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Abstract—Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based

on iterative relaxation schemes together with the approximation of the “smooth” error function on a coarser level (grid). We present two

efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version

of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality

reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a

new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively.

Index Terms—Eigenvalues and eigenvectors, multigrid and multilevel methods, graph algorithms, segmentation, clustering.

Ç

1 INTRODUCTION

THEspectral decomposition of matrices is used in various
tasks of data analysis, such as data clustering, image

segmentation, and dimensionality reduction. Spectral graph
methods are based on the first eigenvalues and their
corresponding eigenvectors of an N �N matrix derived
from the pairwise affinity matrix, where N is the number of
data points. Although promising results have been shown,
the computational complexity of spectral graph methods is
limited by the computation of the related eigenvalue
problem. Standard eigensolvers (e.g., QR [3]) comprise
cubic complexity in the size of the data set, whereas the
running time of other iterative methods for sparse matrices
(e.g., Lanczos et al. [42]) is significantly affected by the size,
sparsity measure, and spectral properties of the problem
[3]. The computational bottleneck of computing the eigen-
vectors has been a motivation for several related multilevel
approaches, e.g., [1], [2], [11], [12], [18], [35]. We specifically
note approaches where eigenvectors are explicitly com-
puted as, for example, in the spectral graph methods
suggested in [11], [12], [18]. In [11], the eigenvalue problem
is efficiently solved for a smaller coarse matrix obtained by
sampling the data set. The Nyström extension is used to
interpolate the solution calculated for the sampled coarse set
to the remaining data points. The accuracy of interpolation
suggested in [11] relies on how well the random sample
represents the remaining data points. We also note that the
approximation suggested in [11] corresponds to the eigen-
decomposition of full matrices. Hence, for very large

matrices, it is hard to evaluate the numeric accuracy of the
solution since the full matrix cannot be computed. In the
context of image segmentation, Cour et al. [12] suggest a
particular samplingmethod of the corresponding fullN �N
pixels affinity matrix to obtain a larger yet sparser matrix
whose eigenvectors are computed faster by the Lanczos
eigensolver, thus transforming the original eigenproblem to a
different one. The speedup is obtained by exploiting the
special structure of the sparse matrix within the Lanczos
solver. The samplingmethod of the affinitymatrix suggested
by [12] can be fairly efficient in the case of image segmenta-
tion, i.e., where the pixels proximities can be easily derived
from the image grid. However, for scattered high-dimen-
sional data, such an approach will actually require the
computation of the fullN �N matrix, a costly operation that
should be avoided in any case. In ourmultilevel eigensolvers
for sparse matrices, the interpolation is constructed differ-
ently. An important difference is that the coarse set is chosen
such that the remaining data points are strongly connected to
the chosen coarse set, thus suggesting amore accurate coarse-
to-fine interpolation than the one suggested in [11]. Also, the
corresponding matrix is a priori sparse and corresponds to
local connections in the data graph that can be obtained by
using efficient methods (e.g., [43]). We also compare our
solver performance with the Lanczos eigensolver, demon-
strating an order of magnitude speedup. We comment on
[18], [35], and other works below.

Our work relies on the multigrid solver for differential
eigenproblems on geometric grids presented in [19], and on
algebraic multigrid (AMG) techniques [4], [6] for solving
unstructured large-scale linear systems of equations. Over
the past few decades, several multigrid schemes were
developed for differential eigenvalue problems [20], [21],
[22], [23], [24], [27], [28]. We note the works of [21] and [27]
that rely on the Full Approximation Scheme (see below). The
multigrid solver of [21] is suggested for the Schrödinger
equation in 2D and 3D with special treatment for closely
clustered eigenvalues. Borzi and Borzi [27] use the AMG
technique for solving unstructured differential eigenpro-
blems in 2D and 3D for the first few eigenvectors. Three
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different algorithms based on classical AMGare suggested in
[27]. Most related to our work is the first algorithm, based on
the FAS with AMG (FAMG), and also employing a Full
Multigrid cycle (FMG, see [9]) for initialization. FAMG does
not employ the Kaczmarz relaxation method, and therefore,
relaxation diverges at coarse levels when the iteration matrix
is indefinite (see Section 3.2). Such coarse levels can be
avoided, but avoiding these levels causes the solver con-
vergence to be much slower. Other approaches tackling
indefiniteness are suggested in several multigrid precondi-
tioners for Helmholtz equation, such as [25], [26]. In the
context of differential eigenproblems, we also note [23],
which suggests an accurate algorithm for computing two
eigenfunctions of the 1D Helmholtz equation by using a Full
Approximation Scheme solver. The solver of [23] can solve
for any two eigenfunctions (and corresponding eigenvalues)
in the vicinity of a given eigenvalue ~�, not necessarily for the
lowest eigenvalues of the Helmholtz operator. In [28], the
author suggests an AMG extension for Rayleigh Quotient
Multigrid (RQMG) solver [29] for computing several of the
first eigenvectors of a differential Laplacian. The AMG
version of RQMG employs Davidson iteration with Ray-
leigh-Ritz projection to obtain update directions for the
approximation of the few smallest minimizing eigenpairs of
theRayleighQuotient. Theminimization is done in each level
of the multilevel solver. Another related class of multigrid
solvers relies on the smooth aggregation scheme suggested in
[31], [32], and in particular, the AMG eigensolvers of [30] and
[35]. The generalized eigensolver in [30] minimizes the
Rayleigh Quotient (RQ) for a singleminimal eigenvector but,
unlike [28], which uses a static intergrid transfer operator, it
initializes and modifies the intergrid operator in each cycle
by scaling the aggregation matrix with the current approx-
imation and smoothing the operator to obtain an operator
which has the current approximation in its range and spans a
coarse subspace of lower RQ vectors.

In the context of stochastic matrices, we mention the
algorithms of [18] and [35]. The former is based on
interpolations similar to the classical AMG (had the latter
been applied to a Laplacian of a graph associated with the
stochastic matrix). This, however, is done just for obtaining a
first approximation, without using multilevel acceleration
cycles; hence, the obtained eigensolver is much less efficient.
The multilevel eigensolver of [35] for stochastic matrices is
closely related to previous aggregation algorithms for
stochastic matrices [36], [37], [38], [39], [40], all designed
for the computation of the (single) first eigenvector
corresponding to the stationary distribution of a stochastic
matrix. Sterck et al. [35] suggest an adaptive smoothed
aggregation method [32], [33] for this particular case.
Specifically, the solver uses an adaptive AMG multilevel
solver involving relaxation andmultiplicative corrections, in
which the matrix is scaled with the current iterate so that the
chosen coarse seeds correspond to the Markov chain states
of highest probability as encoded in the current iterate. The
solver is used for Web page ranking applications.

Unlike [23], [27], [28], [31], [32], and [35], the presentation
in our paper is in the context of data analysis problems.
Also, we demonstrate a particularly fast multilevel ap-
proach for simultaneously calculating many eigenvectors.

Multigrid solvers [5] for linear problems (structured or
unstructured) are based on iterating between two processes:

1. Classical relaxation schemes that are generally slow
to converge but fast to “smooth” the error function,
i.e., approximately eliminate from it high eigencom-
ponents (eigenvectors whose eigenvalue is compar-
able to the largest absolute eigenvalue).

