
LECTURE NOTES: ORBIT CLOSURES FOR THE

PSL2(R)-ACTION ON HYPERBOLIC 3-MANIFOLDS

HEE OH

These notes correspond to my lectures which were delivered at the summer
school on Teichmüller theory and its connections to geometry, topology and
dynamics, held in the Fields Institute, Toronto, in August of 2018. The main
goal of the lecture series was to give a self-contained proof of the closed or
dense dichotomy of a geodesic plane in the interior of the convex core in any
convex cocompact rigid acylindrical hyperbolic 3-manifold.

This proof amounts to the classification of orbit closures of the PSL2(R)-
action on the frame bundle of the corresponding hyperbolic 3-manifold as
the title of these lecture notes indicates.

The main theorem that is presented here represents joint work with C.
McMullen and A. Mohammadi ([7], [8]) although the proofs are somewhat
simplified in these notes. I hope these notes will be useful for those who
would like to learn more about homogeneous dynamics in the setting of
hyperbolic manifolds of infinite volume.

1. Lecture I

We will use the upper half-space model for the hyperbolic 3-space

H3 = {(x1, x2, y) : y > 0}, ds =

√
dx2

1 + dx2
2 + dy2

y
.

In this model of the hyperbolic 3-space (H3, ds), a geodesic in H3 is either
a vertical line or a vertical semi-circle and a geodesic plane in H3 is either a
vertical plane or a vertical hemisphere.

The geometric boundary of H3 is given by the Riemann sphere S2 = Ĉ,
when we identify the plane (x1, x2, 0) with the complex plane C.

The group G := PSL2(C) acts on Ĉ by Möbius transformations:(
a b
c d

)
z =

az + b

cz + d
.

This action of PSL2(C) extends to an isometric action on H3 as fol-
lows: each g ∈ PSL2(C) can be expressed as the composition of inversions
InvC1 ◦ · · · ◦ InvCk

where InvC`
denotes the inversion with respect to a circle

C` in Ĉ. If C = {z : |z − z0| = r}, then InvC(z) is the unique point on the
ray {tz : t > 0}, satisfying the equation |z − z0| · | InvC(z)− z0| = r2 for all
z 6= z0, and InvC(z0) =∞. If we set Φ(g) = InvĈ1

◦ · · · ◦ InvĈk
where InvĈ`

1
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Figure 1. Geodesic planes

is the inversion with respect to the sphere Ĉ` in R3 which is orthogonal to
C and Ĉ` ∩ C = C`, then Φ(g) preserves (H3, ds). Moreover the Poincaré
extension theorem says that Φ is an isomorphism between the two real Lie
groups:

PSL2(C) = Isom+(H3),

where the group PSL2(C) is regarded as a 6-dimensional real Lie group and
Isom+(H3) denotes the group of all orientation preserving isometries of H3

(cf. [9]).

Definition 1.1. A torsion-free discrete subgroup of PSL2(C) is called a
Kleinian group.

Any complete hyperbolic 3-manifold M can be presented as a quotient

M = Γ\H3

of the hyperbolic 3-space by a Kleinian group Γ, which we fix from now on
together with the quotient map

π : H3 →M = Γ\H3.

Definition 1.2. A geodesic plane P in M is the image of a geodesic plane in
H3 under π. Equivalently, P is a totally geodesic immersion of a hyperbolic
plane H2 in M .

The question we address is that:

• can we classify all possible closures of a geodesic plane P in M?

In other words, how can a geodesic plane P = π(H2) be sitting inside
a hyperbolic 3-manifold M? In the universal cover H3, there is nothing
blocking it, so H2 is sitting very comfortably in H3, but in general, due to
the symmetries coming from Γ, P = π(H2) has to be folded in a non-trivial
way and its closure may be quite complicated.
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Figure 2. Closed or dense

Nonetheless, when M has finite volume, we have the following closed or
dense dichotomy, due to Ratner [10] and Shah [11] independently.

Theorem 1.3 (Ratner, Shah). If Vol(M) <∞, then any geodesic plane P
is either closed or dense in M .

