flags in V™ . Let us define
for a partition jg+--- + j» = m — r a codimension n — r manifold

Djyj, C C AT "l x - x A'"_"H(m)J

o

rd-1 times

as follows: (L§,---,L?) € Dj,..;, if and only if

dim @L"”H —T+ij—d1m @LJ’H -1.

p=0

~ r :
Note that for generic (L3, --,L}) € Dj,....;, thesum €@ Lj’ is direct and the configurations
p=0
of r + 1 vectors

,
B I, @3
p=0

in V™/ @ L generates a subspace of dimension r . Recall that there is a homomorphism
(see 3. 2)

F(r):Co(r) = ATF* = KM(F) .
Applying it to the configuration of » + 1 vectors (4.3) we get an element

Siogge € KM (F(Dios0)) (4.4)

Now choose a € A™ "1(m) . Set

Dj(]"'jr;a = {(gl, - ,gr) c G’"l(a,gla, Ve ,gra,) (S Djo’...,jr}

Then Djq... ;.0 € G{,_,) and wj, .. ; induces an element

Wigyerjria € KM (F(Djyjuia)) (4.5)
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Set

Oy 1= Z Wio,rdr € @ R-rM (F(bjo,"'air))

Jot++jr=m—n Jot+jr=m—n
— _ M L
Wy 1= Z Wjp,yjria € @ K. (F(Djg e jria))
jot+:+jr=m-n JotFje=m—n

Theorem 4.3 Collection of elements w, defines a cocycle in the bicomplex (4.2).

Proof: Choose a partition ig+---+4, =m — 7. Let £ be a subvariety in the manifold of
(r + 1) -tuples of affine (m — r + 1)-flags in V™ defined as follows:

r r
iggrie = { (L3, LD dim | D L3 | = | D4 | —1

p=0 p=0
This is a codimension n — r + 1 irreducible subvariety.

Proposition 4.4 The component of 0%, on f:','o,...,
ip > 0 for p # k . In this case it is equal to

i, 15 non zero if iy = 0 for some k but

-

@ L;’p_lllaor e ’l;.cka Tty l:'r (46)
pik
Proof: Let jo+ -+ jr =m—n and
(B, =+ g e = (L L) € Dy
Choose a volume form in the codimension n -subspace <I(1J?' : 'a%ﬁﬂ,"',Il,"',l£'+1> .

Then we can compute the determinant A(vy,*-:,Um—n+r) fOr any m — n 4 r vectors in
this subspace. Set

AlJr+1) = A(lé, R AR LTI L JZ’H)

Then by definition
Ginvrge = 3 (CDH{BGO+ 1) AGE+ 1), A+ D) @)
k=0

The coboundary 0wj, ... ;, can be nonzero on divisors A(jg4+1) =0 in f)jo,...J, only. The
component of 0@;, ... ;. on the divisor A(jg+1) = 0 is equal to

r — .
@ L;P @ l_}:-l-l ll.(7)0+1, e l.}:-}-l’ e lir+1 (4.8)
p=0 .

is zero if 4, =

0‘...|'_

This formula implies immediately that the component of 9, on &;
ik, = 0 for some k; # ko .

It follows from (4.8) that in the case i, > 0 for all p the component of 9%, on &;, .. .
fr(T Z @ L’P_l cee l;':’ . ,lir (49)

k=0 p=0
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p=0

T } . .
Note that | @ L'» M1, ---, l::) is a configuration of m + 1 vectors in an m -dimensional
space (4.9) is equal to

,
fe(r) o d @ L;’J"lll(i)oa T alir

p=0

But this is equal to zero according to lemma 3.2.

Now suppose that ¢ =0, i, # 0 for p # k. Then (4.8) implies that the component of
Nw,) on &,...i, is exactly (4.6).

O
3. Relation to the classical construction of Chern cycles. Suppose that a vector bundle F
ver X s sufficiently many sections. Consider first of all the case when dim £ = n and we

are interested in c,(E) € CH™(X) . Choose a section so{z) € ['(X, E) that is transversal
to the zero section of E. Then the subvariety

Dy := {z € X|so(z) = 0}

has codimension n and represents the class c,(E) € CH™(X) . Now let sj{z) be another
generic section of E (i.e. it is transversal to the zero section of £ too). Then

Dy = {I € Xlsl(x) = 0}

should represent the same class in CH™(X) . To see this let us consider a codimension
(n — 1) subvariety

Doy := {z € X|3Ap, A1 € C such that Agso(z) + Ais1(z) = 0}
There is a canonical rational function
A
Aot = /\—0 € F(Dp1) and Div(Aq) = Dy — Dy
1 .

So Do and D, are canonically rationally equivalent cycles, Now let so(x) be the third
generic section of E£. Put

D12 = {z € X|dim (so(z), s1(2), s2(z)) = 2}

Then codim Dgij2 = n — 2 and there is a canonical element

Ao12 = f2(2)(s0, 51,52) € Ko(F(Do12))
9(Mo12) = Aot — Aoz + A12

where 3 : Ko(F(Y)) — ]I F(y)® is the tame symbol. Continuing this process we get for
yEY

r+ 1 generic sections so{z),---,sr(z) of E a codimension (n — r) subvariety
Dqy..r := {z € X|dim (so(z),---,s.(z)) =1}
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and a canonical element
Aovr = fr(2)(50, -, 8v) € KM(F(Doy..r))

satisfying the relation

r

a(/\()l---r) = Z (_1)1'/\01“.:.“'"

=0
( O is the differential in complex (4.1).

Now let F be a vector bundle of dimension m > n and p=m —n + 1. Let
Ly(z) = (g(=), -, 1f(2))
is a generic section of the bundle of affine p-flags on X. Put
Do:={o € X|B(x) A+ A(z) =0, but I(z) A ABTa) # 0}

It is well-known (see, for example, s. 3 of ch. Il in [GH] that the image of the cycle Dy in

the Chow group CH"(X) is just ¢,(E). Let Li(2),---,Ly(z) be r + 1 generic sections

of the bundle of affine p-flags. For any partition jo+---+j5,=p—1, 3 2>0, put
D(jo, -+, 4r) = {z € X|(r + 1) — tuple of vectors

(L%)D +e L{'|€JS+13 SR @?H) generates r — dimensional
(4.10)

T ‘ r
vector space and  dim @ L= Z ik}
k=0 =0

Then D{jg,---Jjr) is a codimension n — r cycle in X. There is a canonical element

FO((p oo Lt . 8+1)) € K¥(F(DGo, ++50)) (@.11)

Let us define an element
dovr€ T EMEDGo, i) [T &Y (F()
Jotdja=p—1 TEX"—T

as the sum of elements (4.11):

Jot+-+iz=p-1 k=0

T

Theorem 4.5 9(A\p1..r) = D (—1)",\61__;
i=0
Proof: Follows immediately from proof of theorem 4.4,

o

O

4. An algebraic construction of ring generators of H*(GL,,(C)) . I will construct a non-
zero class in WoH?**~}(GL,,(C),Q(n)) . This vector space is one-dimensional for m > n .
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Let us define for any 0 < j < m — n a subvariety D; C A™"+1(m) x A™~"+1(m) as
follows: ) . o .
Dj := {(L3, L}) such that (L{ + Lyt g )

is a pair of collinear nonzero vectors}

4.12)

There is canonical invertible function f; on D; : the ratio Amtyedtor  (gee 412). Now
choose an affine (m —n+1)-flag L* in V,, . Set

GL(V) D Dj 1= {g € GL(V,)|(gL*, L) € DJ-}
There is canonical function f; € O(D;)" .