2. Approximating the “smooth” error function (made
primarily of low eigencomponents) on a coarser level
(a coarser grid, or more generally, a smaller graph,
typically having one quarter to one half the number of
nodes). This is done by solving coarse-level equations
derived from the fine-level system and the residuals
of its current approximate solution, and then inter-
polating that coarse-level solution to correct the fine-
level approximation. The solution of the coarse level
equations is obtained by recursively using the same
two processes, employing still coarser levels.

As a result, large-scale changes are effectively calculated on
correspondingly coarse levels, based on information gath-
ered from finer levels. Such multigrid solvers typically yield
linear complexity, i.e., the total solution work is propor-
tional to the number of variables (nodes) in the system.

The main issue in AMG solvers is how to choose the
coarse-level variables and how to derive a sufficiently good
interpolation from the coarse level to the next finer level
(see [4] and [5, Appendix A]). Once such an interpolation is
known, the coarse-level equations can be derived by the
classical Galerkin method (see below).

For simplicity, in this paper, we always assume that the
set of variables at each coarse level is a subset of the next-
finer-level set, chosen by a particular selection algorithm.
The so-called “classical” AMG interpolation uses interpola-
tion weights proportional to the weights of the graph edges.
This yields efficient solvers for typical graph problems, i.e.,
to systems of equations based on the Laplacian of a graph,
provided the graph is mostly “local”, i.e., connected nodes
are generally close to each other in some low-dimensional
space in which the graph could be embedded.

A more accurate and general interpolation scheme has
been developed more recently in the framework of Boot-
strap AMG (BAMG, see [7] Section 17.2, and [9] Section 4).
The BAMG interpolation is defined as the interpolation that
fits best (in some least-squares sense) a set of relaxed error
vectors, each being produced by relaxing the homogeneous
system of equations starting from a random approximation.
With this improved interpolation, many more general linear
systems (not relying at all on having a matrix with
dominant main diagonal and not requiring graph locality)
can be solved fast by AMG. And, as explained below, this
interpolation is particularly useful when one needs to
calculate many eigenvectors. Brezina et al. [34] also suggest
a similar relaxation process to approximate error compo-
nents that are slow to converge. The slow to converge error
vectors are then used to improve the interpolation, and
thus, the whole algebraic multigrid process.

In the course of this paper, we present two types of
multilevel eigensolvers. The first solver is based on the Full
Approximation Scheme (FAS) [9], in which the coarse levels
are used to calculate approximations to the “smooth” error
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function. This solver can use either the classical AMG
interpolation or the more accurate BAMG interpolation. For
most eigenproblems emerging in data analysis, the classical
AMG solver has already turned out to be very efficient, as
demonstrated in Section 4 below on several representative
examples of clustering [13], image segmentation [14], and
dimensionality reduction [17]. Specifically, we show that
the running time of this (nonoptimized Matlab and C) AMG
multilevel eigensolver is an order of magnitude faster than
the Lanczos algorithm implemented in the ARPACK
package [42].

The second type ofmultilevel solver that we have adapted
for graph eigenproblems employs the Exact Interpolation
Scheme (EIS, first introduced in [9]). In that scheme, at each
fine level of each multilevel cycle, one calculates an
interpolation operator that exactly fits the current (after
relaxation) approximate solution; here, of course, the
BAMG-interpolation must be used. The next coarser level
is then used to calculate a solution (not a correction, as in FAS)
that, upon interpolation to the fine level, yields an improved
approximation there.

An obvious disadvantage of the EIS is the need to
recalculate the interpolations. This disadvantage is rather
mild in algebraic multigrid solvers, which should calculate
good interpolations for the (generally unstructured) system
anyway, and in many cases, should keep improving the
interpolations to fit nearly singular components, as sug-
gested, for example, in [7], [32], [33], [34].More important, the
EIS is the scheme of choice for calculating many eigenvectors
because, based on just several briefly relaxed vectors, it is
possible to construct one BAMG interpolation that accurately
enough fits them all (see Section 3.3). As a result, one coarse-
level eigenproblem is obtained whose solution gives good
approximation to all of those eigenvectors. Formany types of
applications, one need not even interpolate all of those
eigenvectors, obtained at some coarse level, back to the finer
level(s). In fact, it is often preferable to use their coarse-level
versions, as explained by an example in Section 3.3. Thus, to
calculate many eigenvectors, it is often enough to derive one
BAMG interpolation, a purely local operation,with the rest of
the calculations being very inexpensive since they no longer
use the finest level (or even several finest levels).

This process for solving many-eigenvector problems is
part of a more general process that extends the idea to
higher eigenvectors and to coarser grids by using more than
one interpolation per level. It may lead to the calculation of
N eigenvectors in just OðNlogNÞ computer operations and
OðNlogNÞ computer storage, as shown for discretized one-
dimensional differential operators in [24] (and previously
by a different method in [22]).

In the context of our work, we show an application of the
EIS solver for computing many eigenvectors of Laplacian
eigenproblems corresponding to a graph whose data points
comprise a 2D grid and whose edges might have random
weights. Then we demonstrate an application in multiclass
spectral clustering of a Gaussian mixture model [41] (see
Section 4.2). We demonstrate that the EIS solver with BAMG
interpolation can have higher efficiency and accuracy than
the FAS solver with classical AMG interpolation. Moreover,
we demonstrate that a specific low eigenvector can also be

computed efficiently and to a high accuracy by using the
EIS solver.

2 SPECTRAL METHODS FOR DATA ANALYSIS

PROBLEMS

Let W denote the pairwise affinity matrix of a graph
GðV ;WÞ with nodes V representing the data points and
edges whose positive weights are the pairwise affinities.
The graph Laplacian is defined as L ¼ D�W , where D is
the diagonal matrix with entries dii ¼

P
j wij. In the spirit of

spectral theory [16], a solution for a related data partition
problem can be constructed from the solution of the
following generalized eigenvalue problem:

LU ¼ �DU; ð1Þ
or a closely related eigenvalue problem

D�1=2LD�1=2Z ¼ ðI �D�1=2WD�1=2ÞZ ¼ �Z: ð2Þ
The first low eigenvectors of (2) induce an embedding of the
data points into a low-dimensional subspace such that their
values can then be used to define the partition of the data
into coherent groups, generally by using a simple clustering
technique (such as k-means [45]) [13], [14]. A similar
method is used in dimensionality reduction problems,
e.g., [17], where the first eigenvectors are used to embed
the data into a lower dimensional subspace.

