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The mixing of substances occurs in various turbulent systems. Examples arise
in reacting flows and combustion, mixing of salt and plankton in oceans and
of chemical pollutants in the stratosphere [1]. The physics of scalar mixing
depends strongly on the ratio of the kinematic viscosity ν of the fluid to the
diffusivity κ of the scalar. This ratio is the Schmidt number Sc = ν/κ. In
the following, we focus to the so-called Batchelor regime of scalar mixing [2],
i.e. Sc > 1. High-resolution simulations are used to explore some geometrical
and statistical properties of the gradients of passive scalar fields, ∇θ(x, t) (for
more details, see also [3, 4]). In order to resolve the fine scales very well, a
larger than usual spectral resolution measure kmaxηB is adopted here (see also
caption of Fig.1). The Schmidt numbers throughout this work are 8 and 32.
Both aspects, the fine resolution and Sc > 1, limit the accessible Taylor
microscale Reynolds numbers of the advecting turbulent flow to Rλ ≤ 63.

Regions with large scalar gradients can cause strong local mixing and are
assigned to local maxima of the scalar dissipation rate. This field will be of
interest for the following and is defined as

εθ(x, t) = κ(∇θ(x, t))2 . (1)

Figure 1 illustrates the shape and spatial distribution of its largest amplitude
events. We see that regions with large dissipation rate are organized in thin
extended sheets for cases Sc > 1, in contrast to the maxima of the energy
dissipation rate which are plotted in the same panels. The figure indicates
also a Reynolds number dependence of the mixing. With increasing Reynolds
number the sheets become smaller, but more numerous. This is attributed to
the local flow patterns which are responsible for the sheet formation. A larger
range of scales in space and time is excited with growing Reynolds number.
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Fig. 1. Joint isovolume plots of the energy dissipation field ε(x, t) (light) and the
scalar dissipation rate εθ(x, t)(dark). The data are obtained from very well resolved
pseudospectral simulations in a periodic box of sidelength 2π resolved with a grid
of N3 = 10243 points. The spectral resolution measure is kmaxηB = 11.84 (upper
panel) and kmaxηB = 3.39 (lower panel) with kmax =

√
2N/3 and the Batchelor

scale ηB . Usually kmaxηB ≈ 1.5 is taken for pseudospectral simulations. The ad-
vecting turbulence is homogeneous and isotropic and is maintained stationary by
stochastic forcing at low wavenumbers. The passive scalar fluctuations are kept sta-
tionary by a constant mean scalar gradient in y direction. The isovolume levels for
both pictures are 5×〈ε〉 for the energy dissipation rate and 7×〈εθ〉 for the scalar dis-
sipation rate. The Schmidt number is Sc = 8 in both cases. Upper picture: Rλ = 24.
Lower picture: Rλ = 63
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The tail of the probability density function (PDF) of the scalar dissipation
rate determines the statistical distribution of the maxima. The PDF is plotted
in Fig. 2 for two Reynolds numbers. We find considerable deviations from log-
normality, which exceed those previously reported (see [4] for a more detailed
discussion). Deviations are detected for all Reynolds and Schmidt numbers
studied here. In the figure, the tails of PDF were fitted with a stretched
exponential

p(εθ � 〈εθ〉) ∼ ε
−1/2
θ exp

(
−C2ε

α/2
θ

)
, (2)

Such statistics were derived analytically for scalar advection in smooth and
white-in-time flows in the limit of an infinite Péclet number. An exponent
α = 2/3 was found [5]. The tails remain below that limit, but above α = 1
which corresponds to an exponential distribution of |∇θ|.

Interesting for the small-scale modeling of mixing, e.g. for flamelets in
combustion, is the cross-section thickness scale of the dissipation sheets. The
thickness determines the scale across which the most intensive mixing events
are present. The thickness is analysed here by a fast multiscale clustering
algorithm [6], applied to two-dimensional planar cuts through snapshots of the
scalar dissipation field [7]. The sheets appear in the cuts as filaments. A local
principal component analysis is applied to subpieces of each separate filament,

Fig. 2. Log-linear plot of the probability density function of the scalar dissipation
rate, normalized to the mean value. Data are for two different Taylor microscale
Reynolds numbers at Sc = 32. Fits to the data for z ≥ 10 with the stretched
exponential term of (2) are also plotted and the corresponding exponents α are
shown. The dashed line is the optimum of a least square fit resulting in α = 0.86
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Fig. 3. Distribution of the local cross-section thickness ld of the scalar dissipation
rate filaments for εθ ≥ 4〈εθ〉. Left panel: Probability density function (PDF) p(ld/ηB)
for two different Schmidt numbers at Rλ = 24. Right panel: PDF p(ld/η) for two
different Reynolds numbers at Sc = 32

and the smaller eigenvalue is then taken as the local filament thickness, ld.
The thickness distribution is shown in Fig. 3. The PDF is supported by all
scales within the viscous-convective range. Only a small number of the sheets
have a thickness close to the Batchelor scale ηB, which is the finest scale in
the turbulent mixing process. The collapse of the distributions in each of the
panels suggests that the most probable thickness – the maximum of the PDF
– varies as the Batchelor scale ηB with Sc at fixed Reynolds number (left)
and as the Kolmogorov scale η with Rλ at fixed Schmidt number (right).
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