Theorem 4.6. The current 3. dlog f; represents a nonzero class in WoH*"~Y(GL,(C), Q(n)) .
J

Proof: Let us prove that 3 divf; = 0 where divf; is the divisor of f; on D; considered
J .
as a codimension n cycle on GL(V};) . Note that divf; = ZJ'-" ~ Z; where

Zr = {(L3, L) < P Ly >=< I}, Ly >
and LINLy™ ™ =0}
27 = (L3, L) < L4, Ly 7" >=< 1], 17 >
and LiN Ly~ =0}
Therefore it is easy to see that 3 divf; = 0 and hence Y. divf; = 0 . So the current

j j
S dlog f; represents a class in WoH?""}(GL,,(C),Q(n)) . It remains to prove that it is

livontn'vial.

Let Gr(N —m,N) be the Grassmannian of codimension m subspaces in Vy . There is
canonical m -dimensional bundle E over it: the fiber over plane h is Vy/h . Let us
choose an affine m —n +1 flag L' ¢ --- ¢ L™ "1 in Vy . It defines a Chern cycle
cm(E; L) € Gr(N—-m,N) . Let 7 : E — Gr(N-m,N) be the bundle of frames
(e1, -+ ,en) in fibers of E. This is a principle GLy,,-bundle. Let us construct a cycle
B, CE together with a rational function g, € k(B,,) such that

divg, = w_l(cm(E; L*)) (4.13)
and for generic h € Gr(N —m,N) the intersection
(Bm, gm) N7~} (h) coincides with ) (Dj, f;) (4.14)

7
constructed using the projection of the flag L* onto Vy/h . (More precisely, a reper
(e1, -+ ,€,) defines an affine (m —n+1)-flag (e1; - ;em—n+1) and this flag together
with the projection of L* should satisfy 4.12). Conditions 4.13 and 4.14 just means that the
cohomology class of the current > dlog f; is the transgression of the m — th Chern class

of the universal bundle. Morcovcf‘, they give a precise description of the cycle B, : it is
closure of union of cycles > D; C m~1(h) constructed using the projection of L*®; here h
runs through an open part in Gr{N — m, N) . It is easy to see that for the natural invertible
function g,, on B,, (4.13) holds.
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§ 5 Explicit formulas for the universal motivic Chern
classes ¢, € H*(BGLy,,Q(n)) for n < 3

First of all I have to recall what are the motivic complexes. So for convenience of the reader
I will reproduce in S. 1-3 basic definition and results from [G1], [G2].

1. Motivic complexes. Let F' be an arbitrary field. Denote by Z[P}] a free abelian group
generated by symbols {z} where = runs all F -points of P! . Let us define subgroups
R.,(F) Cc Z[P}]  (n < 3) as follows:

Ry(F) := a subgroup generated by {zy} — {z} — {y} where =,y run through all
elements of F™

4 :

Ry(F) := a subgroup generated by Y. (—1)'{r(zo, --,%i, - -z4)} where
i=0

(z0,-+-z4) runs through all configuration of 5 distinct points of P} and

r(z1, -+, 24) = %ﬁ% is the cross-ratio

6 - ~~

R3(F) := a subgroup generated by (—1)’{r3 (lg,--- i ,IO)} where
=0

(lg,---,lg) runs through all configuration of 7 points in Pl% in generic position

and r3(ly,---,lg) € Z[P}] is the generalized cross-ratio:

A(i1l~2f4) .A(fgfgfg)) .L\(isﬁiﬁ) } (5.1)

r3(ly, -, lg) i= Alf-{ A(iligfs) ) A(EQESEG) . A(fsilz‘i)

where Alt f(ly,---,lg) = Z; (—l)laif(fau),“'Ja(s)) -
A ST

Here [; are vectors in 3\ 0 that projects to the points /; € P(V3) . The right-hand side of
(4.1) does not depend neither from the volume form in V' | nor from the length of vectors
l; . So the cross-ration of 6 points in P2 is well-defined. Put

Z[Py]
(F), {0}, {oc}

~

There is a canonical isomorphism Bj(F) — F* provided by the map {z} ~
z; {0}, {oo} — 1. Let us consider the following complexes Bp(n) :

Bp(l): F*
Bp(2): By(F) & AZF* (5.2)
Br(3): By(F) % By(F) @ F* & ASF*

Bn(F) = R,

Here
S{z} i =(1-2)Az

b3{z} ={z}®2; &{z}@y:=(1-z)AzAy
and by definition 6,{0} = én{o0} =0, (n=2,3). Note that 830 63({z}) = (1 —2) A
zAz =0, so Bp(3) is a complex.

Theorem_5.1 6,(R,(F)) = 0
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Proof: See § 3 of [G2] or theorem 5. below.
In complexes (5.2) groups B,(F') placed in degree 1 and 6, has degree +1.
The complex Bg(2) is the well-known Bloch-Suslin complex.

2. The motivic complexes ['(X;n) for a regular scheme X (n<3). Let F be a
field with a discrete valuation v and the residue class F, . Let us construct a canonical
homomorphism of complexes

0y : Bp(n) — Bﬁ(n - 1){-1]

There is a homomorphism 6 : A"F* — A""!F. uniquely defined by the following
properties ( u; € U, u +— T is the natural homomorphism U — ?Z and 7 is a prime:
ord,m =1 ) : '

1. 9(11’/\’&1/\---/\&,;_1)=ﬁll\~--/\ﬁn_1
2. Bug A---Aup) =0

It clearly does not depend on the choice of «
Let us define a homomorphism s, : Z[P}] — I[P% ] as follows .

otherwise

so{z} = {{.’n} if z is a unit (5.4)

Proposition 5.2 Homomorphism (5.4) induces a homomorphism

sv:Bn(F)an(?v) , n=2,3.

Proof: Straightforward but tedious computations using explicit formula (3.17) from [G3] for
generators of the subgroup R3(F) . ‘

To avoid such computations one can consider subgroups ’R (F) C Z[P}] defined in s. 4 of
§ 1 in [G3]. Then more or less by definition s,(R,(F T\’,ﬂ(_ ) and §(R,(F))=0.

So there are corresponding groups B,(F) := %!5%‘5 together with homomorphisms s, :
Bu(F) — Ba(Fu) .

0
Set

8y =5, @8 : Br(F) ® A" FF* — By (F,) ® A" *-'F, (5.5

Lemma 5.3 The homomorphism 8, commutes with the coboundary.§ and hence defines a
homomorphism of complexes (5.3).