3 THE EIGENSOLVER ALGORITHMS

3.1 The Problem

The eignsolvers suggested in this paper are designed to
numerically compute the first d eigenvectors of the general-
ized eigenvalue problem

AU ¼ BU�; ð3Þ
where A and B are N �N symmetric positive semidefinite
matrices and � is a diagonal matrix of the corresponding
eigenvalues. That is, we are looking for the smallest real
numbers �1 � �2 � . . .�d and the vectors U1; U2; . . . ; Ud so
that

AUi ¼ �iBUi i ¼ 1; . . . ; d ð4Þ
and

ðUi; BUjÞ ¼ �ij i; j ¼ 1; . . . ; d: ð5Þ
3.2 The Full Approximation Scheme Solver

The algorithm starts with an initialization step which
provides an initial approximation to the first d eigenvec-
tors and their corresponding eigenvalues. Then, the
eigenvalues are fixed, and the eigenvector approximation
is updated independently for each single eigenvalue. For
that matter, we employ a multilevel scheme which utilizes
a common interpolation throughout the approximation of
all the first eigenvectors. Once approximations of the first
d eigenvectors are obtained by the multilevel scheme, the
subspaceX spanned by them is a good approximation to the
subspace spanned by the desired eigenvectors. Henceforth,
the multilevel procedure is followed by a Ritz projection

KUSHNIR ET AL.: EFFICIENT MULTILEVEL EIGENSOLVERS WITH APPLICATIONS TO DATA ANALYSIS TASKS 3

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Yale University. Downloaded on June 14,2010 at 22:25:22 UTC from IEEE Xplore.  Restrictions apply. 



procedure which determines a basis for X that is closest to
the eigenvectors in some sense, along with an update of the
eigenvalues. Generally, a few iterations of the multilevel
procedure followed by the Ritz projection are performed
until a predefined accuracy is achieved. Next, we describe
the major part of the algorithm, i.e., the multilevel scheme.
For simplicity, we focus on a two-level scheme. The multi-
level scheme is a quite straightforward generalization of the
two-level scheme.

Starting at the fine level on which the original eigenvalue
problem is considered for a single eigenvalue,

ðA� �BÞu ¼ �; ð6Þ
with � ¼ 0, a few relaxation sweeps are first performed to
obtain a certain approximation for u. Then, a coarse problem
is constructed on a coarser level, employing only a subset of
the original variables. Finally, after approximating the
coarse level solution, a coarse level correction is transferred
to the fine level, on which a few additional relaxation
sweeps are performed. These basic ingredients of the
multilevel scheme: relaxation, coarse problem construction,
and coarse level correction are explained in detail below.

Relaxation. Given a system of equations of the form
ðA� �BÞu ¼ � , and certain initial approximations for � and
u, a Gauss-Seidel (GS) relaxation sweep is defined as
follows: Keeping � fixed, the variables ui are scanned in
some order, updating each to satisfy the corresponding
equation. Namely, denoting A� �B by M and the approx-
imation before starting the sweep by uold, we set

unew
i ¼ m�1

ii �i �
X
j<i

miju
new
j �

X
j>i

miju
old
j

 !
: ð7Þ

The sequence of relaxation sweeps converges if (and
generally only if) the symmetric matrix M is positive
definite (PD). When M is only approximately PD, i.e., M
contains a relatively small number of negative eigenvalues
(as happens on a fine level when A is PD and � is one of the
first few eigenvalues), the GS iterations slowly diverge. In
the multilevel algorithms, this divergence is not a problem
provided the slowly diverging components are well
approximated at the coarser levels, and thus, converge by
the coarse-to-fine corrections. This, however, no longer
works at some of the coarsest levels since there the
divergence of those smooth components is much faster.
Avoiding these coarsest levels would, on the other hand,
result in slow convergence of the multilevel algorithm.
Thus, we choose a more efficient approach by switching to
Kaczmarz relaxation [10] at some of the coarsest levels. In the
Kaczmarz scheme, the equations i ¼ 1; :::; N are scanned,
simultaneously updating for the ith equation all of the
variables participating in it by setting

unew ¼ uold þ �i �miu
old

mimT
i

mT
i ; ð8Þ

where mi ¼ ðmi1; . . . ;miNÞ. After each such update induced
by the ith equation, unew becomes uold. Kaczmarz relaxation
can be considered as Gauss-Seidel relaxation applied to
MMTy ¼ � with MTy ¼ u.

Coarse problem construction. Here we explain the
construction of the coarse level equations. First, the coarse
level variables are chosen. Then, the coarse-to-fine inter-
polation is computed, and finally, the coarse level equations
are derived. This construction follows the algebraic multi-
grid (AMG) coarsening scheme explained in [6] and in
[5, Appendix A].

3.2.1 Selection of Coarse Variables

The construction of the set of coarse variables C and its
complement denoted by F is guided by the principle that
each F variable should be “strongly connected” to C, i.e.,
each i 2 F should satisfy

P
j2C jaijj � �

P
j jaijj, where � is a

parameter, typically � ¼ 0:2. To achieve this objective one
starts with an empty set C and sequentially transfers
variables from F to C until all of the remaining i 2 F satisfy
the mentioned relation.

3.2.2 Interpolation

For each variable i 2 F , a coarse set Ni � fj 2 C; aij < 0g is
defined. The size of Ni is called the interpolation caliber. Let
IðjÞ be the coarse set index of the variable whose index at
the fine level is j. The classical AMG interpolation matrix P
(of size N � n, where n ¼ jCj) is defined by

PiIðjÞ ¼
aij=

P
k2Ni

aik; for i 2 F; j 2 Ni

1; for i 2 C; j ¼ i
0; otherwise:

8<: ð9Þ

The interpolation defined above, referred to as direct
interpolation, assigns for each fine point a coarse interpola-
tory set. However, a different interpolation may be defined
such that the value for a fine point i can be interpolated
from other fine points sharing a strong connection with i.
This type of interpolation, referred to as indirect interpola-
tion, is discussed in [5, Appendix A]. Indirect interpolation
allows the use of more aggressive coarsening, i.e., selecting
a much smaller coarse set in each coarsening step, while
maintaining comparable efficiency. Trottenberg et al.
[5, Appendix A] discuss the indirect interpolation for the
AMG case and compare its performance with the perfor-
mance of direct interpolation. Indirect interpolation is
demonstrated for the EIS solver with BAMG interpolation
(Section 4.2).

3.2.3 Derivation of the Coarse Equations

The derivation of the coarse equations follows the Full
Approximation Scheme, which originally was developed
for nonlinear equations [8]. Consider the fine level problem
Mu ¼ � , with u ¼ ~uþ Pec, where ~u denotes the current
approximation and ec is the coarse-level correction. The fine
level problem can be written as

Mu�M ~u ¼ � �M ~u: ð10Þ
An analogous coarse level problem is

Mcuc �McPT ~u ¼ PT ð� �M ~uÞ; ð11Þ
where Mc can be computed, for example, by Galerkin
coarseningMc ¼ PTAP � �PTBP [6]. The sparseness of Mc

is maintained by employing an interpolation dilution
procedure in which the interpolation caliber is limited to a
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certain small number p, by updating Ni to be Ndiluted
i ¼ fj 2

C; aij < 0 and aij is among the p largest fjaikjgk2Cg. In our
experiments p ¼ 2 or 4.

Rewriting (11) yields the following coarse level equations:

Mcuc ¼ PT� þMcPT ~u� PTM ~u: ð12Þ
If we denote the right-hand-side by �c, it can be seen that
the general form, given by (6), is preserved. �c is called the
fine-to-coarse defect correction. The starting approximation
for solving (12) is PT ~u.