In particular, the closure of P is always a submanifold of M .

This strong topological rigidity theorem applies only to countably many
hyperbolic 3-manifolds since Mostow rigidity theorem implies that there are
only countably many hyperbolic manifolds of finite volume, up to an isome-
try. Therefore it is quite natural to investigate this question for hyperbolic
3-manifolds of infinite volume.

The limit set of Γ and the convex core of the manifold M play important
roles in this question. From now on, we assume that Γ is non-elementary,
in other words, Γ has no abelian subgroup of finite index.

Via the Möbius transformation action of Γ on Ĉ, we define the following
notion:

Definition 1.4. The limit set Λ ⊂ Ĉ of Γ is the set of all accumulation
points of Γ(z) for z ∈ Ĉ.

It is easy to check that this definition is independent of the choice of z.
If Vol(M) < ∞, then Λ = Ĉ. In general, Λ may be a fractal set with

Hausdorff dimension strictly smaller than 2.

Definition 1.5. The convex core of M is the convex submanifold of M given
by

core(M) := Γ\hull(Λ) ⊂M
where hull(Λ) ⊂ H3 is the smallest convex subset containing all geodesics
connecting two points in Λ.

Definition 1.6. We say M or Γ is convex cocompact, if the convex core of
M is compact.

In the following, we assume

Γ is convex cocompact and Zariski dense.

We set M∗ to be the interior of core(M). As Γ is non-Fuchsian, M∗ 6= ∅.
Obviously there are two kinds of geodesic planes:
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Figure 3. The interior of the core: M∗

• P with P ∩M∗ 6= ∅,
• P with P ∩M∗ = ∅.

The study of these two types of planes is expected to be different; for
instance, if a plane P does not intersect M∗, then the closure of P will
remain in the end component M−M∗ and hence such P will never be dense
in M .

We will focus on the planes which intersect M∗, and study their closures
in M∗.

Definition 1.7. A geodesic plane in M∗ is a non-empty intersection of a
geodesic plane P of M and M∗:

P ∗ = M∗ ∩ P.

We note that a geodesic plane P ∗ is always connected: if P = π(H2), then
P ∗ is covered by the convex subset H2 ∩ hull(Λ).

Now, we ask:

• what are the possibilities for the closure of P ∗ in M∗?

It turns out that the answer to this question depends on the topology of
the hyperbolic 3-manifold M . We are able to give a complete answer to this
question for any convex cocompact acylindrical hyperbolic 3-manifold.

For a convex cocompact 3-manifold, the acylindrical condition is a topo-
logical one; its core has incompressible boundary and has no essential cylin-
der. Instead of defining these terminologies, I will give an equivalent def-
inition of the acylindricality in terms of the limit set, as that is the most
relevant definition to our proof.

Definition 1.8. A convex cocompact hyperbolic 3-manifold M = Γ\H3 of
infinite volume is acylindrical if its limit set is a Sierpinski carpet, that is,

S2 − Λ =
⋃
Bi
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Figure 4. Limit sets of convex cocompact acylindrical groups

is a dense union of Jordan disks Bi’s with mutually disjoint closures and
with diam(Bi)→ 0.1

By a theorem of Whyburn [12], any two Sierpinski carpets are homeo-
morphic to each other.

Example 1.1. If M is convex cocompact with ∂(core(M)) totally geodesic,
then its limit set is a Sierpinski carpet and the components of S2 − Λ are
round disks, corresponding to the lifts of the geodesic boundary of core(M).

The double of the convex core of M is a closed hyperbolic 3-manifold
which obeys Mostow rigidity. For this reason, we refer to such a manifold a
rigid acylindrical manifold.

We remark that any convex cocompact acylindrical hyperbolic 3-manifold
is quasi-isometric to a rigid one [6] and that the acylindricality condition on
a convex cocompact hyperbolic 3-manifold M depends only on the topology
of M , that is, any convex cocompact hyperbolic 3-manifold, which is home-
omorphic to a convex cocompact acylindrical hyperbolic 3-manifold is also
acylindrical (cf. [5] for references).