Proof: Straightforward computation. See also s. 14 of § 1 in [G2] where the corresponding
fact proved for groups B,(F) .

O
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Now let X be an arbitrary regular scheme, X(;) the set of all codimension ¢ points of
X, F(xz) the field of functions corresponding to a point = € X(;) . We define the motivic
complexes I'(X,n) as the total complexes associated with the following bicomplexes:

rx1: FX)3 J[ z
z€X(1)

ANFXY 8 ] Ferr & 112

]_-‘(X, 2) : T 5 z€X (1) z€X(y)
By(F(X))
ASF(X)* & I AF@* B ] F)t & I 2
T s z€X() zeX(2) z€X(3)
DX38): ByFxX)@FX)> B ByF(X))
16
B3(F(X))

where B,(F(X)) is placed in degree 1 and coboundaries have degree +1 .

The coboundaries §; are defined as follows. 8y := [][ 8, . The others are a little bit
T€X()
more complicated. Let z € Xy and v1(y),---,vm(y) be all discrete valuations of the

field F(z) over a point y € X441y , ¥ € T . Then F(z); := F(z)y 2 Fy) .
(If T is nonsingular at the point y, then F(z); = F(y) and m = 1 ). Let us define a -
homomorphism & : A2F(z) — F(y)" as the composition

m

8.,. " N z),; -] *
A2F(:z:)* @4(r) @F(m) o F(z)i/ F(s) F(y)

1

=1

m
and Flo) L @z 317,
i=1

3. Motivic Chern classes ¢, € H3%(BGLw(F),,Z(n)), n < 3. Recall that

S0 "_u__ l
BG =pt=G e~ G2 ..
k31 b

2

We have to construct a 2n-cocycle c, in the bicomplex

L L

T(G;n) 5.5 IN(CET Y ENEE LN I (G*™1n) 4.7

where s* = £(—1)'s; . Its components in

.

T(G;n) S .. S 0(G™n) (128)
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should be in the following part of the bicomplex:

D
:L'EG(“)Z
T0 .
@ Fle)f > ® Fz)
T€G(n-1) z€GY,
@ AF() 5 .. (5.8)
zEG?n-—ﬂ)
L@ AF()
z€Gy,
10
AMF(G™)*

In fact the components of ¢, in 5.8 were already constructed in § 4. Recall this construction.
Let a be an affine (m — n+ 1)-flag in an m -dimensional vector space V™ . For each
partition jg + -+ + j, = m — n irreducible subvarieties

Dijojria € Gla_p)
together with elements
Djo,erjria € ATF(Djy . jrsa)” (5.9)
were constructed. More precisely, if
(Lo, -+, L) = (a, ;a, -, gra)

where (g1,---,9r) € Dj,,.j;a C G™ then

r

Jp(jio+1 j2+1
@Lppllglo ""ﬂl'ri"2+
p=0

is a configuration of r+1 vectors in an 7 -dimensional vector space. Applying homomorphism
fr(r) : Co(r) — ATF* to it we get the element (5.9). The collection of elements

LTJ,» = Z a’jo,'",jr;ﬂ € @ ArF(Djo,“‘Jﬁﬂ)*
o+t jr=m—n Jo+-Fjr=m—n
e P AF@E)

:EEGEn—-r)

(5.10)

forms a cocycle in the bicomplex (5.8). (The proof of this fact is absolutely the same as the
one of theorem 4.3). The components of ¢, in the bicomplex

T(G";n) LN r(G™t%n) LIGREN P(GZ"'I;n) (5.11)
are constructed as follows. There is a homomorphism of complexes (see (2.4), (2.5))

T : Co(A™ " (m)) — BCu(n)
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where BC,(n) is the total complex for the Grassmannian bicomplex (1.2).

We will construct homomorphisms of complexes
f(n): BCy«(n) = Bp(n) (n<3) (5.12)
such that for » > n+ 1 the O-coboundaries of elements

f(n) 0 P(G,, q14a,- - )gra') (5°13)

are equal to zero. The collection of elements (5.10) and (5.13) form a cocycle ¢, in the
bicomplex (5.7).

Let us describe the construction of the homomoprhism (5.12).

a) n=1. fi(1): Ci(1) — F* is the only homomorphism we need. It is very easy to
check that fi{1)od : Cy(2) —» F* and fi(1)od: Ca(l) — F* are equal to zero, so we
get a homomorphism f(1) : BC.(1) — F*[-1] .

b) n = 2. We have to construct a homomorphism from the total complex associated with
the bicomplex

! , l
— C4(3) = C3(3)
Ld id

L oo2) L 2

to the complex
0 — By(F) — A2F*

A homomorphism f5(2) : Co(2) — A?F* was defined by formula (3.2). Lemma 3.2 shows
that one can put a map from C3(3) to By(F) equals to zero. Let us define a homomorphism

f3(2) : C3(2) — Bs(F)
setting
(loy---,13) = {r(lo,---,1a) },

where (lg,---,l3) is a configuration of 4 points in P} corresponding to the one (lg,- - -, I3)
of 4 vectors in V2 . Then f3(2) o d : C4(2) = By(F) is zero by definition of the group
By(F) .

Lemma 54 f3(2)od =0
Proof: We have to prove that for (lg,---,l4) € Cy4(3)

i(_l)i{”'(filfoa'",fi,"',74)}2=0 in By(F). (5.14)
=0

There is a conic (a curve of order 2) passing through 5 points Ip,---,l, in P2 . Let us
consider it as a projective line. Then (5.14) is just the 5~term relation for 5 points I; on
this projective line.
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O

So we have defined a homomorphism f(r) : BC.(r) — Bp(2) . It is non-zero only on the
Grassmannian subcomplex C.(2) C BC.(2) .

¢) n =3 . We have to define a homomorphism from the total complex associated with the

bicomplex
! l l
— Cs(4) — Cs(4) — Cs(4)
l ! |

to the complex
B3(F) = By(F)@ F* — A3F*
A homomorphism f3(3) : C3(3) — A3F* was defined by formula (3.2). Set
fa(3) : Ca(3) = Bo(F) @ F*

1 - - 5.15
f4(3) : (IOa' o 714) = EAlt{T(?OIII; : 1lu)}2 ® A(£0111112) ( )

Proposition 5.5 f4(3) does not depend on the choice of the volume form w3 € A3(V3)" that
we need for the definition of A(lp,l1,12) .

Proof: The difference between the right-hand sides of (5.15) computed using A-w3 and wy
is proportional to (right-hand side of (5.14) ® A . So it is zero by lemma 5.4.