Coarse level correction. The coarse level equations are
solved by recursion, employing relaxation, and still coarser
levels. Then, the coarse level correction is transferred to the
fine level, i.e.,

unew ¼ ~uþ P ðuc � PT ~uÞ: ð13Þ
Ritz projection. Once the vectors u1; . . . ; ud have been

approximated by a multilevel cycle, the subspace X ¼
spanfu1; . . . ; udg is a good approximation to the subspace
spanned by the eigenvectors U1; . . . ; Ud that we seek. Ritz
projection is a process which finds u1; . . . ; ud in X and
�1; . . . ; �d so that the orthogonal projection of such Aui �
�iBui is zero. This ensures that any generalized eigenvector
contained in X will be found by Ritz projection. More
generally, in a certain sense, it will determine a basis for X
that is closest to the U 0

is.
To determine the Ritz vectors, we first perform a Gram-

Schmidt orthonormalization on u1; . . . ; ud (with respect to
the matrix B), resulting in vectors eu1; . . . ; eud. The matrix
� ¼ ½eu1; . . . ; eud� is defined. Then, ��T is an orthogonal
projection operator onto X. Any vector in X can thus be
written as �z, where z 2 Rd. Letting ui ¼ �zi, then Ritz
projection attempts to find zi and �i, i ¼ 1; . . . ; d, so that

��T ðA�zi � �iB�ziÞ ¼ 0 ð14Þ
or, since � is full rank, so that

�TA�zi � �i�
TB�zi ¼ 0: ð15Þ

Hence, the Ritz process requires the solution of a relatively
small (d� d) generalized eigenvalue problem. The obtained
vectors u1; . . . ; ud are normalized and used to initiate the
next multilevel cycle.

Algorithm initialization. The algorithm is initialized by a
simple multilevel cycle. First, the matrices A and B are
iteratively coarsened by the Galerkin method. That is, at a
fine level where matrices A and B are defined, the next level
matrices are constructed as Ac ¼ PTAP and Bc ¼ PTBP ,
where P is the interpolation operator that is constructed as in
(9). The coarse level should have enough degrees of freedom
to approximate the first d eigenvectors of the generalized
eigenvalue system involving Ac and Bc. Typically, for 2D
problems, the coarse level has at least 4d number of degrees
of freedom. The d eigenvectors of the system AcUc ¼ �BcUc

are directly computed and then interpolated and relaxed
until the finest level is reached. Finally, the d fine
eigenvectors are corrected by the Ritz projection.

3.3 The Exact Interpolation Scheme (EIS) Solver

The FAS scheme described in Section 3.2 with classical
AMG interpolation is very efficient for the computation of

the first few eigenvectors of (3). However, in certain tasks,
such as multiclass spectral clustering [41], one would like
to compute many of the low eigenvectors with improved
efficiency and accuracy. In such tasks, the classical AMG
interpolation designed to interpolate the “smooth” error
function is usually not suitable to accurately interpolate
higher eigenvectors. For such applications, we suggest the
Exact Interpolation Scheme eigensolver [9] combined with
the BAMG interpolation. In the EIS solver, the interpola-
tion P is repeatedly fitted to accurately interpolate the
current approximations of the eigenvectors. As a result, no
defect correction � is needed in the coarse equations.

Moreover, with the BAMG approach, a single interpola-
tion P which is simultaneously accurate for many low
eigenvectors can be inexpensively constructed. As a result,
a single eigenproblem is obtained at the coarse level whose
eigenvectors, when interpolated by P , yield very good
approximations to a multitude of low eigenvectors. The
accuracy can further be enhanced by increasing the caliber
of P . We will show that even one EIS cycle yields
satisfactory accuracy. For simplicity, we will focus on a
two-level cycle.

The two-level EIS solver explained below consists of
similar steps as the FAS solver described earlier. Namely, it
encodes procedures for choosing coarse variables, con-
structing an interpolation operator, and constructing the
coarse equations. Below we explain the main modifications
introduced by the two-level EIS algorithm.

Selection of coarse variables. For 2Dgrid problemswhich
originate from data sets in which the data points lie on a 2D
grid (such as the 2D differential Laplacian eigenproblems),
the standard grid coarsening is used. Specifically, along each
direction on the grid, every second point is chosen to be
coarse. For unstructuredproblems, such as those emerging in
various data analysis tasks, the coarse variables selection is
based on the same AMG procedure described in Section 3.2.

Interpolation. For notation convenience the approxima-
tion of the kth eigenvector Uk is denoted by ~uðkÞ. In order to
accurately interpolate many eigenvectors, the interpolation
operator P is computed to satisfy best, in the weighted least
squares sense, ~uðkÞ ¼ P ~uðkÞc, simultaneously for all current
approximate eigenvectors ~uðkÞ and their coarse level
representations ~uðkÞc (k ¼ 1; . . . ; d). In fact, for the approx-
imation of many eigenvectors, only a small set of
K representative low-residual Test Vectors (TVs) is enough
to produce suitable P . For example, let xðkÞ and xðkÞc,
1 � k � K; K � d, be a set of fine TVs and their coarse
representation, respectively. In our implementation xðkÞ is a
set of random vectors smoothed by relaxation of AxðkÞ ¼ 0
and xðkÞc is obtained by injection, i.e., x

ðkÞc
j ¼ xðkÞ

m for each
m 2 C, where j is the coarse level index corresponding to
the fine index m. The relaxed xðkÞ are linear combinations of
low eigenvectors since relaxation dumps the components in
xðkÞ that correspond to high eigenvectors. The set of
interpolation coefficients fPijgj for each i 62 C can be
determined so that it best satisfies, in the weighted least
squares sense, the over determined set of equations:

x
ðkÞ
i ¼

X
j2Ni

Pijx
ðkÞc
j ; ðk ¼ 1; . . . ; KÞ; ð16Þ
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where Ni is the set of coarse points used to interpolate to i.
The weight of the kth equation is chosen to be proportional
to kAxðkÞk2.

Coarse equations. The interpolation operator P that best
satisfies (16) is used to construct the coarse eigenequations:

AcuðkÞc ¼ �ðkÞBcuðkÞc;
�
uðkÞc�TBcuðkÞc ¼ 1 ð1 � k � dÞ; ð17Þ

where Ac ¼ PTAP and Bc ¼ PTBP . Unlike the FAS
scheme, no defect (i.e., �) is transferred to the coarse level
and the coarse equations have the same form of the
generalized eigenvalue problem. Equation (17) is then
solved for uðkÞc and �ðkÞ. At convergence, orthogonality of
eigenvectors at the coarse level implies orthogonality at the
fine level since P is constructed to accurately interpolate the
coarse representation of the fine eigenvectors. The eigen-
vectors are interpolated to the finer level by utilizing the
designed interpolation, followed by relaxation.

One of the special features of the EIS is that eigenvectors
do not need to actually be represented at the finest level.
This can not only save most of the computer time and
storage, but is actually even preferable for many applica-
tions. For example, it facilitates a very efficient expansion of
a function f in terms of the eigenvectors, by computing each
expansion coefficient as the inner product of f with the
corresponding eigenvector u using the relation

ðf; uÞ ¼ ðf; PucÞ ¼ ðPTf; ucÞ ¼ ðfc; ucÞ: ð18Þ
So, the inner products can be calculated to a high accuracy
only at the coarse level!

4 EXPERIMENTS

In the first part of the experiments, we demonstrate and
analyze the performance of the FAS solver with classical
AMG interpolation on three types of data analysis
problems, in each of which only few eigenvectors are
required: dimensionality reduction, image segmentation,
and clustering. In the second part of the experiments, the
EIS-based algorithm is demonstrated to compute inexpen-
sively many eigenvectors for 2D grid eigenproblems and for
the task of multiclass spectral clustering. Additionally, we
show that the EIS can be efficiently used for accurate
computation of a specific low eigenvector.