Theorem 1.9 (McMullen-Mohammadi-O.). Let M be convex cocompact
and acylindrical. Any geodesic plane P ∗ in M∗ is either closed or dense.

If M has finite volume, then M∗ = M ; so this is a generalization of
Ratner-Shah Theorem 1.3.

Theorem 1.9 is false in general without the acylindricality condition.

1A Jordan disk is a topological disk whose closure is homeomorphic to a closed unit
disk
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Figure 5. Bending deformation

Example 1.2. Consider a Fuchsian 3-manifold M which can be written as
M = S×R in cylindrical coordinates where S is a closed hyperbolic surface of
genus at least 2. If γ ⊂ S is a geodesic and P is a geodesic plane orthogonal
to S with P∩S = γ, then P ' γ×R. Therefore if we take a geodesic γ whose
closure γ is wild, then P is very far from being a submanifold. To be fair,
we have M∗ = ∅ in this case as M is Fuchsian. However we can use a small
bending deformation of M to obtain a quasi-Fuchsian manifold in which the
same phenomenon persists. We realize S by Γ\H2 where Γ < PSL2(R) is
the fundamental group of S, and M by Γ\H3. Let γ0 ∈ Γ be a primitive
hyperbolic element representing a separating simple closed geodesic β in
S. If S1 and S2 are components of S − β, then Γ can be presented as the
amalgamated free product Γ1 ∗〈γ0〉 Γ2 where π1(Si) ' Γi for i = 1, 2.

The centralizer of γ0 in PSL2(C) is the rotation group PO(2) = {mθ : θ ∈
S1}. For each mθ ∈ PO(2), Γ1 ∩m−1

θ Γ2mθ = 〈γ0〉 and Γ is isomorphic to

the group Γθ := Γ1 ∗〈γ0〉 m
−1
θ Γ2mθ.

If θ is sufficiently small, then Γθ is a discrete subgroup of PSL2(C), Mθ :=
Γθ\H3 is a quasi-Fuchsian manifold and there is a path isometric embedding
of S into ∂ core(Mθ) which is identity on S1,

Now let γ ⊂ S1 be a geodesic whose closure γ is disjoint from an ε-
neighborhood of β. Now if we set S1(ε) := S1 − {ε-neighborhood of β},
then for ε > 0 small enough, S1(ε) × R imbeds isometrically into Mθ and
P := γ × R ⊂ S1(ε) × R is a geodesic plane in Mθ such that P ' γ × R.
Therefore by choosing γ whose closure is wild, we can obtain a geodesic
plane P meeting M∗θ with wild closure (cf. [7] for more details).

This example demonstrates that we cannot expect any reasonable clas-
sification for the closure of a plane in a completely general hyperbolic 3-
manifold.

In order to study the closure of a plane in M , we lift this problem to the
frame bundle of M which is a homogeneous space Γ\G, admitting the frame
flow as well as the horocyclic flow.

Note that G/PSU(2) can be identified with H3, G/PSO(2) with the unit
tangent bundle T1(H3) and G with the oriented frame bundle F(H3) (see
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Figure 6. Frame bundle

Figure 7). For each oriented plane P , the set of frames (e1, e2, e3) based in
P such that e1 and e2 are tangent to P and e3 is given by the orientation of
P is an PSL2(R)-orbit. Conversely, for any frame g = (e1, e2, e3) ∈ G, the
orbit gPSL2(R) consists of such frames lying on the unique oriented plane
P given by e3.

As F(M) = Γ\G, the classification of PSL2(R)-orbit closures in Γ\G will
give us the desired classification of closures of planes. By a slight abuse of
notation, we will denote by π both the base point projection maps F (H3)→
H3 and F (M)→M in the following.

As we are interested in planes in M∗, we define the following H :=
PSL2(R)-invariant subset in Γ\G lying above M∗:

F ∗ :=
⋃
{xH ⊂ Γ\G : π(xH) ∩M∗ 6= ∅}.

