
POLYLOGARITHMS IN ARITHMETIC AND GEOMETRY
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The classical polylogarithms were invented in correspondence of Leibniz with
Joh.Bernoulli in 1696 ( [Lei]). They are defined by the series

Lin(z) =
∞∑
k=1

zk

kn
|z| < 1

and continued analytically to a covering of CP 1\{0, 1,∞}:

Lin(z) :=
∫ z

0

Lin−1(t)
dt

t
, Li1(z) = − log(1− z)

1. The dilogarithm. It was studied by Spence, Abel, Kummer, Lobachevsky,
..., Rogers,Ramanujan, ([L]). The main discovery was that the dilogarithm satis-
fies many functional equations. For example Rogers’ version of the dilogarithm
L2(x) := Li2(x) + 1

2 log(x) log(1− x)− π2

6 for 1 > x > y > 0 satisfies the relation

L2(x)− L2(y) + L2(y/x)− L2(
1− x−1

1− y−1
) + L2(

1− x
1− y

) = 0 (1)

After a century of neglect the dilogarithm appeared twenty years ago in works
of Gabrielov-Gelfand-Losik [GGL] on a combinatorial formula for the first Pon-
tryagin class, Bloch on K-theory and regulators [Bl1] and Wigner on Lie groups.

The dilogarithm has a single-valued cousin : the Bloch - Wigner function

L2(z) := ImLi2(z) + arg(1− z) log |z|.

Let r(x1, ..., x4) be the cross-ratio of 4 distinct points on CP 1. Then

4∑
i=0

(−1)iL2(r(z0, ..., ẑi, ..., z4)) = 0 zi ∈ CP 1 (2)

If (z1, ..., z5) = (∞, 0, 1, x, y) the arguments here are the same as in (1).
Choose x ∈ CP 1. Then (2) just means that the function c3(g0, ..., g3) :=

L2(r(g0x, ..., g3x)), where gi ∈ GL2(C) and gix 6= gjx, is a measurable 3-cocycle
on GL2(C). (Wigner).

The function log |x| is characterized by its functional equation log |xy| =
log |x|+ log |y|. The 5-term equation plays a similar role for the dilogarithm: any
measurable function f(z), z ∈ C satisfying (2) is proportional to L2(z) ([Bl1]).
Moreover, any functional equation for L2(z) is a formal consequence of (2).
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For a set X denote by Z[X] the free abelian group generated by symbols {x},
x ∈ X. Let F be a field. Consider the homomorphism ([Bl1])

δ̃2 : Z[F ∗\1] −→ Λ2F ∗, {x} 7−→ (1− x) ∧ x

By Matsumoto theorem Cokerδ̃2 = K2(F ).
Let R2(F ) be the subgroup of Z[F ∗\1] generated by the elements∑

(−1)i{r(z0, ..., ẑi, ..., z4)} where zi 6= zj ∈ P 1
F . One can check that δ̃2(R2(F )) =

0. So setting B2(F ) := Z[F ∗\1]/R2(F ) we get the Bloch complex ( [DS], [S1])

B2(F ) δ2−→ Λ2F ∗, {x} 7→ (1− x) ∧ x (3)

For an abelian group A put AQ := A ⊗ Q. Suslin proved that Kerδ2 ⊗ Q =
Kind

3 (F )Q ([S1]). Here Kind
3 (F ) is the cokernel of the multiplication K1(F )⊗3 →

K3(F ).
If F = C any real-valued function f(z) defines a homomorphism

f̃ : Z[C] −→ R, {z} 7−→ f(z). Thanks to (2) we have a homomorphism L̃2 :
B2(C)→ R. Combined with the above homomorphism K3(C)→ Kerδ2 it gives an
explicit formula for the Borel regulator K3(C) → R and hence ([Bo2]) a formula
for ζF (2) for any number field F (see s.5 below).

Let H3 be the 3-dimensional hyperbolic space. Denote by I(z0, ..., z3) the
ideal geodesic symplex with vertices at points z0, ..., z3 of the absolute ∂H3 = CP 1.
Then volI(z0, ..., z3) = 3/2L2(r(z0, ..., z3)) (Lobachevsky).

Any complete hyperbolic 3-fold of finite volume V 3 can be represented as a
formal sum of ideal geodesic simplices. So volV 3 = 3/2

∑
L2(xi). It turns out the

condition ”V 3 is a manifold” implies δ2
∑
{xi} = 0. (Thurston, [DS], [NZ]).

At first glance many features of this picture seem special for the dilogarithm.
For example the classical n-logarithms are functions of just 1 variable, but for
n > 2 GLn does not act on P 1 , ∂Hn is no longer a complex manifold and so on.
In this lecture I will explain how most of these facts about the dilogarithm are
generalized to the trilogarithm and outline what should happen in general.