4.1 The FAS Solver

4.1.1 Dimensionality Reduction

A data set of N ¼ 100;000 data points is generated in a 3D
spaceX ¼ ðx; y; zÞ. The x and y-coordinates are drawn from a
uniform distribution in the interval ½0; 1�. The z-coordinate is
given by z ¼ sinð�xÞtanð�yÞ. This formulates a landscape of
two peaks, known as the “twin peaks” landscape. Then a
sparse and symmetric affinity matrix W is constructed as
follows: The pairwise affinities are computed for each point
Xi as in [17], i.e., wij ¼ expð� kXi�Xjk2

�2
Þ, ð� ¼ 1Þ, where k 	 k is

the euclidean norm and Xj is among the eight nearest
neighbors of Xi, determined by the KD-tree algorithm [43],
[44]. The symmetry of W is maintained by adding Xi to the
nearest neighbor list of eachneighborXj ofXi. Following this
construction, while maintaining symmetry, the maximal

number of nonzero entries per row in the affinity matrix W
is 16.

TheLaplacianEigenmaps algorithm [17] attempts to find a
mapping of the data points set X in a given high dimension
into a lower dimensional representation Y , where neighbor-
ing points in the high dimension are close to each other in the
low dimension, more formally, such that

P
ijðyi � yjÞ2wij is

minimized under the constraint Y TDY ¼ I, where D is
diagonal dii ¼

P
j wij. This optimization problem can be

translated to an eigenvalue problem that seeks for the first
dþ 1 eigenvectors of LU ¼ �DU , where L ¼ D�W is the
graphLaplacianmatrix and d is the lowerdimension (d ¼ 2 in
our example). The first eigenvector is constant, and therefore,
disregarded. The next d eigenvectors are used to employ the
“Laplacian eigenmaps” low-dimensional embedding from
the higher dimension to the lower one. Specifically, in our
example by using the two first eigenvectors as 2D representa-
tion of the original 3D points. The multilevel eigensolver is
applied to this problem and the obtained embedding result is
compared with the result obtained by using the Lanczos
sparse solver from the commercial package ARPACK [42].
The embedding of the points as seen in Fig. 1 preserves the
global structure of the data: the color coding that corresponds
to the z-coordinate in X is preserved in Y . In particular, the
embedding results obtained by both solvers are similar.
However, our nonoptimized code is much faster than the
Lanczos algorithm. Specifically, for a residual accuracy of
10�4, the running time of our eigensolver, implemented by a
nonoptimized code is 25 seconds, while the running time of
Lanczos is 244 seconds. We note that the Lanczos running
time is hardly affected by changing the accuracy criterion
since it usually obtains veryhigh accuracy.Wehave therefore
chosen, here and below, to base comparisons on the level of
accuracy sufficient in the applications. More important is the
running time as a function of the problem size, which is
discussed below (see Fig. 5).

4.1.2 Image Segmentation

Awell known spectral method for image segmentation is the
normalized-cut method [14]. Given an image, it first
uniformly samples for each pixel a certain number of
neighbors, e.g., 20, drawn from a surrounding circle with
fixed radius of 10 pixels. Then, the pairwise affinitymatrixW
is constructed according to the spatial proximity and a bank
of filter responses as explained in [14]. A related eigenvalue
problem seeks for the first eigenvectors of the eigenvalue
problem ðI �D�1

2WD�1
2ÞU ¼ �U . Those eigenvectors induce

an embedding of the pixels into a low-dimensional space
wherein a simple clustering method is used to determine the
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Fig. 1. Dimensionality reduction of the “twin peaks,” with “Laplacian
eigenmaps.” (a) The 3D data (b) embedding into 2D using Lanczos
method, (c) embedding into 2D using the multilevel eigensolver.
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image partition to coherent segments. Alternatively, the
eigenvectors can be used to assign pixels to segments, as
suggested in [41].

In order to test our algorithm performance, we inte-
grated the FAS eigensolver into the normalized-cuts
application [15] and compared its performance with the
performance of Lanczos. The results are demonstrated on a
386� 323 gray scale image in Fig. 2, where the red curves
indicate the segmentation of the image into coherent
segments. The segmentation is obtained by using the five
first eigenvectors while neglecting the first one. The
segmentation results are nearly identical. However, for
residual accuracy of 10�4 which was used in these results,
the running time of our algorithm is 84 seconds, while the
running time of Lanczos is 835 seconds. We further
elaborate on this problem in the Section 4.1.4 below.

For the particular eigenvalue problem evolving in image
segmentation tasks, we demonstrate the quality of the
eigenvectors approximation and the running time behavior
for computing a larger number of eigenvectors for several
more image segmentation problems of different sizes. The
matrices are constructed similarly to the above construction.
The results are demonstrated for images of sizes 233� 180
pixels (41,940 nodes), 441� 331 pixels (145,971 nodes), and
1024� 768 pixels (786,432 nodes), where, in each problem,
10 eigenvectors were computed. The average number of
nearest neighbors of each pixel is 20, 20, and 45, for each
image, respectively. In order to obtain informative filter
responses in the 1;024� 768 image, the neighbors of each
pixel were drawn from a circle with an increased radius of
16 pixels (instead of 10 pixels in all previous problems), thus
increasing the number of nonzero entries and the nonlocality
of the graph. The running times of our solver for a residual
accuracy of 10�4 are: 74 seconds, 165 seconds, and
980 seconds, respectively. For theLanczos solver, the running
times obtained for the first two problems are 85 seconds,
1,124 seconds, whereas, for the last problem, the Lanczos
solver ran for several hours and exhausted the machine
memory without producing any results. The segmentation
results aswell as the plot of the second eigenvector are shown
in Fig. 3. The plot of the second eigenvector values on the
image domain demonstrates the high agreement between
eigenvectors obtained by our method and the eigenvectors
obtained by the Lanczos method.

The running time of our method obtained for this
problem manifests roughly linear asymptotic dependence

on the number of nodes in the graph. Another important
result emerging from our experiments is that for matrices of
size smaller than a certain number (perhaps in the
thousands) and for a small number of computed eigenvec-
tors, it is more efficient to use the Lanczos solver. The
reason is the overhead of our multilevel construction and
the multilevel cycles which are performed for each
eigenvector separately. The significant improvement in
running time obtained by our method is manifested for
matrices of large size as for example in the 441� 331 and
the 1;024� 768 images. The exact crossing point between
the running times of both solvers cannot be determined
from the experiments because the Lanczos implementation
is optimized, whereas our solver implementation is not.

4.1.3 Clustering

Spectral clustering algorithms propose to map the original
data into the k first eigenvectors of the affinity matrix (or a
matrix similar to it) and then apply a standard clustering
algorithm such as k-means on these new coordinates. In
order to test the multilevel eigensolver, the spectral
clustering algorithm suggested by [13] was implemented
while solving the related generalized eigenvalue problem
ðI �D�1

2WD�1
2ÞU ¼ �U , once by our eigensolver and once

by Lanczos algorithm. To that end, we generated synthetic
data composed of two 2D concentric rings, with radii 0.25
and 0.5 and widths determined by the normal distribution
with standard deviation 0.025. The pairwise affinities are
computed for each data point Xi as in [13], wij ¼
expð� kXi�Xjk2

�2
Þ, where � ¼ 0:07, and Xj is among the eight

nearest neighbors of Xi, determined by the KD-tree
algorithm. Following this construction, while maintaining
symmetry, the maximal number of nonzero entries per row
in the affinity matrix W is 16.