When Γ is a lattice, we have F ∗ = Γ\G. In general, F ∗ is an open subset
of Γ\G foliated by H-orbits, but not admitting any transitive action of a
subgroup of G.

Theorem 1.10 (H-orbit closure theorem). Let Γ be a convex cocompact
acylindrical group. For any x ∈ F ∗, xH is either closed or dense in F ∗.

Since M∗ is an open subset of π(F ∗), it follows that any P ∗ ⊂ M∗ is
closed or dense (Theorem 1.9).

We will state an equivalent version to Theorem 1.10 based on the following
observation:

Description of H-orbit closures in Γ\G
= Description of Γ-orbit closures in G/H

We also note that

G/H = C := the space of all oriented circles in S2
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Figure 7. F ∗ and C∗

Now the circles which correspond to H-orbits in F ∗ are the so-called
separating ones:

C∗ := {C ∈ C : C separates Λ}
where the meaning of C separating Λ is that both open disks in S2 − C
intersect Λ non-trivially.

We note that
Γ\C∗ = F ∗/H

where we regard C∗ as a subset of G/H.

Theorem 1.11 (Γ-orbit closure theorem). For any C ∈ C∗, the orbit ΓC is
either closed or dense in C∗.

2. Lecture II

We set G = PSL2(C) and let Γ < G be a convex cocompact Zariski dense
subgroup of G. Let H = PSL2(R). In studying the action of H on Γ\G, the
following subgroups play crucial roles.

Let

A :=

{
at =

(
et/2 0

0 e−t/2

)
: t ∈ R

}
and

U :=

{
ut =

(
1 t
0 1

)
: t ∈ R

}
which are subgroups of H.

The right translation action of A on Γ\G is the frame flow: if g =
(e1, e2, e3), then gat for t > 0 is the frame given by translation in direc-
tion of e1 by hyperbolic distance t. We define

g+ = g(∞) ∈ Ĉ and g− = g(0) ∈ Ĉ;

they are the forward and backward end points of the geodesic given by e1

respectively.
The right translation action of U on Γ\G is the horocyclic action: if

g = (e1, e2, e3), then gut for t > 0 is the frame given by translation in the
direction of e2 by Euclidean distance t. Note that both gA and gU have their
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Figure 8. Orbits under A,U and H

trajectories on the plane P = π(gH). In particular, π(gU) is a Euclidean
circle lying on P tangent at g+ (see Figure 9).

We also define the 2-dimensional horospherical subgroup

N =

{
ut =

(
1 t
0 1

)
: t ∈ C

}
and a 1-dimensional

V = {ut : t ∈ iR}.
The trajectory of gN in H3 is a Euclidean sphere tangent to Ĉ at g+ and

gN consists of frames (e1, e2, e3) whose last two vectors e2, e3 are tangent to
π(gN).

Note that

N = {g ∈ G : a−tgat → e as t→ +∞}
that is, N is the contracting horospherical subgroup. Geometrically this
means that π(gNat) for t > 0 is a Euclidean sphere based at g+ but shrunk
toward g+ by the hyperbolic distance t. And the normalizer of U is equal
to NA, and the centralizer of U is N .

We would now like to explain the main strategy of our proof. Recall that
Ratner and Shah proved the following independently:

Theorem 2.1. If Γ\G is compact, then for any x ∈ Γ\G, xH is either
closed or dense in Γ\G.

Ratner’s proof [10] relies on her measure classification theorem for mea-
sures invariant under U , whereas Shah’s proof [11] is purely topological. In
the case when Γ\G has infinite volume, first of all the measure classification
of U invariant Radon measures is far from being known. Secondly, even if
we had such a classification, it is not clear at all how the measure classifica-
tion would be helpful in our orbit closure classification problem. The main
issue is that it does not seem possible to define a U -invariant measure on the
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closure of an H-orbit, as the usual averaging argument along a U orbit will
produce only the zero measure unless the H-orbit in concern is bounded.