2. The trilogarithm and ζF (3) ([G2]). A single-valued version of Li3(z)
is

L3(z) := Re
(
Li3(z)− Li2(z) · log |z|+ 1

3
Li1(z) · log2 |z|

)
Denote by {x}2 the image of {x} in B2(F ). Set

Z[F ∗] δ3−→ B2(F )⊗ F ∗, δ3 : {x} 7→ {x}2 ⊗ x, {1} 7→ 0 (4)

Let F be a number field with r1 real and r2 complex places, {σj} be the set of
all possible embeddings F ↪→ C numbered so that σr1+k = σr1+r2+k and dF be
the discriminant of F . For x ∈ Z[F ∗] one get numbers L̃3(σj(x)) defined via the

composition Z[F ∗]
σj

↪→ Z[C∗] L̃3−→ R.

Theorem 0.1. For any number field F there exist elements y1, . . . yr1+r2 ∈ Kerδ3⊗
Q ⊂ Q[F ∗] such that

ζF (3) = π3r2d
− 1

2
F det|L̃3(σj(yi))| , (1 ≤ i, j ≤ r1 + r2) . (5)
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It was conjectured by Zagier, who gave many numerical examples ([Z1]). Here
is one them:

ζQ(
√

5)(3) =
24

25
√

5
· L3(1) ·

(
L3(

1 +
√

5
2

)− L3(
1−
√

5
2

)
)

If α := 1+
√

5
2 and ᾱ := 1−

√
5

2 then α · ᾱ = −1,α+ ᾱ = 1, so {α}2⊗α−{ᾱ}2⊗ ᾱ =
({α}2 + {1− α}2)⊗ α = 0 modulo torsion because 6 · ({x}2 + {1− x}2) ∈ R2(F ).

Let ∆ : G → G × G be the diagonal map. An element x ∈ Hn(G) is called
primitive if ∆∗(x) = x⊗ 1 + 1⊗ x. For any field F one can define Kn(F )Q as the
subspace of primitive elements in Hn(GL(F ),Q).

Let H∗c (G,R) be continous cohomology of a Lie group G. It is known that
H∗c (GL(C),R) = Λ∗R(c1, c3, ...) where c2n−1 ∈ H2n−1

c (GL(C),R) are certain classes..
For example c1(g1, g2) = log |detg−1

1 g2|. Considered as a functional on homology
c2n−1 induces a map rC(n) : K2n−1(C)Q → R. It is called the Borel regulator [Bo].
Let F be a number field. Then the image of the composition

r(n) : K2n−1(F ) −→ ⊕Hom(F,C)K2n−1(C)Q
rC(n)⊗R(n−1)−→ ZHom(F,C) ⊗ R(n− 1)

is invariant under the complex conjugation. So we get a regulator map
r(n) : K2n−1(F ) −→ R(n− 1)dn . Here dn = r1 + r2 for odd n and r2 for even. We
will use notation a ∼ b if a/b ∈ Q∗. Borel proved that r(n)(K2n−1(F )) is a lattice
with covolume ∼ d1/2

F ζF (n)(πi)−ndn−1 .
The proof of our theorem is based on an explicit description of the regulator

K5(C) → R by means of the trilogarithm L3. The key step is a formula for a
measurable 5-cocycle of GL(C) representing the class c5. For GL3(C) it looks as
follows.

Let V 3 be a 3-dimensional vector space over F . Choose a volume form ω ∈
∧3(V 3)∗. For 6 vectors l1, . . . , l6 in generic position in V 3 set ∆(li, lj , lk) := 〈ω, li∧
lj ∧ lk〉 ∈ F ∗. Let Alt6f(l1, . . . , l6) :=

∑
σ∈S6

(−1)|σ|f(lσ(1), . . . , fσ(6)). Set

r3(l1, . . . , l6) := Alt6

{
∆(l1, l2, l4)∆(l2, l3, l5)∆(l3, l1, l6)
∆(l1, l2, l5)∆(l2, l3, l6)∆(l3, l1, l4)

}
∈ Z[F ∗] (6)

r3(l1, . . . , l6) clearly does not depend on the lengths of vectors li and so is a
generalized cross-ratio of 6 points on the projective plane.

Theorem 0.2. a) For any 7 points (m1, . . . ,m7) in generic position in CP 2

7∑
i=1

(−1)iL̃3(r3(m1, ..., m̂i, ...,m7)) = 0

b) Choose x ∈ CP 2. Then the function c5(g0, ..., g5) := L̃3(r3(g0x, ..., g5x)) defined
for gi ∈ GL3(C) such that (g0x, ..., g5x) is in general position, is a measurable
5-cocycle representing a nontrivial cohomology class of the group GL3(C).