O
Proposition 5.6 f3(3)od = 6o f4(3)
Proof: Direct calculation using the formula
3 Al 13) - Allz, ly)
r{ly, -, 1) =
N A X WARNWA)
O
Now set
f5(3) : C5(3) — Bs(F)
A(l()a lls 13) ‘ A(Ilal2a 14) ’ 5(121 !01 15)} (5°16)
3): (lg,---,15) — Alt
f5(3): (o 2 {A(IOJI,L%) Al 2, 05) - Allz, D0, 13) | 4
Theorem 5.7 f4(3)od = 6 o f5(3)
Proof: See proof of theorem 3.10 in [G3].
O
Proposition 5.8 fi(3)od =0 for k = 3,4,5 .
Proof: For k = 3 this is lemma 3.2. For & = 4,5 see theorem 3.12 in [G3].
O

Proposition 5.9 f5(3)od = 0 in B3(F) .
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Proof: Follows immediately from the definition of the group B3(F') .
O

So one can define a homomorphism f(3) : BC.(3) — Bp(3) using homomorphisms f;(3)
on the subcomplex C,(3) C BC.(3) and zeros otherwise.

Now consider an element
f4(3) 0 P(a, 10, ,940) € Bo(F(G*)) ® F(G")"

Then

B0 fa(3)o Pla,gra, -+, gaa) € EP Ba(F(x)) (5.17)

4
:ceG(l)

Lemma 5.10 The left-hand side of (5.17) is eugal to zero.

Proof: It follows from the definition (5.5) of J, and the following remark: A(lg,ly,/2)
appears in formula (5.15) with factor {r(lsllo,71,12,14) }, — {r(lallo,11,T2,13) }, that is
obviously zero if A(lp,l1,l3) =0 .

[

So we have proved that the collection of elements (5.10) and (5.13) form a cocycle in the
bicomplex (5.7). The cohomology class of this cocycle does not depend from the choice of an
affine (m — n + 1) -flag a. (Different flags give cocycles that are canonically cohomologous).

4. Chern classes in Deligne cohomology. Let us suppose that there exists a 2n-cocycle
L'n from conjecture 1.1’ (A precise construction of this cocycle for n < 3can be found in
8 9 of [G1], see also [G2]). The main construction of § 2 gives an explicit construction
of Chern classes in Bigrassmannian cohomology and hence, applying L. , in real Deligne
cohomology. We will see in the next section that these Chern classes coincides with the
classical ones (see theorem 5.11)

5. The universal Chern classes in Deligne cohomology. Assuming existence of L, we
will construct

¢n € HE(BGLm(C), R(n))

The Dolbeaux resolution of the complex associated with the bicomplex 1.13 provides us a
complex computing real Deligne cohomology of an algebraic manifold over C . We will
denote this complex as R(X,n). We have to construct a 2n -cocycle in the bicomplex

RG ) SSRGS - S R(GE ) (5.18)
(compare with 4.7). First of all let us construct its components in

RG,n) S - S RGN n) (5.19)

If Y < X is a subvariety of codimension d then there is a canonical homomorphism of
complexes 7, : R(Y,n) — R(X,n +d)[2d] .In s. 3 we have constructed a chain (5.10) in
the bicomplex 5.8 corresponding to an affine (m —n + 1)-flag « in V, . Each component
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of this chain lies in A"F(z)* where z is a codimension n — r point in G” . There is
canonical map

A"C(z)" — R(Spec C(2),7)

fihANfrm
1 r . —
{a,, (- (=1)'log fidlog fy A+~ Adlog fi A+ A dlogf,.),dlogfl Ao A logf,.}
r
i=1
commuting with residue homomorphisms. Here a, = (—1)"'. Re for odd r and
(=1)""'Im for even. So we get a chain in (5.19).

The components of ¢, in the bicomplex
R(G",n) 5.5 R(Gr*~! n)

are constructed as a composition of the homomorphism of complexes
T : Cu(A™ " (m)) — BCu(n)

with the 2n-cocyle L, that lives on BCy(n) . More precisely to construct a R(G*,n) -
component of ¢, we have to restrict homomorphism T to elements (a, ¢1a,- -, gra) where
a is a given affine (m —n +1)-flag in V;;, .

Theorem 5.11 a) The constructed chain ¢, is a cocyle in 5.18
b) The cohomology class of c, coincides with the usual Chern class in H5'(BG L,,(C), R(n)) .
Proof: a) follows from the definition and previous results.

The proof of b) is in complete analogy to the one of the theorem 5.10 in [G2]. Let
7 : EGe — BG,. be the universal G -bundle then E Py = BG,;}) and so any i-cochain
c(ey for BG. defines an (i — 1)-cochain &,y for EG, : &) = ¢ppq) - Moreover, if
coy =0 and c(,) is a cocycle then d¢(,y = c(,) . Therefore c(;) = ¢|¢ is the transgression
of the cocycle c(,) .

Applying this to the constructed cocycle ¢, we get a cocycle ¢, in HY Y GL,(C),R(n)) .
The usual exact sequence for Deligne cohomology gives us

cor = HEYGLm(C),R(n)) S H®YGLm(C), R(n))N
NH*1(GL,.(C),02")

It follows from definitions that a(c',,) coincides with the class constructed in s.4 of § 4. It
is nontrivial according to theorem 4.6. Theorem 5.11 is proved.

6. Explicit formulas for measurable cocycles of GL(C). We will suppose that there exist a
function P, on G‘;:_l satisfying (2n + 1) -term relations (1.14). Recall that such a function
can be considered as a function on configurations of 2n vectors in generic position in C”
satisfying the equation

2n

> (=1)Pu(loy By lan) =0 (5.202)
1=0
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2n

S (-1'p, (I o, -+, lzn) =0 (5.20b)

=0
We will assume also that P,; is a component of a 2n -cocycle L'" from conjecture 1.1°,
Theorem 5.12 Let a be an affine (m —n+1)-flag in V,,, . Then P,(T(goa,: -, gan—10))

is a 2n-cocycle of GL,,(C) . Its cohomology class coincides with the Borel class in

Hz")— (GLn(C),R) (m2n).

Recall that here T : C,(A™ "*1(n)) — BC.(n) is a homomorphism of complexes. The
cocycle condition follows just from this fact and (2n + 1)-terms equations (5.20).

Let G° be the Lie group made discrete. The morphism of groups GLm(C)5 — GLy(C)
provides a morphism

e : BGL(C) = BGLy(C),
Therefore

HE(BGLn(C).,, R(n)) — HY (BGLm(C)f , R(n))

= H*" Y (BGLw(C),, $°) = Hi {(GLw(C), R(n — 1))

Here SO is a sheaf of smooth functions. It is known that e* maps the indecomposable
class in HZ(BGLy(C),Z(n)) just to the Borel class in H2"TH(GL,(C), R(n — 1)) (see

(m)
[B2], [DMZ]. The arguments in proof of theorem 5.11 show that the constructed class

cn € HY(BGL,(C),, R(n)) lies in
Im H3(BGLm(C),,Z(n)) = HF(BGLn(C),, R(n))

and in fact coincides with the image of the standard class in H%'(BGL,,(C),,Z(n)) . In

our case e*(c,) coincides with P,(T(goa,-- -, gan—1,¢)) just by definition. Theorem 5.12
is proved.