Henceforth, we follow the strategy of Shah’s topological proof, most of
whose ingredients can be traced back to Margulis’ proof of Oppenheim con-
jecture [4]. The proof breaks into the following two steps:

(1) Every N -orbit is dense in Γ\G, that is, the N -action on Γ\G is
minimal.

(2) If xH is not closed, then its closure xH contains an N orbit.

The first step is an easy consequence of a topological mixing of the A-
action: for any open subsets O1, O2 in Γ\G, O1at∩O2 6= ∅ for all sufficiently
large t > 1. The second step uses U -minimal sets and unipotent dynamics.

Now, unless Γ < G is a lattice, the N -action is not minimal in Γ\G.
However there is a canonical closed N -invariant subset in Γ\G in which N
acts minimally. It is given as

RF+M = {[g] ∈ Γ\G : g+ ∈ Λ}.
Since Λ is Γ-invariant, the condition g+ ∈ Λ for [g] is well-defined.
Since (gAMN)+ = g+, the set RF+M is AMN -invariant. The Γ-

minimality of Λ implies that RF+M is an AMN -minimal set.

The N-minimality of RF+M . The following theorem is originally due to
Ferte [2]:

Theorem 2.2. For Γ convex cocompact and Zariski dense, the N -action is
minimal on RF+M .

The following set is called the renormalized frame bundle:

RFM = {[g] ∈ Γ\G : g± ∈ Λ}.
As RFM projects into the convex core of M , RFM is a compact A-invariant
subset.

Theorem 2.2 can also be deduced from the topological mixing of the A-
action on RFM, which was obtained in [13].

Finding an N-orbit inside the closure xH
Define

FΛ = {[g] ∈ Γ\G : ∂(gH) ∩ Λ 6= ∅}
and

F ∗ = {[g] ∈ FΛ : ∂(gH) separates Λ}
where ∂(gH) denotes the boundary circle of the geodesic plane π(gH) ⊂ H2.
Note that F ∗ is a dense open subset of FΛ.

When the limit set Λ is connected, for instance, when Γ is acylindrical,
F ∗ is equal to the following:

F ∗ = {[g] ∈ Γ\G : π([g]H) ∩M∗ 6= ∅}
and consequently F ∗ is open in Γ\G (as M∗ is open). We observe that

(RF+M)H = FΛ.
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Therefore, we may break our proof of Theorem 1.10 into the following
two steps of which the first step has already been given:

(1) Every N orbit is dense in RF+M .
(2) If xH is not closed in F ∗, xH contains an N -orbit in RF+M .

We now aim to prove the following:

Proposition 2.3. Let Γ be acylindrical and x ∈ F ∗. If xH is not closed in
F ∗, then

xH ⊃ x0N

for some x0 ∈ RF+M , and consequently xH = FΛ.

Unipotent blowup. The proof of Proposition 2.3 uses the following propo-
sition which we call unipotent blowup. In order to motivate its formulation,
here are a few words on how we will be using it: if the orbit xH is not closed,
there has to be an accumulation of an infinite sequence xhn ∈ xH on some
point z ∈ xH − xH. Writing xhn = zgn, we have gn → e in G − H. We
then apply the ut-flow to two nearby points z and zgn and study how the
orbits zut and zgnut diverge from each other. Since zgnut = zut(u−tgnut),
u−tgnut is the difference between zut and zgnut.

Provided gn is not in the centralizer of U , that is, the subgroup N , the
elements u−tgnut will grow bigger and bigger as t → ∞, for each fixed
n. Hence, by passing to a subsequence, we can find tn so that u−tngnutn
converges to a non-trivial element, say, g, which necessarily lies in the nor-
malizer of U . Provided zutn converges to some element, say, z0, then we get
z0gU = z0Ug ⊂ xH. As long as g does not belong to U , this information
that we get some non-trivial translate of a U orbit inside the closure of xH
is a useful one. However the limiting element g may lie in U in general. The
first part of the following proposition says that we can do the time change
in the parameter t to get g outside of U , that is, there is a sequence sn
(depending on tn) such that usngnutn converges to g ∈ N(U) \ U . Noting
that zutn = (zu−sn)usngnutn , we will get (lim zu−sn)g inside X, provided
that lim zu−sn exists.