3. Trilogarithm and algebraic K-theory. Let R3(F ) be the subgroup
of Z[F ∗] generated by {x} + {x−1} and

∑7
i=1(−1)ir3(m1, ..., m̂i, ...,m7) where

(m1, ...,m7) run through all generic configurations of 7 points in P 2
F . Then δ3R3(F ) =
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0. Let B3(F ) be the quotient of Z[F ∗] by R3(F ). We get a complex BF (3)

B3(F ) δ3−→ B2(F )⊗ F ∗ δ2∧id−→ Λ3F ∗

placed in degrees [1,3]. (δ3,δ2 were defined in (3), (4)).
According to [S2] Hn(GLn(F ),Q) = Hn(GL(F ),Q). Let

K(i)
n (F )Q := Kn(F )Q ∩ Im

(
Hn(GLn−i(F ),Q)→ Hn(GLn(F ),Q)

)
be the rank filtration. Denote by K [i]

n (F )Q its graded quotients.

Theorem 0.3. There are canonical maps K [3−i]
6−i (F )Q −→ Hi(BF (3)⊗Q)

They should be isomorphisms. This is known for i = 3 ([S2]).
4. Classical polylogarithms and motivic complexes. The following

single-valued version of Lin(z) was invented by Zagier [Z1], see also [BD].

Ln(z) :=
Re (n : odd)
Im (n : even)

(
n−1∑
k=0

βk logk |z| · Lin−k(z)

)
, n ≥ 2

It is continuos on CP 1. Here 2x
e2x−1 =

∑∞
k=0 βkx

k.
Let us define inductively for each n ≥ 1 a subgroup Rn(F ) ⊂ Z[P 1

F ], which
for F = C will be the subgroup of all functional equations for Ln(z).

Put Bn(F ) := Z[P 1
F ]/Rn(F ). SetR1(F ) := ({x}+{y}−{xy}; {0}; {∞}).Then

B1(F ) = F ∗. Let {x}n be the image of {x} in Bn(F ). Consider homomorphisms

Z[P 1
F ] δn−→

{
Bn−1(F )⊗ F ∗ : n ≥ 3
Λ2F ∗ : n = 2 (7)

δn : {x} 7→
{
{x}n−1 ⊗ x : n ≥ 3
(1− x) ∧ x : n = 2 δn : {∞}, {0}, {1} 7→ 0 (8)

Set An(F ) := Ker δn . Any element α(t) = Σni{fi(t)} ∈ Z[P 1
F (t)] has a specializa-

tion α(t0) := Σni{fi(t0)} ∈ Z[P 1
F ] at each point t0 ∈ P 1

F .

Definition 0.4. Rn(F ) is generated by elements {∞}, {0} and α(0)−α(1) where
α(t) runs through all elements of An(F (t)).

One can show that δnRn(F ) = 0 ([G1], 1.16). So we get homomorphisms

δn : Bn(F ) −→ Bn−1(F )⊗ F ∗, n ≥ 3; δ2 : B2(F ) −→ Λ2F ∗

and finally the following complex Γ(F, n):

Bn
δ→ Bn−1 ⊗ F ∗

δ→ Bn−2 ⊗ Λ2F ∗
δ→ . . .

δ→ B2 ⊗ Λn−2F ∗
δ→ ΛnF ∗

where δ : {x}p ⊗
∧n−p
i=1 yi → δp({x}p) ∧

∧n−p
i=1 yi has degree +1 and Bn ≡ Bn(F )

placed in degree 1. One can prove that L̃n
(
Rn(C))

)
(see [G2] theorem 1.13).

Conjecture 0.5. Let f(z) be a measurable function such that f̃(Rn(C)) = 0.
Then f(z) = λ0Ln(z) + λ1Ln−1(z) log |z|+ ...+ λn−2L2(z) log |z|n−2, λi ∈ C.
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This is true for n = 2 ([Bl]) and n = 3 (unpublished).
Let γ be the Adams filtration on Kn(F )Q. Hypothetically it is opposite to

the rank filtration. For number fields grγnKm(F )Q = 0 if m 6= 2n− 1.

Conjecture A a)For any field F HiΓ(F, n)⊗Q = grγnK2n−i(F )⊗Q.
b) The composition grγnK2n−1(C)Q → H1Γ(C, n)Q → R is a nonzero rational

multiple of the Borel regulator.
For number fields the isomorphism K2n−1(F )Q = Kerδn was conjectured (

slightly differently, without the complexes Γ(F, n)) by Zagier [[Z1]).
So we get a hypothetical description of Quillen’s K-groups by symbols that

generalizes Milnor’s approach to K-theory (HnΓ(F, n) = KM (F ) by definition):

Km(F )Q
?= ⊕nH2n−m(Γ(F, n)⊗Q) (9)

This suggests that Γ(F, n)⊗Q should be the weight n motivic complex con-
jectured by Beilinson and Lichtenbaum ([B1], [Li]). Another approach see in [Bl2].