Remark 5.13 Explicit formulas for functions P, are known for n < 3 :

Po(lh, - la) := Lo(r(lh, -+, la))
Py(ly, -+, 1lg) = La(ra(ly, -+, 1g)) -
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Abstract

Let £ be a vector bundle over an algebraic manifold X. An explicit local construction of
characteristic classes ¢, (&) with values in Bigrassmannian cohomology that are defined in
8§ 1 is given. In the special case n = dim F it reduces to the construction of c,(F) with
values in the Grassmannian cohomology given in [BMS].

Our construction implies immediately an explicit construction of Chern classes with values
in H "(X, gi” ) , where I=\f is the sheaf of Milnors K -groups.

A construction of classes c¢,(E) with values in motivic cohomology is given for n < 3 .
For n = 2 it could be considered as a motivic analog of the local combinatorial formula
of Gabrielov, Gelfand and Losik for the first Pontryagin class ([GGL]). The reason for the
restriction n < 3 is the absence of a good theory of n-logarithms for n > 4 today.

Explicit constructions of the universal Chern classes ¢, € H" (BGL,,,., I=\f:1 ) and for
n<3 cp € Hiy(BGLye,I(n)) ( H}, : motivic cohomology) are given.



§ 1 Introduction

1. Chern classes with values in H" (X, K ‘:;{ ) . Let L be a line bundle over X'\ There
is the following classical construction of ¢)(L) € H'(X,0*) . Choose a Zariski covering
{Ui} of X such that L|y, is trivial. Choose non-zero sections s; € I'(U;, L) . Then
sifs; € T(U; N U;,O*) satisfies the cocycle condition and hence define a cohomology class
a(L) € HY(X,0%) .

Let us define the presheaf of Milnor’s K -groups on X as follows: its section over an open set
U is the quotient group of O*(U)®---® O"(U) by the subgroup generated by elements

w
n times

g1®...®gk®f®(1—f)®gk+3®"'®gﬂa gl:fal_feo*(U)

Let us denote by K f;f the sheaf associated with this presheaf. We will denote by { f1,-- -, fn}
the image of 1 ®@ - ® fn € O*(U)®" in g‘f(U) .
In § 3 for any vector bundle E over X an explicit construction of the Chern classes
ca(E) € H" (X,L_\_HM) will be given.
The construction of c,(£") for an n-dimensional vector bundle E" follows from [S1]
and [BMS], ch. 1. More precisely, let U; be a Zariski covering such that E™|y, is trivial.
Choose a section s; € I'(U;, E") such that s;,(x),---,s;,,,(z) are in generic position on

n
Uiy vings = Uiy N---N Ui, . Then Sinsi(T) = kE ai, (%) - si,(z) and

o=1

{(L;‘I(QI), trr Oy (I)} € R’I?J(Uir--inu)

is a cocycle in the Cech complex.

I will generalize this construction to vector bundles of arbitrary dimension and show that for
c1(E) it gives exactly the described above cocycle for c¢i(det E) .

2. Applications. There is a canonical map of sheaves
EM - op ooy — ot
{f1,~ .. ,f,,} — dlog fi A--- Adlog fn

Here (1 (respectively (27, ) is the sheaf of 7 -forms with logarithmic singularities at infinity
(respectively closed n -forms). Therefore we get a construction of characteristic classes with
values in H" (X, Q{;g) and H™(X,07) . Note that the Atiyah’s construction provides us
characteristic classes in H"(X, Q") ([A], see also [Har]).

3. The Grassmannian bicomplex and Bigrassmannian cohomology (see [G1], {G2],
compare with [GGL] and {BMS]). Let Y be a set and C,(}") be a free abelian group
generated by elements (yo,---,y,) of Y™t := ¥ x...xY¥Y . There is a complex

n+1
(C’,,(Y),d) where

d(yo, - yn) = 3 _ (=10, Gir -, yn) (1.1)
1=0



This is just the simplicial complex of the simplex whose vertices are labeled by elements of
Y. Suppose that a group G acts on Y. Let us call elements of the quotient set G \ Y"1
by configurations of elements of Y. Denote by C,(Y) a free abelian group generated by
configurations of (n + 1) elements of Y. There is a complex (C.(Y'),d) , where d is defined
by the same formula (1.1) and C,(Y) = C.(Y ) - We will also apply this construction to
subsets of G\ Y™*! of “configurations in generic position”.

Now let us denote by C,(m) a free abelian group generated by configurations of » + 1
vectors in generic position in an 7 -dimensional vector space V™ over F' (i.e. any m
vectors of the configuration are linearly independent). In this case there is another map:

d : Cp(m) —= Cpoy(m—1)

n

d’ : ('UO,' te 1”11) — Z (—l)i(‘UQ|’U0, e a{)ia' s ;vn)
i=0

Here (vilvo,---, %, -+, va) is a configuration of vectors in ™"/, obtained by projection
of vectors v; € V™™ | j # ¢ . Then there is the following bicomplex

o Capa(n+2) L Capaln+2) S Crta(n +2)
d d d
. . ! y l (12)
Ld Ld Ld
o Caga(n) S Cap(n) S Caln)
We will call it the Grassmannian bicomplex (over X = SpecF ).
There is a subcomplex (C.(n),d)
— Coga(n) 3 Copr(n) S Caln) (1.3)

of the bicomplex (1.2). This is the Grassmannian complex introduced in [S2], [BMS], see
also [Q2].
Let us denote by (BC.(n),d) the total complex associated with the bicomplex (1.2):

BCp(n) := Ca(n) . We will suppose that BC,(n) placed in degree n and O has degree
+1 .

Now let us give a more geometrical interpretation of the Grassmannian bicomplex that also
explains the name. '

Let (e1,---,eptq+1) be a coordinate frame in a vector space V. Let us denote by Gg the
open subset of the Grassmannian of ¢ -dimensional subspaces of PP1t¢ which are in transverse
to the coordinate hyperplanes. R. MacPherson constructed in [M] an isomorphism

.~ [ configurations of p+4 ¢+ 1 vectors in generic
m.;c.g—»{ & brd & } (1.4)

position in a p—dimensional vector space



Namely, m(£) is a configuration formed by images of e; in V/¢ .

Let
Z . Var — Ab (1.5)

be a functor from the category of algebraic varieties over F to the one of abelian groups
that sends a variety X to the free abelian group generated by F -points of .X. Applying it
to (1.4) we get an isomorphism

2[GI] 3 Cprglp) (1.6)

For each integer ¢ such that 0 <: < p+ ¢, there are intersection maps a; and projection
maps b;

Gh 3 Gg_l

1 b (1.4)
A p~-1

G§

Here the subspace «;(€) is the intersection of ¢ with the i — th coordinate hyperplane and
the subspace b;(£) is the projection of £ on the i — th hyperplane by the projection with
the center at i — th vertex of the simplex. We get a Bigrassmannian G(n) :

U
= é3+2
A U bo 1 bt
G(n): = Gt 3 g 1.7
U bo Wbnsr oLl b
= G 3 Gr 3 Gp

an+1 (3.1

Applying functor (1.5) to it, considering differentials d = E(-—l)'ﬂ,- and d' = £(—1)'b; and
using isomorphism 1.6 we get the Grassmannian bicomplex.