When Γ\G is compact, the limit lim zu−sn always exists, up to passing
to a subsequence. But in the infinite volume case, lim zu−sn may not exist.
Indeed, for any compact subset Ω of Γ\G and for almost all z ∈ Γ\G (with
respect to any reasonable measure on Γ\G), the Lebesque measure of the
return time {t ∈ [−T, T ] : zut lies in Ω} is o(T ). Note that since the scale
of sn is dictated by the element gn, which we won’t have a control over, we
would need a recurrence of zut to a compact subset for every time scale of
t, up to a fixed multiplicative constant.

More precisely, we will need the return of zut into a fixed compact subset
for a K-thick subset of R:

Definition 2.4. For a fixed K > 1, a subset T ⊂ R is K-thick if for any
s > 0,

(±[s,Ks]) ∩ T 6= ∅.
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Figure 9. Divergence of U -orbits of two nearby points

Note that if Tn is K-thick, so is lim supTn. If T is K-thick, so is −T .

Proposition 2.5 (Unipotent blowup). (1) If gn → e in G − AN , then
for any neighborhood O of e, there exist tn, sn ∈ R such that

utngnusn → g ∈ (AV − {e}) ∩O.

(2) If gn → e in G− V H, then for any neighborhood O of e, there exist
tn ∈ R and hn ∈ H such that

utngnhn → g ∈ (V − {e}) ∩O.

Moreover, for any fixed K > 1, given a sequence Tn ⊂ R of K-thick sets,
we can arrange tn ∈ Tn in both statements.

Proof. The polynomial behavior of the ut-action is used in the proof. We
will provide a proof of the statement (2), and refer to [7] for the proof
of (1), which is similar to that of (2), but slightly more technical due to
the time change map. The proof of (2) involves only the conjugation by
ut. It is because we are allowed to use hn in the statement, which implies
that we can assume log gn lies in the orthogonal complement h⊥ of the Lie
algebra h of H. Then the conjugation of gn by ut remains in exp(h⊥). Since
exp(h⊥) ∩N(U) ⊂ V , we will get g ∈ V .

More precisely, we have Lie(G) = h ⊕ ih where Lie(H) = h consists of
trace zero matrices. Every element g ∈ G sufficiently close to the identity
e can be written as rh where r ∈ exp(ih) and h ∈ H. By replacing gn by
gnhn for a suitable hn ∈ H, we may assume without loss of generality that

gn = exp(iqn) for qn =

(
an bn
cn −an

)
→ 0.
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Since gn /∈ V H, it follows that cn 6= 0 or cn = 0, an 6= 0. Now utgnu−t =
exp(iutqnu−t) and

utqnu−t =

(
an + cnt bn − 2ant+ cnt

2

cn −an − cnt

)
.

Since cn 6= 0 or cn = 0, an 6= 0, the function Pn(t) := bn − 2ant + cnt
2 is a

non-constant polynomial of t of degree at most 2 and Pn(0)→ 0. Fix ε > 0
so that the ε-neighborhood of e is contained in O. Let tn ∈ R be such that
tn := sup{t > 0 : |Pn[−t, t]| ≤ ε}. This means

max |Pn(±tn)| = ε = max
s∈[−|tn|,|tn|]

|Pn(s)|.

Assume |Pn(tn)| = ε. (The case |Pn(−tn)| = ε can be treated similarly).
Since qn → 0, it follows that tn → ∞. Since Pn(tn) = tn(cntn − 2an) + bn

is bounded, we must have cntn → 0. Therefore utnqnu−tn →
(

0 β
0 0

)
for

β ∈ {±ε}, by passing to a subsequence. Hence utngnu−tn converges to some
g = exp(iq) ∈ V ∩O.