Utilizing the first three eigenvectors, the clustering
results obtained by the eigensolver and by Lanczos are
identical, as exemplified for 250,000 data points in Fig. 4.
The color coding shows the assignment of points to two
distinct clusters induced by using the computed eigenvec-
tors within the algorithm of [13]. The running times for 10�4

residual accuracy are 33 seconds and 383 seconds, for our
eigensolver and Lanczos, respectively.

4.1.4 Algorithm Performance

Theperformance of the FAS solver is evaluated bymeasuring
the average convergence factor per work unit, or in other words,
the trade-off between the accuracy and the algorithm
runtime. Since one does not generally know the exact
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Fig. 2. Image segmentation. (a) The original image, (b) segmentation result obtained by normalized-cuts utilizing Lanczos method, and
(c) segmentation result obtained by normalized-cuts utilizing the multilevel eigensolver.
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solution of the eigenvalue problem, the accuracy ismeasured
in terms of the residual. Define rki to be the residual obtained
by the approximation uki to the ith eigenvector, after
employing k cycles, i.e., rki ¼ kAuki � �k

i Bu
k
i k. The conver-

gence factor at a certain cycle k for the ith eigenvector
measures the decrease of the residual between two succes-
sive cycles, i.e., �k

i ¼ rki =r
k�1
i . Averaging this convergence

factor overm cycles yields the average convergence factor ��i

(in our experiments, ��i is computed with m ¼ 5). The work
per cycle, w, is measured by w ¼Psðv½s� þ 1Þ	½s�, where v½s� is
the number of relaxation sweeps performed at level s and 	½s�

is the total number of nonzero entries of the matrix at level s
divided by the total number of nonzero entries of the fine
level matrix M ¼ A� �B. The work amount equivalent to
one relaxation sweep is added at each level to account for
constructing the coarse equations. The average convergence

factor per work unit is defined by 
i ¼ ��
1=w
i . Table 1 presents 


for different problems solved by the FAS eigensolver. The

high value attained for the image segmentation problem is

due to the higher density of the problem and the special

graph structure: On average, 20 neighbors are sampled from

a radius of 10 pixels and their affinities are based on filter

responses, thus suggesting a larger number of geometrically

distant connections between pixels. In this sense, the locality

of the graph is, to some extent, violated (so, ideally, we

shouldhaveusedhere theBAMG interpolation). Thenumber

of nonzero entries at each level is 2,757,069, 3,409,468,

839,238, 200,344, 56,214, 21,297, and 7,177, producing a cycle

of 8.3 work units. This manifests itself in the relatively higher

running time reported above for this problem.
Additionally, to verify that our eigensolver performance

is optimized with respect to the multigrid textbook

efficiency, we have compared its performance with the

optimal theoretical multigrid convergence factor per work

unit �o, as defined (slightly differently than ��) and computed

in [8] for problems discretized on grids. The comparison is

done for the matrix obtained by discretizing the 2D Laplace

differential equation on a uniform grid. For the second

eigenvector, our solver obtained �o ¼ 0:542 for the 10K

problem and �o ¼ 0:592 for the 100K problem, which is in

good agreement with the asymptotic value �o ¼ 0:595

reported in [8, Table 1].

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010

Fig. 3. Image segmentation. (a), (b) Segmentation and second eigenvector plot, obtained by normalized cuts utilizing the multilevel
eigensolver. (c), (d) Segmentation and second eigenvector plot, obtained by normalized cuts utilizing the Lanczos method.

Fig. 4. Clustering. (a) The data set, (b) clustering result obtained by
spectral clustering [13] utilizing Lanczos method, and (c) clustering
result obtained by spectral clustering utilizing the multilevel solver.
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4.1.5 Comparison to Lanczos Method

The running time of our FAS solver is compared with the
running time of the Lanczos solver [42] (ARPACK software
package implemented in Fortran). We indicate that our
eigensolvers code is compiled of C and Matlab procedures
that are not optimized to achieve minimal running time.
The convergence of the Lanczos algorithm follows the
Kaniel-Page Theorem [3]: The ith eigenvector convergence
depends on the separation between the ith and ðiþ 1Þth
eigenvalues relative to the separation between the ðiþ 1Þth
and the largest eigenvalue. For large Laplacian matrices, the
small relative eigenvalue separation causes a significant
slowdown in the convergence of the Lanczos algorithm. The
comparison of the running time as a function of the problem
size is demonstrated in Fig. 5 for the computation accuracy
of 10�4 for the second eigenvector in each of the three
representative eigenvalue problems described above. The
results clearly indicate that our FAS solver running time is
linear in the number of data points, whereas the Lanczos
running time is super-linear. Similar results are obtained for
the third eigenvector.

4.2 The EIS Solver

2D grid Laplacian problems. To demonstrate the accuracy
obtained by the EIS solver, we apply it for computing the
eigenvectors of (3) for the Laplacians of two graphs:

1. Constant Laplacian: The nodes of the graph comprise
a 125� 125 grid with edges only between nearest
neighbors, all having the same constant weight;

hence the matrix A corresponds to the discretization
of the 2D differential Laplacian.

2. Random Laplacian: The same, except that the weights
are random numbers, each drawn from a uniform
distribution on the interval ½0; 1�.

The matrix B in both cases is the identity.
For constructing the coarse equations and interpolating

the coarse level solution, two interpolation calibers are used:
caliber of size 2 and caliber of size 4. For caliber of size 2, the
interpolation operator is the classical bilinear stencil and
its adjoint is used for coarsening the equations (i.e.,
restriction). The caliber-2 stencil is illustrated in Fig. 6a.
For the caliber-4 case, the restriction of the current
approximation and the construction of the coarse equations
by Galerkin coarsening are done with the stencil illustrated
in Fig. 6b, whereas the interpolation of the coarse level
solution is actually performed in two steps with the stencil
illustrated in Fig. 6c, namely, the coarse to fine interpolation
is first performed for two types of fine points (red and
green). Second, the value at the third type of points (pink) is
determined by an LSE-based interpolation from fine grid
points. The two-step interpolation of the solution yields
higher accuracy than using the stencil illustrated in Fig. 6b.
For fine boundary points, the caliber-4 stencils (Fig. 6b and
Fig. 6c) are modified so that each fine point is interpolated
noncentrally from four points (e.g., three internal points and
one boundary point) in each relevant direction.