Now let us sheafefy these constructions.
A bicomplex of sheaves on X called the Grassmannian bicomplex ;[G(n)] is constructed

as follows: For a point z € X , the stalk of ;[G(n)] at z is the formal linear combinations

of germs at = of maps from X to Gf; . The corresponding bicomplex looks as follows

4



should replace the complex (Q%",c’)) in (1.13) by its Dolbeaux resolution (D%,“r‘l) for
example), but it is not important for our purposes.

Conjecture 1.1 ' There exists a 2n.-cocycle L'n in the triple complex D' such that its
component over Gg is given by the following formulas:

n 4
1=1

‘ 1 :
wy = oy (-2(—1)’logz;dlogzl/\---/\dlogz,-/\---/\dIogzn) € S’CE;EI

" 1.14
wy =dlogzi A--- Adlogz, € Q% (1.14)

(8" + e (57) = 0)

The corresponding component P, of L., on Gn_, should satisfy the “clean” (2n + 1)-term
equations

2n .

> (-1)'aiP, =0 (1.14a)
=0

2n )

3 (~1)bP, =0 (1.14b)
=0

From the other hand there are the classical polylogarithms Li,(z) that are functions of
one complex variable z. They were defined by Joh. Bernoulli and L. Euler on the unit disc
[2] £ 1 by absolutely convergent series

Lin(2) =Y
k=1

and can be continued analytically to a multivalued function on CP!\ {0,1,c0} using the
inductive formulas

zk
n !

Erad

Lii(z) = —log (1l — 2)

z

Lin(2) = [ Tina(®)

0

It turns out that Li,(2) has a remarkable single-valued version (By = 1, By = —=1/2, By =
1/6,- -+ are Bernoulli numbers) ([Z])

Re(n:odd) [~ Br-2F
Lp(z)= eln:o )(Z k log}”|z|-Lin_k(z)), n>2

dt
i

"~ Im(n : even) k!

L1(2) = log 2|

For example
L2(z) = Im(Liz(2)) + arg(1 — 2) - log|z|

is the Bloch-Wigner function, and

\ : 1
L3(z) = Re(Lls(z) — log|z| - Liy(2) + §log2 |2| - Li1|z|)



§ 2 Affine flags and Chern classes in Bigrassmannian cohomology

1. Affine flags. Let VV be a vector space over a field F. By definition a p-flag in V is
a sequence of subspaces

OcLlcL?’c-.-cL?, dimL =i,

An affine p-flag L* is a p-flag together with choice of vectors I! € L/l | | =
1,---,p (L%=0) . We will denote affine p-flags as (I',---,IP) . Subspaces L' can
be recovered as the ones generated by /1,--- 1! : L = (I',.-. I') . We will say that an
(n+ 1) -tuple of affine flags

L6=(1(1),"',18),“-,4(4;=([.]u'“,lﬁ) @2.1)
are in generic position if
dim (LS’ + .-+ Lf{‘) =1igp+- -+, whenever ig+---+1i, <dimV . (2.2)

Let AP(m) be the manifold of all affine p-flags in an m -dimensional vector space Vi, .
It is a GL(V},) -set, so as usual (see 5.3 of the Introduction) one can consider free abelian
groups C,(AP(m)) of configurations of (n + 1) -tuples of affine p-flags in generic position
in Vj, . Further, there is a complex of affine p-flags C.(AP(m)) :

. n1{AP(m)) 4 Cn(AP(m)) LA Cr-1(AP(m)) 4.

. . - i . Te . (2°3)
d: (L())"'!Ln) = Z(“l) (L())‘”)L;’)”'aLn)
=0
In particularly C,(A!(m)) = C.(m) . Let us define a map of complexes
T : Co(AP*Y(n +p)) = BCu(n) 2.4)

as follows: for
Bt = (v(l),--- ,Uf)»l;...;vi,...,frl) € Ce(A (n+p) (k> n)

set

b—
T(aﬁ“) = 69" Z (LBO @@ Lf,';'|'u6°+1, . ’,U;;ﬁl) c

¢=0 io++ig=p—q

e (2.5)
€ @ Cr(n+q) =: BCw(n)
=0

Key lemma 2.1 T' is a homomorphism of complexes.

Proof: Let Ti(n + q) : Cx(AP*(n + p)) = Ci(n + q) be the Cy(n + ¢) -component of the
map P. We have to prove that (see 2.6)

doTi(n+q)=Ti1(n+q)~d o Ti(n+q+1)

10



e (AP (4 q)) — Cr(n+q+1)
! N 1 (2.6)
Cr(n +q) - Cy_1{n+9q)

For a given partition g + --- + i, = p — ¢ let us consider the expression
it oo L - ™) =

k v o — . 2.7)
— Z (_1).7 (LBO BB L;:|,UE)0+1’ . ,‘U}J+l, . ,,U;CH-I)

If 7; = 1 then the corresponding term in 2.6 will appear in formula for Tx_1(n + ¢) (a,fé'+ 1) :
In the case ¢; > 1 such term will be in formula for

dr(LBo ea-.-eeLj."'l é...@LLE|U60+1,..-,'y;j’---)'uif—l_l) .
O

2. A construction of Chern classes in Bigrassmannian cohomology. Let us denote by
AL(X) the bundle of affine p-flags in fibers of a vector bundle E over X. Choose a
Zariski covering {U;} of X such that E/Uj; is trivial. Choose sections

L} (z) € D(U;, A% ()
such that for any 19 < --- < i, affine p-flags Lj(z),---,L] (z) are in generic position
for every = € Ui, -
Theorem 2.2 T (L} (z),--- ,L! (z)) € ;[G(n)] (Uiy-in) is a cocycle in the Cech complex

for the covering {U;} with values in the Bigrassmannian complex.

Proof: Follows immediately from the Key lemma 2.1. [J

A different choice of sections L{(z) gives a cocycle that is canonically cohomologous to the
previous one. So the cohomology class ¢,(E) of this cocycle is well-defined.

11



Proof: (Compare with proof of lemma 3.4 in [G1])

n+1
fa(n)od (vo, -+, vng1) = Alt /\ Alvg, 1y, Ujy ey Ung1) =0
j=2
because A(vg,v1,:--,¥;, -, Ung1) is invariant under the switch of vy and v; modulo
2-torsion.
O

Proposition 3.3 The composition

Crta(n) = Ca(n) =
is equal to zero.

Proof: (Compare with proof of proposition 2.4 in [S1]). There is a duality * : Cyqpn—1(m) —
Cmtn-1(n), %2 = id that satisfies the following properties (see 5.8 of § 3 in [G2]).

1. * commutes with the action of the permutation group Sp+4n -

t

2. I (i, lgn) = (zl,---,l;,,+,,) then
*(lla' -t sf:"“ ,lm-l-n) = (l;'”Ila'” 1E1' T 1?;::-}-11)
3. Choose volume forms in V;, and V,, ; consider partition
{L---m4+n}={t1 < - <inpU{j1 < <Ju}

Then

does not depend on a partition.