For a compact smooth i-dimensional variety X over Q Beilinson defined a reg-
ulator map to Deligne cohomology ([B2]) rBe : grγnK2n−i(X) −→ Hi

D(X/R,R(n))
A regular modelXZ ofX over Z defines a subgroup grγnK2n−i(XZ) ⊂ grγnK2n−i(X).

For n > i+1 they should coincide. Beilinson conjectured that rBe(grγnK2n−i(XZ))
is a lattice whose covolume with respect to the natural Q- structure provided by
Hi
D(X/R,Q(n)) up to a standard factor coincides with the value of L-function

L(hi(X), s) at s = i. Unfortunately the definition of the regulator is rather im-
plicit.

Conjecture A together with Beilinson’s conjecture should give explicit formu-
las for special values of the L-functions of varieties over number fields in terms of
classical polylogarithms. Below two examples are discussed: ζ-functions of number
fields and L-functions of elliptic curves.

5. Zagier’s conjecture. Conjecture A b) and Borel’s theorem [Bo2] lead to

Conjecture 0.6. For any number field F there exists elements y1, . . . ydn ∈ Kerδn⊗
Q ⊂ Bn(F )Q such that

ζF (n) = πdn−1·nd
− 1

2
F det|L̃n(σj(yi))| , (1 ≤ i, j ≤ dn) , (10)

It was stated in [Z1]. The case n = 2, essentially proved in [Z2], follows from
the Borel theorem and the results of Bloch [Bl1] and Suslin [S2] (see s.1); a simpler
proof see in s.2 of [G1]. It is not proved for n > 3.

Theorem 0.7. For any number field F there is a map ln : Kerδn ⊗ Q →
K2n−1(F )Q such that for any σ : F ↪→ C one has rC(n)(σ ◦ ln(y)) = L̃n(σ(y)).

This was proved by Beilinson-Deligne [BD] and later de Jeu [J]. It can be
deduced from the existence of the triangulated category of mixed Tate motives
over Spec(F ) constructed by Levine [L] and Voevodsky [V].

6. Motivic complexes for curves. Let K be a field with a discrete valua-
tion v, the residue field kv and the group of units U . Let u→ ū be the projection
U → k∗v . Choose a uniformizer π. There is a homomorphism θ : ΛnF ∗ −→ Λn−1F ∗v
uniquely defined by the following properties (ui ∈ U):

θ (π ∧ u1 ∧ · · · ∧ un−1) = ū1 ∧ · · · ∧ ūn−1; θ (u1 ∧ · · · ∧ un) = 0
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It is clearly independent of π. Let us define a homomorphism sv : Z[P 1
K ] −→ Z[P 1

kv
]

setting sv{x} = {x̄} if x is a unit and 0 otherwise. It induces a homomorphism
sv : Bm(K) −→ Bm(kv). Put

∂v := sv ⊗ θ : Bm(K)⊗ Λn−mK∗ −→ Bm(kv)⊗ Λn−m−1k∗v .

It defines a morphism of complexes ∂v : Γ(K,n) −→ Γ(kv, n− 1)[−1]. Let X
be a regular curve over a field F and Fx be the residue field of a point x ∈ X. Let
us define the motivic complex Γ(X,n) as follows (Bn(F (X)) is in degree 1):

Bn(F (X)) δ−→ Bn−1(F (X))⊗ F (X)∗ δ−→ . . .
δ−→ ΛnF (X)∗

↓
∐
x ∂x ↓

∐
x ∂x∐

x∈X1 Bn−1(Fx) δ−→ . . .
δ−→

∐
x∈X1 Λn−1F ∗x

(11)

Conjecture 0.8. For a regular curve X one has Hi(Γ(X,n)⊗Q) = grγnK2n−i(X)Q.

7. Explicit formulas for regulators in the case of curves ([G6]). Let
me recall that for a curve X over R and n > 1 H2

D(X/R,R(n)) = H2(X,R(n−1))+

where “+” means invariants of the complex conjugation acting both on X(C) and
R(n− 1). Beilinson’s regulator for curves over Q is a homomorphism

rBe(n) : K2n−2(X)Q −→ H2
D(X/R,R(n))

Cup product with ω ∈ Ω1(X̄) identifies H1(X̄,R(n − 1)) with H0(X̄,Ω1)∨.
So we will view elements of H2

D(X̄/R,R(n)) as functionals on H0(X̄,Ω1)∨.
Set α(f, g) := log |f |d log |g| − log |g|d log |f |.