As explained in Section 3 above, a great potential
advantage of the EIS solver is that one can calculate many
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TABLE 1
Average Convergence Factor per Work Unit for Different Problems

Fig. 5. Performance comparison between Lanczos eigensolver and the multilevel eigensolver (to 10�4 residual accuracy): number of data points
versus running time (in seconds) (a) dimensionality reduction, (b) image segmentation, and (c) clustering.
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eigenvectors accurately without actually computing each of
them at the finest level. Here, however, to demonstrate the
obtained accuracy, we do interpolate the coarse EIS vectors
to the fine level and compare them, together with their
corresponding eigenvalues, to the exact fine-level eigenvec-
tors and eigenvalues. We have measured three types of
errors: the relative eigenvalue error, the interpolation error, and
the eigenvector error. The relative eigenvalue error is
measured by:

d
ðkÞ
val ¼

���ðkÞ � �
ðkÞ
Lanc

��
�
ðkÞ
Lanc

; ð19Þ

where �
ðkÞ
Lanc is the kth smallest eigenvalue computed by

Lanczos and �ðkÞ is the kth smallest eigenvalue computed
for our results by using the Rayleigh Quotient

�ðkÞ ¼ ~uðkÞTA~uðkÞ

~uðkÞT ~uðkÞ ; ð20Þ

where ~uðkÞ is the relaxed kth eigenvector approximation
obtained by interpolation of the corresponding coarse level
eigenvector. Note that we have reordered the eigenvectors
so that �ðkÞ are indeed in ascending order, similar to �

ðkÞ
Lanc,

instead of the modified order that sometimes arises at the
coarse level between very close eigenvalues. The interpola-
tion error is given by

d
ðkÞ
intrp ¼

��vðkÞ � PvðkÞc
��; k ¼ 1; . . . ; 100; ð21Þ

where vðkÞ is the kth eigenvector of (3) computed by Lanczos
and vðkÞc is the injection of vðkÞ to the coarse grid (as
explained in Section 3.3). The eigenvector errors are
computed by

d
ðkÞ
lc ¼ ��~uðkÞ � ~vðkÞ

��; k ¼ 3; . . . ; 98; ð22Þ
where

~vðkÞ ¼
X

k�2�i�kþ2

�iv
ðiÞ;

with the coefficients �i that minimize

~uðkÞ �
X

k�2�i�kþ2

�iv
ðiÞ

�����
�����:

The linear combination ~vðkÞ of Lanczos eigenvectors is used
to reduce error components that result from subspaces
containing several eigenvectors with the same eigenvalues,
or from eigenvectors with very close eigenvalues whose
order changes at the coarse level.

In Fig. 7, we show the errors obtained when using the
two-step interpolation (i.e., indirect interpolation) over
using the direct interpolation (with the stencil of Fig. 6c).
As seen, the use of interpolation from nearby fine points
reduces the interpolation error. Figs. 8 and 9 report the errors
for 100 eigenvectors when using caliber of size 2 interpola-
tion versus using caliber of size 4 for interpolation, for the
two types of graph Laplacians, respectively. We have used
the minimal number of TVs and relaxation sweeps to obtain
highest accuracy. Thus, for the caliber of size 2, we used
8 TVs relaxed by 10 sweeps, and for the interpolation with
caliber size 4 we used 16 TVs with 30 relaxation sweeps for
the constant Laplacian, and 12 TVs with 10 relaxation
sweeps for the random Laplacian. Note that the exception-
ally large values seen in the diagrams for some eigenvector
errors are due to eigenvectors whose ordinal number k,
despite the above reordering, is still different from their
original ordinal number at the fine level (due to slight
changes in eigenvalues), and the difference is more than the
two ordinal places taken into account in the definition of ~vðkÞ.

The purpose of the random Laplacian experiment is to
show that the EIS method for calculating many eigenvectors
is not restricted to smooth solutions. This is clearly
demonstrated in the caliber-2 experiment. However, unlike
the constant Laplacian case, in the random case the higher
caliber experiment (caliber-4) does not exhibit any sub-
stantial improvement over the lower caliber experiment.
The reason is obvious: The pair of four collinear points
chosen here for the caliber-4 interpolation does yield a
higher (fourth) order interpolation in the smooth case; any
other, not collinear choice of four points would not so raise
the interpolation order and would not yield substantial
improvements; without collinearity a larger set of inter-
polation points is needed to raise the order. In the random
Laplacian case, collinearity has no particular relevance, so a
much larger set of interpolation points must be used to
achieve the equivalent of a higher order interpolation.
Indeed, the full BAMG scheme can include a procedure to
choose such higher order-yielding sets, based on the size of
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Fig. 6. Restriction and interpolation stencils for 2D grid domain. (a) Caliber-2 interpolation stencil. (b) Caliber-4 restriction stencil. (c) Caliber-4
interpolation stencil. Full black circles correspond to coarse nodes. Empty circles correspond to fine nodes. The stencils are sketched for three
typical grid nodes (green, red, and pink).
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the least squares fit, but such a procedure has not been

constructed here.

Multiclass spectral clustering with many eigenvectors.

Next, we investigate the fast EIS calculation of many

eigenvectors for a model data-analysis problem. We show

in this context that the BAMG interpolation yields signifi-

cantlymore accurate approximations than the classical AMG

interpolation. It is also shown that, even for aggressive
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Fig. 7. Errors comparison for direct interpolation and two-step interpolation for the 2D constant Laplacian with caliber-4 interpolation. Upper row:

direct interpolation. Bottom row: two-step interpolation. (a), (b), and (c): interpolation, eigenvector, and relative eigenvalue errors, respectively.

Fig. 8. Errors for computing the 100 eigenvectors of 2D constant Laplacian. Upper row: caliber of size 2 interpolation. Bottom row: caliber of size 4

interpolation. (a), (b), and (c): interpolation, eigenvector, and relative eigenvalue errors, respectively.
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coarsening, i.e., using significantly less variables at the coarse

level, the BAMG interpolation still yields accurate results.

For these purposes, we use a data set of 2DGaussianmixture

model. The data set contains 50,000 data points drawn from a

set of 100 Gaussian distributions Nið�i; �
2
i IÞ, i ¼ 1; . . . ; 100,

with centers �i ¼ ði1; i2Þ, where i1; i2 ¼ 1; 2; . . . ; 10 and

�i ¼ 0:2. A weighted graph is constructed with the pairwise

similarity weights wij ¼ expð� kXi�Xjk2
�2

Þ, where � ¼ 0:1 and

Xj is among the 30 nearest neighbors of Xi as computed by

the KD-tree algorithm. Since the number of clusters is a priori

known, we have computed a hundred eigenvectors of

AU ¼ �U , where A ¼ ðI �D�1
2WD�1

2Þ and D is the diagonal

matrix dii ¼
P

j wij. The assignment of points to clusters is

based on the multiclass spectral clustering algorithm

suggested in [41].
To demonstrate how accurately many eigenvectors can

be calculated by just one EIS coarsening (and hence,
potentially avoid computing them at the fine level), we
use a single cycle composed of 2-levels. We compare the
performance of our two interpolation schemes: the BAMG
interpolation and the classical AMG interpolation. In both
cases, the coarse variable choice is done according to the
AMG procedure for coarse variable choice described in
Section 3.2. For the BAMG cycle, we construct the
interpolation matrix P (as explained in Section 3.3), and
use it to construct the coarse eigenproblem. After the coarse
problem is solved, P is used to interpolate the coarse
eigenvectors back to the fine level, followed by 10 relaxation
sweeps of the interpolated eigenvectors and the different
error types are measured. In the AMG case, we use the
classical interpolation matrix (constructed as explained in
Section 3.2) instead of fitting an interpolation as in BAMG.
Then the same steps are done as in the BAMG cycle. The

interpolation caliber in each case is 4. For the BAMG
interpolation, the least squares construction employs 6 TVs,
each relaxed by 30 sweeps.