This duality can be defined as follows. A configuration of (m + n) vectors in an /-
dimensional coordinate vector space can be represented as columns of the m X (m + n)
matrix (I, A) . The dual configuration is represented by = X (m + n) matrix (—A% 1) .
Using the duality we can reformulate proposition 3.3 as follows: the composition
Carr(2) & Cu(1) " K H(F)

is equal to 0. Here

Fa(n)(vg, -+ - vn) = AltA(vg) A A(v1) A+ A Alvp_1) € A" F™
Consider the following diagram

Cos1(2) L G

| fag1(n) L fal(n)

Z[PL\{0,1,00}] @ A"2F* & Anp

Here Z[PL\ {0,1,00}] is a free abelian group generated by symbols {z} where z €
PEN{0,1,00}, 6:{z} @1 A Ayn—ar> (1 =3)Az Ay A--- Ayn_s . Note that by
definition Cokerd = KM (F) . The homomorphism f,,1(n) is defined as follows:

Fat1(n)(vo, -+, vng1) := nlfug, -+, vpy1)

13



Lemma-construction 3.7 For 2 affine m -flags in generic position in V™ .

Ll = (vla"'a'vm) and LE = (wls"'awm)

there are just 2 frames associated with both of them.

Proof: We have the following isomorphisms of 1-dimensional vector spaces:

LY/LFY S Ly Ly rt?
P ern—k-i-l/Lizn -k~ Lll. eru-k+1

Put ff = si(ur) , S = sp(wmg1) . Then the frames (f};---;f") and
(fd;--; f") associated with both L$ and L} .

Let ff =X, -f5, M €F*, and
('Ul;' v QUm) =4g- (wla‘ o 7'wm) , g& GLm(F) .

m
Then detg = [] Ax because g = n4 - A-n_

k=1
@) (7)) "0 () B )

where n_(ny) is a lower (upper) triangular matrix and A is a diagonal one with entries )},
(the Gauss decomposition).

From the other hand the left-hand side in proposition 2.4 is equal to

fl(l)(zmj (L’f®L§’"“Il’fJ§""°“))—f (5, 15) = H,\k

k=1

15



§ 4 The universal Chern class ¢, € A" (BGL(m)', gf )

1. The Gersten resolution to Milnor’s K -theory ([Ka]). Let F be a field with a
discrete valuation v and the residue class F,(=F) . The group of units U has a natural
homomorphism U —» F |, u+— %. Anelement 7 € F* is prime if ordy(m) = 1. There
is a canonical homomorphism (see [M1]):

8: KM (F)y—~KM(F,) (nx0)
uniquely defined by properties {u; € U)

1. 3({71','1[-1,"‘,’&11}):{E],"-,ﬁn}
2. 8({UI,"°,U71+1})=0

Let X be an excellent scheme (EGA [31IV § 7), X (i) the set of all codimension : points
x, F(z) the field of functions corresponding to a point z € Xy;) .
There is a sequence of group K(n). (Here KM (z):= KM(F(z)) )

KM(F(X)) @ KM QB EMyz)—»- > P 17 (4.1)

TE \(” -"‘JE}&(;) IGX(,.)

We will follow [Ka] in the definition of 0 . Let us define for y € ANy and z € Xy 8
homomorphism

a \-h+1( )_) K’y(l)
as follows. Let Y be the normalisation of the reduced scheme {7} . Set

Bg : Z NF(zl)/F(m) o} 3Ir
mf
where ' ranges over all points of Y lying over z, 0 I\*+1( ) = K.(z) is the tame
symbol associated with the discrete valuation ring OyI' and Np)/r(c) is the norm map

KM(z") » KM(z) (see [BT], ch. I § 5 and [Ka), § 1.7). The coboundary 9 is by definition
the sum of these homomorphism 9Y .

Proposition 4.1 92 = 0 .

Proof: See proof of proposition 1 in [Ka].
Theorem 4.2 The complex K(n), is exact.

O
2. Explicit formula for a class ¢ € H” (BGL(m),,sz",“f) . Set G =Gx--xG .

n times

Recall that

80 ik
BGy =pt =G < G2
81 -

"”

is the symplicial scheme representing the classifying space for a group G. We will compute
H" (BG., K nM ) using the Gersten resolution (4.1). So cochain we have to construct lives

16



Set

Dy 1= Z Wig,e je € @ -K;}J (F(b.io:“'s.fr))

jotrtir=m—n Jot-tjr=m—n
_ o -M o
Wy = Z w]u;'"s]";a E @ Rr (F(DJOI'UIJ";“))
jotrtgrmmn jobtjr=m—n

Theorem 4.3 Collection of elements w, defines a cocycle in the bicomplex (4.2).

Proof: Choose a partition ig+ - +4, =m —r. Let £ be a subvariety in the manifold of
(r + 1) -tuples of affine {m —r + 1)-flags in V™ defined as follows:

r r
Eig, iy = & (Lg,+ -, L) dim @ Ly | = Z ip| =1
p=0 p=0

This is a codimension n — 7 + 1 irreducible subvariety.

Proposition 4.4 The component of 85, on & ...;
ip > 0 for p # k . In this case it is equal to

is non zero if 1. = 0 for some k but

r

?r(r) @ L;-Jpwlllio’ et 1Ii: y ’I:'..- (46)
p¥k

Proof: Let jo+:--+ j = m —n and

(lé}...,gan—nﬂ;...-ll ...11"31—n+1) = (LS, -, L?) eﬁj

15 Dr"';j"
. . . jo+1 1
Choose a volume form in the codimension 7 -subspace <l(1),---,lf)°+ ,---,l}., S A + ) .
Then we can compute the determinant A(vy, -+, V;—n4,) for any m — n + 7 vectors in

this subspace. Set
. o1 e :
A(J’k+1) 3=A(lé,"',lé"+ ,...’lkx+1,...’[3’...’lir+1)

Then by definition
Gjogoe = 2 (DM AGO+ 1+ G+ 1), 806+ @D
k=0

The coboundary d@;, .. ;, can be nonzero on divisors A(jr41) =0 in Dj, ..., only. The
component of d&j, ... j, on the divisor A(jg4+1) = 0 is equal to

s @L{k@1{_*+l|zg°+1,---,zi:;,.--,zf;f“ (4.8)
p=0

This formula implies immediately that the component of d&, on 5,-0
ir, = 0 for some ky # ko .

is zero if i, =

I

It follows from (4.8) that in the case i, > 0 for all p the component of 0, on fgo,...,i: is

r ———

FO D @@Ly + ik, B ] 4.9)

k=0 p=0

18



r . v .
Note that | @ L»~1|Ii°,---,lir | is a configuration of m + 1 vectors in an m -dimensional
p=0

space (4.9) is equal to

frryod | @@Ly, - Iy

p=0

But this is equal to zero according to lemma 3.2.