Theorem 0.9. Let X be a curve over Q. Then for each element γ2n−2 ∈ K2n−2(X),
n = 3, 4, there are rational functions fi, gi ∈ Q(X)∗ such that

∑
i{fi}n−1 ⊗ gi is

a 2-cocycle in (11) and for any ω ∈ Ω1(X) one has (an, bn ∈ Q∗):∫
X(C)

rBe(n)(γ2n−2) ∧ ω = an ·
∑
i

∫
X(C)

Ln−1(fi)d log |gi| ∧ ω =
(12)

bn ·
∑
i

∫
X(C)

log |gi| logn−3 |fi|α(1− fi, fi) ∧ ω

For n = 2 this is the famous symbole modéré of Beilinson and Deligne.
Hypothetically (12) should be true for all n.

Example. For n = 3 the condition ”
∑
i{fi}2 ⊗ gi is a 2-cocycle in (11)”

means that
∑
i(1 − fi) ∧ fi ∧ fi = 0 in Λ3Q(X)∗ and

∑
i vx(gi){fi(x)}2 = 0 in

B2(Q̄) for any x ∈ X(Q̄). Here vx is the valuation defined by a point x.
8. Special values of L-functions of elliptic curves ([G6]). Let E be

an elliptic curve /Q and Γ := H1(E(C),Z). A holomorphic 1-form ω defines an
embedding Γ ↪→ C together with an isomorphism E(C) = C/Γ = Γ ⊗ R/Γ. The
intersection pairing Γ×Γ→ Z(1) provides a pairing (·, ·) : E(C)×Γ −→ U(1) ⊂ C∗.
If Γ = Zu + Zv ⊂ C with Im(u/v) > 0 then (z, γ) = expA(Γ)−1(zγ̄ − z̄γ) where
A(Γ) = 1

2πi (ūv−uv̄). Consider the generalized Eisenstein-Kronecker series (γi ∈ Γ)

Kn(x, y, z) :=
′∑

γ1+...+γn=0

(x, γ1)(y, γ2 + ...+ γn−1)(z, γn)(γ̄n − γ̄n−1)
|γ1|2|γ2|2...|γn|2

, n ≥ 3
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They are invariant under the shift (x, y, z)→ (x+t, y+t, z+t) and so live actually
on E(C)× E(C). For n = 2 put K2(x, y, z) :=

∑′
γ

(x−z,γ)
|γ|2γ .

Let ω ∈ H0(E,Ω1
E/Q) and Ω =

∫
E(R)

ω be the real period of E.

Conjecture 0.10. a) Let E be an elliptic curve / Q and n ≥ 3. Then there exist
functions fi, gi ∈ Q(E)∗ such that

∑
i{fi}n−1 ⊗ gi is a 2-cocycle in (11) and

q · L(E,n) =
(2πA(Γ)

fE

)n−1

Ω ·
∑
i

Kn(xi, yi, zi) (13)

where xi, yi, zi are divisors of fi, gi, 1− fi and q ∈ Q∗.
b) For any fi, gi ∈ Q(E)∗ as above formula (13) holds with (possibly 0) q ∈ Q.

For n=2 (13) is Bloch’s conjecture [Bl1] and for n=3 it was conjectured
(slightly differently, using Massey products) by Deninger [Den]. A conjecture for
any elliptic curve over a number field involves determinants with entriesKn(x, y, z).

Theorem 0.11. Conjecture 0.10 holds for modular elliptic curves over Q in the
cases n = 3 and n = 4.

The proof uses theorem 0.3, a similar result in weight 4, theorem 0.9 and
weak Beilinson’s conjecture for modular curves proved in [B3]. For example for
n = 3 we get the formula

L(E, 3) ∼
(2πA(Γ)

fE

)2

Ω ·
∑
i

′∑
γ1+γ2+γ3=0

(xi, γ1)(yi, γ2)(zi, γ3)
|γ1|2|γ2|2|γ3|2

In a similar conjecture about L(SnE,n + 1) appears determinants whose
entries are the classical Kronecker-Eisenstein series

∑
γ∈Γ

(x−y,γ)
γaγ̄b (a+b = 2n+1).

Their motivic interpretation was given in [BL]. One should have it also for functions
Kn(x, y, z), and, more generally, for functions needed to compute L(SnE,m).

9. Motivic Lie algebra L(F )• ([G2]). Beilinson conjectured ([B1], [BD2])
that for any filed F should exist a Tannakian (i.e. abelian, tensor, ...) category
MT (F ) of mixed Tate motives over F . It is generated (as tensor category) by
an invertible object Q(1)M (Tate motive). Set Q(n)M := Q(1)⊗nM , n ∈ Z. The
crucial axiom is:

ExtiMT (F )(Q(0)M,Q(n)M)
?∼= grnγK2n−i(F )Q (14)

Any object M of this category carries canonical increasing weight filtration
W•M such that grW2kM = ⊕Q(−k)M and grW2k−1M = 0. There is canonical fiber
functor ω from MT (F ) to the category of finite dimensional graded Q-vector
spaces: ω(M) := ⊕Hom(Q(−k)M, grW2kM). Let U(F )• := Endω be the space of
all endomorphisms of the functor ω. It is a graded (pro) Hopf algebra over Q.