Additionally, for each solver choice we conducted two
experiments, by generating two coarse sets: one by using a
coarsening factor of � ¼ 0:2, yielding a coarse set of size
jCj ¼ 12;908, and the other with a smaller coarsening factor
� ¼ 0:1, yielding jCj ¼ 7;722.

To evaluate the performance of the two interpolations
in terms of accuracy, the average errors dintrp, dlc, and dval
for 1 � k � 100 are reported in Table 2, along with the
size and work parameters of the 2-level cycle. An order
of magnitude improvement is observed for the interpola-
tion error, and one to two orders of magnitude improve-
ment in the eigenvector error and the relative eigenvalue
error, when using the BAMG instead of the classical
AMG interpolation.

The clustering results for both interpolation types are
demonstrated in Fig. 10, where the color coding indicates
the assignment of points to 100 distinct clusters induced by
using the computed eigenvectors. The results demonstrate
that numerically the BAMG interpolation-based eigensolu-
tion is more accurate than the eigensolution obtained with
the AMG classical interpolation. Roughly, the clustering
obtained by both schemes is similar. However, a closer
examination reveals misclassifications in which the cluster-
ing obtained with the classical AMG interpolation manifests
visible intercluster intrusions, a sample of which is zoomed
into in Fig. 10c. As seen in Fig. 10d, such intrusions do not
exist for the clustering induced by the BAMG interpolation-
based eigenvectors.

Fast and accurate computation of a single low eigenvec-

tor. The EIS solver is demonstrated below to accurately
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Fig. 9. Errors of computing the 100 eigenvectors of 2D random Laplacian. Upper row: caliber of size 2 interpolation. Bottom row: caliber of size 4
interpolation. (a), (b), and (c): interpolation, eigenvector, and relative eigenvalue errors, respectively.
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compute a given eigenvector by increasing its weight in the

least squares optimization of (16). For this purpose, a

multicycle 2-level EIS solver involving BAMG interpolation

isperformed.Asdescribed inSection3.3,westart by fitting an

interpolation matrix to random TVs to obtain a first

approximation to the eigenvectors, then the interpolation is

refitted to this current approximationof the eigenvectors, and

the process is repeated in subsequent cycles. The initial

weight of the ith eigenvector is 10�i for 1 � i � 10. Then, to

obtain an accurate approximation for the second eigenvector,

its weight is increased by multiplying it by 100 on each

subsequent cycle while keeping the other weights un-

changed. In each EIS cycle, the interpolation matrix is

recomputed to fit the new eigenvector approximations. The

convergence factor for the second eigenvector is computed

and comparedwith the convergence factor of a FAS two-level

solver with classical AMG interpolation. The comparison is

performed for the eigenproblem involving a 15;625� 15;625

2D constant Laplacian discussed above and for the GMM
clustering eigenproblem. In both examples, the initial BAMG
interpolationwas basedon six random test vectors relaxed by
six relaxation sweeps, and an interpolation caliber of size 2.
As seen in Fig. 11, the EIS solver has reached machine
precision accuracy much faster than the FAS solver with
classical AMG interpolation.

5 COST VERSUS PERFORMANCE OF DIFFERENT

MULTIGRID SOLVERS

The most basic multigrid solver is the Geometric Multigrid
(GMG), which is the cheapest in terms of work: The
problem is defined on a grid for which the intergrid
operators need not be computed at all, the coarse node
selection is based on standard coarsening, and the coarse
equations need not be derived and are as simple (non-
Galerkin) as the fine-grid equations. One step more general,
and correspondingly more expensive, are the GMG solvers
which use Galerkin coarsening, allowing the treatment of
problems with disordered coefficients, still on structured
grids. The next class of multigrid eigensolvers is based on
the algebraic multigrid (AMG) technique [6], which is
designed for unstructured problems. Such a solver, employ-
ing classical AMG interpolation with Galerkin coarsening is
described in Section 3.2 for graph-based eigenproblems.
This solver involves additional work for the construction of
the interpolation operator. The next type of solver involves
the BAMG interpolation that is still more expensive but is
useful for several purposes:
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TABLE 2
Accuracy Comparison for Computing 100 Eigenvectors by a Single Two-Level Cycle

Employing AMG Classical Interpolation and BAMG Interpolation

Fig. 10. Spectral clustering results of a Gaussian Mixture Model (GMM)
containing 50,000 data points organized in 100 Gaussians. The points
are clustered by using 100 eigenvectors of (2). (a) Clustering obtained
with classical AMG interpolation. (b) Clustering obtained with BAMG
interpolation. Each detected cluster is color coded; however, some
neighboring clusters may have a similar color. Arrows identify a region
being zoomed-in. (c) A zoomed-in sample of misclassification in which
the clustering obtained with the classical AMG interpolation manifests
visible intercluster intrusions. (d) The coherent clustering obtained for
the same region with BAMG interpolation.

Fig. 11. Convergence factor comparison between the FAS two-level
solver and the EIS two-level solver. (a) 2D constant Laplacian example.
(b) The GMM example. Arrows indicate the stage at which the related
solver obtained machine precision accuracy of the equation residual.
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1. to obtain higher accuracy that is needed, e.g., for
high order differential equations and for performing
upscaling (once for all coarsening) in linear as well as
in nonlinear problems (see [46]),

2. to obtain higher accuracy for graph problems that are
not local (forwhich classical AMG interpolation fails),

3. to solve systems which are not diagonally dominant,
where classical AMG often requires parameter
tuning to be effective.

As discussed in our context, the EIS solver with BAMG
interpolation has the additional benefits of simultaneously
and inexpensively coarsening/upscalingmany eigenvectors,
and producing a coarse eigenproblem that has the standard
(linear) form of eigenvalue equations (without the extra
affine � term). The beneficial features of the EIS solver require
the extra work of reconstructing the interpolation in every
cycle to fit the current approximation of the solution. As
shown in the example above, for computing a single
eigenvector, a very fast convergence can be obtained but
note that, in this case, the extraworkmaynot alwaysworth it.

6 CONCLUSION

Motivated by the high complexity of spectral data analysis,
efficient multilevel solvers for computing the eigenvectors
of data driven matrices have been presented. The FAS
solver with classical AMG interpolation is designed for
solving large eigenvalue problem for the first few eigen-
vectors. Even the nonoptimized FAS solver has an order of
magnitude improvement in running time when compared
with the commercial Lanczos solver on various data
analysis tasks. Also presented is an EIS solver that has the
advantage of very efficiently computing many eigenvectors,
as required, for example, in multiclass spectral clustering.
The EIS is also demonstrated to compute with high
accuracy and efficiency a specific low eigenvector.

We emphasize that the EIS solver with BAMG interpola-
tion requires a certain amount of work in relaxing the
random test vectors. If just a few low eigenvectors are
desired with a relatively low residual accuracy, then the
same work can be invested through a classical AMG
interpolation-based solver (as our FAS) to obtain a solution
with the same accuracy. Therefore, the choice between the
two solvers should be based on the number of eigenvectors
required and the desired accuracy of the computation.
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