Now suppose that 7, =0, i, # 0 for p # k. Then (4.8) implies that the component of
@) on &...i, is exactly (4.6).

r

O

3. Relation to the classical construction of Chern cycles. Suppose that a vector bundle £
ver X s sufficiently many sections. Consider first of all the case when dim £ = n and we
are interested in c,(F) € CH"(X) . Choose a section sy(z) € ['(X, E) that is transversal
to the zero section of E. Then the subvariety

Dy = {z € X|so(z) = 0}

has codimension n and represents the class c,(E) € CH™(X) . Now let s1(z) be another
generic section of E (i.e. it is transversal to the zero section of £ too). Then

Dy = {’B € Xlsl(:L‘) = 0}

should represent the same class in CH"(X) . To see this let us consider a codimension
(n — 1) subvariety

Doy := {z € X|3p, M1 € C such that Agsp(z) + Msi(z) =0}
There is a canonical rational function

A
Aol = /\—0 € F(Dg1) and Div(ig1) = Do — Dy
1 .

So Dy and D; are canonically rationally equivalent cycles. Now let so(z) be the third
generic section of E. Put

D1z = {z € X|dim (so(z), s1(x), s2(z)) = 2}

Then codim Dy2 = n — 2 and there is a canonical element

Aoz := f2(2)(s0, 51, 52) € Ko(F(Dpz))
d(Ao12) = Ao1 — Aoz + A2

where 9 : Ko(F(Y)) — ][I F(y)* is the tame symbol. Continuing this process we get for
yEY
T + 1 generic sections sg(z),---,sr(z) of F a codimension (n — r) subvariety

Doi...r := {z € X|dim (so(2),- -, s-(x)) =7}
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Proof: See § 3 of [G2] or theorem 5. below.
In complexes (5.2) groups B,(F') placed in degree 1 and 6, has degree +1.
The complex Bp(2) is the well-known Bloch-Suslin complex.

2. The motivic complexes ['(.X';n) for a regular scheme X (n<3). Let F be a
field with a discrete valuation v and the residue class F, . Let us construct a canonical
homomorphism of complexes

0y : Bp(n) — Bg (n - 1)[-1]

There is a homomorphism 6 : A"F* — A™'F, uniquely defined by the following
properties ( u; € U, w ~— U is the natural homomorphism U — f: and 7 is a prime:
ordym =1 ) :

1. 9(7:’/\?1.1/\---/\un_l):ﬁl/\---/\ﬁn_.l
2. Olur A---Auy)=0

It clearly does not depend on the choice of 7 .

Let us define a homomorphism s, : Z[PE] — Z[PL | as follows

otherwise

Proposition 5.2 Homomorphism (5.4) induces a homomorphism

sv: Bn(F) = Bp(F,), n=2,3.

Proof: Straightforward but tedious computations using explicit formula (3.17) from [G3] for
generators of the subgroup R3(F) .

To avoid such computations one can consider subgroups R,(F) C Z[P}] defined in s. 4 of

§ 1 in [G3]. Then more or less by definition s,(Ry(F)) = Ru(F,) and §(R.(F)) = 0.

So there are corresponding groups B,(F) = %l) together with homomorphisms s, :

By(F) — Bu(F.) .
O
Set
Oy 1= 5, ® 8 : BR(F) @ A" FF* = B (F,) @ A" F=1F (5.5)

Lemma 5.3 The homomorphism 0, commutes with the coboundary 6 and hence defines a
homomorphism of complexes (5.3).

Proof: Straightforward computation. See also s. 14 of § 1 in [G2] where the corresponding
fact proved for groups B,.(F') .

O
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Now let X' be an arbitrary regular scheme, X;, the set of all codimension ¢ points of
X, F(z) the field of functions corresponding to a point = € X;y . We define the motivic
complexes ['(X,n) as the total complexes associated with the following bicomplexes:

rax: PSS J] z
:EGX(;)

ARFXY & ] Fer B I] Z

DX.2): 14 et e
By(F(X))
A3F(X)" & I AF@) B 1] Pt B ] zZ
z€X(y) z€X(3) z€X(@a)
_ 16 16
PX53): ByFrx) @ F(X) & By(F(X))
16
By(F(X))

where B,(F(X)) is placed in degree 1 and coboundaries have degree +1 .

The coboundaries J; are defined as follows. &y := [] 0, . The others are a little bit
IEX-(])

more complicated. Let z € X() and v1(y),---,vm(y) be all discrete valuations of the

field F(z) over a point y € X341y, ¥ € T . Then F(z); := F(2), 2 Fly)

(If T is nonsingular at the point y, then F(z); = F(y) and m =1 ). Let us define a
homomorphism & : A2F(z) — F(y)* as the composition

Boy(y) . ==t ONE(2) /8y
AzF(a;)* By GBF(:B),- )/ F () Fy)*

1=1

and F(z)" = Pz iz,
3. Motivic Chern classes c, € H33(BGLm(F),,Z(n)), n < 3. Recall that
S0 puh
BG =pt& G~ G?. ..
81 b

We have to construct a 2n-cocycle ¢, in the bicomplex

.

D(Gin) S - S TG n) S S (G2 n) @7

where s* = S(~1)'s; . Its componeats in

» *

(G;n) S -« S T(G™;n) (128)
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a

So we have defined a homomorphism f(r) : BCyu(r) — Bp(2) . It is non-zero only on the
Grassmannian subcomplex C.(2) C BC.«(2) .

¢) n =3 . We have to define a homomorphism from the total complex associated with the
bicomplex

! ! |
— Cs(4) — Cs5(4) — Ca(4)
! ! l

- C5(3) — Cu(3) — Ca(3)
to the complex

B3(F) — Ba(F) @ F* = A3F*
A homomorphism f3(3) : C3(3) — A3F* was defined by formula (3.2). Set
fa(3) : Ca(3) — Bo(F) ® F*

1 - _ 5.15
fa®) = (lo, -+ a) = AL (ofTy, - 1)}, ® Ao, by, o) (5.15)

Proposition 5.5 f4(3) does not depend on the choice of the volume form w3 € A® (V"})* that
we need for the definition of A(ly,l1,13) .

Proof: The difference between the right-hand sides of (5.15) computed using A - w3 and ws
is proportional to (right-hand side of (5.14) ®A . So it is zero by lemma 5.4.

0O
Proposition 5.6 f3(3)od = 6 o f4(3)
Proof: Direct calculation using the formula
7 A(Zlal3) ) AU?)I‘l)
(1, -, 1) =
(h )= Rl B l)
O
Now set
f5(3) : Cs(3) — B3(F)
A(lo, 115 13) ‘ A(h? 121 14) ' A(l21 ZO) [5)} (5-16)
3):(lg, -+ ,15) — Alt
J5(3) - for--+. 1s) {a(zo,ll,u) ATz 15) - Allz, Loy T5) 5
Theorem 5.7 f4(3)od = 6o f5(3)
Proof: See proof of theorem 3.10 in [G3].
O
Proposition 5.8 fi(3)od =0 for k = 3,4,5 .
Proof: For k = 3 this is lemma 3.2. For k = 4,5 see theorem 3.12 in [G3].
O

Proposition 5.9 f5(3)od = 0 in Bs(F) .
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