Let L(F )• be the Lie algebra of all derivations of ω. It is naturally graded:
L(F )• = ⊕n≥1L(F )−n and U(F )• is its universal enveloping algebra. The functor
ω is an equivalence of the categoryMT (F ) with the category of finite dimensional
graded modules over L(F )•.
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The degree n part of the cochain complex (Λ•(L(F )∨• ), ∂) of the Lie algebra
L(F )• forms a subcomplex (here V ∨ is dual to V , and L∨−n is in degree 1):

L∨−n
∂−→ . . .

∂−→ L∨−2 ⊗ Λn−2L∨−1
∂−→ ΛnL∨−1 (15)

Its cohomology is predicted by formula (14). Moreover it should be quasiisomorphic
to the weight n motivic complex for Spec(F ): (14) provides its key property. So
conjecture A suggests that it should be quasiisomorphic to our complex Γ(F, n).

One should have canonical injective homomorphisms ln : Bn(F ) ↪→ L(F )∨−n
( see s.12 below). But already for n = 4 in degree 2 of (15) appears Λ2L∨−2(F ) ?=
Λ2B2(F ) which is absent in Γ(F, 4). So complex (15) is bigger then Γ(F, n)

Set I• := ⊕∞n=2L(F )−n and letH1
(n)(I(F )•) be the degree n part ofH1(I(F )•).

Conjecture A is essentially equivalent to the following one about the structure of
the Lie algebra L(F )•:

Conjecture B. a) I(F )• is a free graded pro-Lie algebra.
b) H1

(n)(I(F )•) = Bn(F )Q for n ≥ 2, i.e. I(F )• is generated as a graded
pro-Lie algebra by the spaces Bn(F )∨ of degree −n.

c) The action of L•/I• = F ∗Q
∨ on H(n)

1 (I(F )•) = Bn(F )∨Q coming from the ex-
tension 0→ H1(I•)→ L•/[I•, I•]→ L•/I• → 0 is described by the homomorphism
dual to δn : Bn(F )Q → Bn−1(F )Q ⊗ F ∗.

Assuming conjecture B it is easy to see that the Hochshild-Serre spectral se-
quence for H∗(n)(L(F )•) with respect to the ideal I• reduces exactly to the complex
Γ(F, n). Indeed thanks to a) and b) we have

Ep,q1 = Cp(L•/I•, H
q
(n−p)(I•)) =


ΛpF ∗Q ⊗ Bn−p(F )Q : q = 1
ΛnF ∗Q : q = 0, n = p
0 : otherwise

and the differentials coincide with the ones in Γ(F, n) because of c) .
10. Framed mixed Tate motives and U(F )• ([BMS],[BGSV]). A mixed

Q - Hodge structure H is called a Hodge-Tate structure if all the quotients grW• H
are of Hodge type (p, p). It is an n-framed Hodge-Tate structure if supplied with
nonzero vectors v ∈ grW2nH and f ∈ (grW0 H)∗.

Consider the coarsest equivalence relation on the set of all n-framed Hodge-
Tate structures for which H1 ∼ H2 if there is a morphism of mixed Hodge struc-
tures H1 → H2 respecting the frames. Let Hn be the set of equivalence classes. It
has an abelian group structure: (H; v, f)⊕ (H ′; v′, f ′) := (H ⊕H ′; (v, v′), f + f ′).
Set H0 := Z. The tensor product of mixed Hodge structures induces the commu-
tative multiplication µ : Hk ⊗ H` → Hk+`. A comultiplication ν =

⊕
k νk,n−k :

Hn →
⊕

kHk ⊗ Hn−k is defined as follows. Let {ej} and {ej} be dual bases in
grW2kHQ and grW2kH

∗
Q. Set νk,n−k((H; v, f)) :=

∑
j(H; v, ej)⊗ (H; ej , f).

Then H• := ⊕Hn is a commutative graded Hopf algebra.
Similary the equivalence classes of n-framed objects in the category MT (F )

form a commutative graded Hopf algebraM•. It maps to U(F )∨• : the value of the
functional defined by (ω(M), v, f) on A ∈ Endω is < f,Av >. This map is an
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isomorphism of Hopf algebras. In particulary

Ker
(
U(F )∨−n

∆−→ ⊕kU(F )∨−(n−k) ⊗ U(F )∨−k
) ?∼= grγnK2n−1(F )Q (16)

It seems that any example of variation of framed mixed Tate motives should
be of great interest; the corresponding Hodge periods deserve to be called polylog-
arithms (don’t confuse them with the classical polylogarithms!). Below I discuss
two such examples where periods are volumes of non-euclidian geodesic simplices
and hyperlogarithms. Another example see in [BGSV].

10. Hyperbolic geometry ([G4]).

Theorem 0.12. Let V 5 be a 5-dimensional complete hyperbolic manifold of finite
volume. Then there are algebraic numbers zi ∈ Q̄∗ such that∑

i

{zi}2 ⊗ zi = 0 in B2(Q̄)⊗ Q̄∗ and vol(V 5) =
∑
i

L3(zi)

Conjecture 0.13. Let V 2n−1 be an (2n − 1)-dimensional complete hyperbolic
manifold of finite volume. Then there are algebraic numbers zi ∈ Q̄ ⊂ C such that
(n ≥ 3) δn(

∑
i{zi}n) = 0 and vol(V 2n−1) =

∑
i Ln(zi).

A geodesic simplexM in the hyperbolic spaceHm define a mixed Tate motive.
Indeed, in the Klein model Hm is the interior of a ball in Rm and geodesics are
straight lines. So a geodesic simplex is the usual one inside the absolute: sphere Q.

After complexification and compactification we get CPm together with a
quadric Q ( the absolute) and a collection of hyperplanes M = (M1, . . . ,Mm+1) (
(n−1)-faces of a geodesic simplex). H(Q,M) := Hm(CPm\Q,M) is a Hodge-Tate
structure.

Let m = 2n− 1 and Q̃(x) = 0 be a quadratic equation of Q. Set

ωQ := ±

√
detQ̃

(2πi)n

∑2n−1
i=o (−1)ixidx0 ∧ ...d̂xi ∧ dx2n−1

Q̃(x)n

The sign depends on the choise of a generator in the primitive part of Hn−1(Q,Z).
It is provided by an orientation of H2n−1. The simplex M defines a chain ∆M

representing a generator in H2n−1(CP 2n−1,M). Then vol(M) =
∫

∆M
ωQ.

The scissor congruence group P(Hm) is an abelian group generated by pairs
[M,α] where M is an oriented geodesic simplex and α is an orientation of Hm.The
relations are: [M,α] = [M1, α] + [M2, α] if M = M1 ∪M2; [M,α] changes sign if
we change orientation of M or α, and [M,α] = [gM, gα] for any g ∈ O(m, 1). The
spherical scissor congruence groups P(Sm) are defined similary. P(S2k) = 0.

The volume provides homomorphisms P(Hm)→ R and P(Sm)→ R/Z.
We have a vector [ωQ] in H2n−1(CP 2n−1\Q) = grW2nH(Q,M) and a func-

tional [∆M ] onH2n−1(CP 2n−1,M) = grW0 H(Q,M). So we get an n-framed Hodge-
Tate structure associated with [M,α]. This construction defines a homomorphism
of groups P(H2n−1)→ Hn and similary P(S2n−1)→ Hn.

Let us define the Dehn invariant

P(H2n−1)
Dh

n−→ ⊕kP(H2k−1) ⊗ P(S2(n−k)−1). Each (2k − 1)-face A of M is a hy-
perbolic simplex h(A). In the orthogonal plane A⊥ M cuts a spherical simplex
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s(A). Choose orientations αA and βA of A and A⊥ such that αA ⊗ βB = α. Then
Dh
n([M,α]) :=

∑
A[h(A), αA]⊗ [s(A), βA].

Theorem 0.14. The following diagram is commutative:

P(H2n−1)
Dh

n−→ ⊕kP(H2k−1)⊗ P(S2(n−k)−1)
↓ ↓
Hn

ν−→ ⊕kHk ⊗Hn−k

A similar motivic interpretation has the spherical Dehn invariant
Ds
n : P(S2n−1) −→ ⊕kP(S2k−1)⊗ P(S2(n−k)−1). So (16) leads to

Conjecture 0.15. There are canonical injective homomorphisms

KerDh
n⊗Q ↪→ [grγnK2n−1(C)⊗Q(n)]− KerDs

n⊗Q ↪→ [grγnK2n−1(C)⊗Q(n)]+

whose composition with Beilinson’s regulator coincide with the volume homomor-
phisms.

If n = 2 they exist and are isomorphisms by the results of [D], [DS], [S1].
Each complete hyperbolic (2n − 1)-manifold can be cuted on geodesic sim-

plices and so produces an element in P(H2n−1). Its Dehn invariant is equal to
zero. So conjecture 0.13 follows from conjectures 0.15 and A.

11. Hyperlogarithms ([G5]). They where considered by Kummer ([Ku]),
Poincare, Lappo-Danilevsky, .... We define them as the following iterated integrals:

Ψm1,...,ml
(a1, ..., al) :=

∫ 1

0

dt

t− a1
◦ dt
t
◦ ... ◦ dt

t︸ ︷︷ ︸
m1 times

◦... ◦ dt

t− al
◦ dt
t
◦ ... dt

t︸ ︷︷ ︸
ml times

This formula means the following. Let n := m1 + ...+ml and

∆ := {(t1, ..., tn) ⊂ Rn|0 ≤ t1−a1 ≤ t2 ≤ ... ≤ tm1 ≤ tm1+1−a2 ≤ tm1+2... ≤ tml
}

Let L be a coordinate simplex in CPn related to coordinates (t0 : ... : tn) and
ωL := dt1

t1
∧ ... ∧ dtn

tn
. Then Ψm1,...,ml

(a1, ..., al) =
∫

∆
ωL.

Let M be collection of all the hyperplanes corresponding to codimension
1 faces of ∆. Then H(L,M) := Hn(CPn\L,M) is a Hodge-Tate structure. It
has canonical n-framing: [ωL] is a vector in Hn(CPn\L) = grW2nH(L,M) and
∆ produces a class [∆] ∈ Hn(CPn,M) = grW0 H(L,M). So we get an element
ΨHm1,...,ml

(a1, ..., al) ∈ Hn. According to the general philosophy a mixed Hodge
structure in the cohomology of a (simplicial) variety is a realisation of a mixed
motive. So we should have an n-framed mixed Tate motive ΨMm1,...,ml

(a1, ..., al).
More generally, if F is a field and ai ∈ F ∗ one should also have an n-framed

mixed Tate motive ΨMm1,...,ml
(a1, ..., al) related to Hn(PnF \L,M).

There is a remarkable power series expansion of the hyperlogarithms. Namely,
consider multiple polylogarithms

Φm1,...,ml
(x1, ..., xl) := (−1)l

∑
0<k1<k2<...<kl

xk11 x
k2
2 ...x

kl

l

km1
1 km2

2 ...kml

l
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Theorem 0.16. ([G5]) Suppose |ai/ai−1| < 1. Then

Ψm1,...,ml
(a1, ..., al) = Φm1,...,ml

(
a2

a1
,
a3

a2
, ...,

1
al

)

In particulary ζ(m1, ...,ml) := Ψm1,...,ml
(1, 1, ..., 1) are the multiple zeta val-

ues of Euler [E], rediscovered and studied by Zagier [Z3], see also [Dr] and [Ko].

Conjecture 0.17. . a) Any n-framed mixed Tate motive over F is a sum of
hyperlogarithmic ones ΨMm1,...,ml

(a1, ..., al), where n = m1 + ...+ml; ai ∈ F ∗.
b)Any n-framed mixed Tate motive over Spec(Z) is a sum of motivic multiple

zeta’s ζM(m1, ...,ml)

The first part of the conjecture is motivated by the following

Proposition 0.18. (Universality of hyperlogarithms) Any iterated integral
F (z) =

∫ z
x
ω1 ◦ ... ◦ ωn of rational 1-forms ωi on a rational variety X is a sum of

hyperlogarithms, i.e. there exist f (i)
j (z) ∈ C(X)∗ such that

F (z) =
∑
i

Ψ
m

(i)
1 ,...,m

(i)

l(i)
(f (i)

1 (z), ..., f (i)
l (z)) + C (C is a constant)

12. Motivic interpretation of the ”weak” part of conjecture A. For
any a ∈ F ∗ the n-framed mixed Tate motive ΨMn (a−1) ( corresponding to Lin(a))
provides a homomorphism l̃n : Z[F ∗] → U(F )∨−n. Denote by ln its composition
with the canonical projection U(F )∨−n → L(F )∨−n.

One should have ln(Rn(F )) = 0, so ln : Bn(F )→ L(F )∨−n. It turns out that
∂(ln{a}) = ln−1{a}∧a (we identified L(F )∨−1 with F ∗Q), Therefore homomorphisms
{li} provide a canonical homomorphism of the complex Γ(F, n) to the complex (15).
Using (14) we get canonical maps Hi(Γ(F, n)⊗Q)→ grγnK2n−i(F )Q.

13. The quantum dilogarithm ([FK]). Mixed Tate motives give the best
explanation all of the different appearances of the dilogarithm discussed above.
However recently the dilogarithm appeared in conformal field theory and exactly
solvable problems of statistical mechanics. Here is one example.

Let Ψ(x) :=
∏∞
n=1(1− xqn), |q| < 1. Then for q = exp(ε), Im(ε) < 0

Ψ(x) =
1√

1− x
exp(Li2(x)/ε)(1 +O(ε)), ε→ 0

Theorem 0.19. ([FK]) Suppose Û and V̂ satisfies Û V̂ = qV̂ Û . Then

Ψ(V̂ )Ψ(Û) = Ψ(Û)Ψ(−Û V̂ )Ψ(V̂ )

and in the classical limit we get the 5-term relation for the Rogers dilogarithm.

Acnowledgement I am grateful to A.Borel for many useful remarks about
a preliminary version of the paper.
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