Now suppose that a sequence Tn of K-thick subsets is given. Then by
Lemma 2.6 below, there exist c = c(K) > 0 and t̃n ∈ [−|tn|, |tn|] ∩ Tn such
that

cε ≤ |Pn(t̃n)| = max
s∈[−|tn|,|tn|]∩Tn

|Pn(s)| ≤ ε.

Then the above argument shows that ut̃nqnu−t̃n converges to some non-
trivial g ∈ V ∩O, as desired. �

Lemma 2.6. Let K > 1 and d ∈ N be given. There exists c = c(K, d) > 0
such that for any symmetric interval I = [−s, s], any K-thick set T and any
polynomial P of degree at most d,

c ·max
t∈I
|P (t)| ≤ max

t∈T∩I
|P (t)|.

Proof. Note that the statement is invariant under rescaling of t as well as
a multiplication of P by a real number. Therefore it suffices to prove the
lemma for I = [−1, 1] and for the family P of polynomials P of degree at
most d satisfying maxx∈I |P (x)| = 1. We will use the fact that P is compact.

Suppose that the claim does not hold. Then there exist a sequence of
polynomials Pm ∈ P and a sequence of K-thick sets Tm such that as m→∞,

max
Tm∩I

|Pm(x)| → 0.

Now a sequence of K-thick sets Tm converge to a K-thick set, say, T∞ and
Pm converges to a polynomial P∞ ∈ P, by passing to a subsequence. Then
we get maxT∞∩I |P∞(x)| = 0. Since T∞ ∩ I is an infinite set, this means
P∞ = 0. This is a contradiction to maxI |P∞(s)| = 1. �
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3. Lecture III

We continue the notation G = PSL2(C) and H = PSL2(R) and let Γ < G
a convex cocompact Zariski dense subgroup.

I plan to give a complete proof of Proposition 2.3 for the rigid acylindrical
case.

As mentioned before, the main difficulty in carrying out unipotent dynam-
ics in an infinite volume space Γ\G is the lack of the recurrence of U -orbits
to a compact subset. And this is precisely where the topology of the man-
ifold M = Γ\H3 comes into the picture. When M is rigid acylindrical, we
show that for any x ∈ RFM, the return time t ∈ R such that xut ∈ RFM is
K-thick for some uniform K > 1, depending only on M .

We will use the following geometric fact for a rigid acylindrical manifold
M : if we write S2 − Λ =

⋃
Bi where Bi’s are connected components which

are round disks, then

(3.1) inf
i 6=j

d(hull(Bi), hull(Bj)) ≥ ε0

where 2ε0 is the systol of the double of the convex core of M . This follows be-
cause a geodesic in H3 which realizes the distance dij = d(hull(Bi), hull(Bj))
becomes the half of a closed geodesic in the double of core(M).

Proposition 3.1. Let M be rigid acylindrical. There exists K > 1 such
that for all x ∈ RFM,

T (x) := {t ∈ R : xut ∈ RFM}
is K-thick.

Proof. For ε0 > 0 given by (3.1), we set K > 1 so that

dH2(hull(−K,−1),hull(1,K)) = ε0/2;

since lims→∞ dH2(hull(−s,−1),hull(1, s))→ 0, such K > 1 exists.
Since z 7→ tz is a hyperbolic isometry in H2 for any t > 0, we have

dH2(hull(−Kt,−t), hull(t,Kt)) = ε0/2

for any t > 0.
We now show T (x) is K-thick for x ∈ RFM. It suffices to show the claim

for x = [g] where g = (e1, e2, e3) is based at (0, 0, 1) with e2 in the direction
of the positive real axis and g+ = 0, g− = ∞ ∈ Λ. Note that gut ∈ RFM if
and only if t = (gut)

− ∈ Λ and hence

T (x) = R ∩ Λ.

If T (x) does not intersect [−Kt,−t]∪[t,Kt] for some t > 0, then the intervals
[−Kt,−t] and [t,Kt] must lie in different Bi’s, since 0 ∈ Λ separates them
and Bi’s are convex. Hence

d(hull(−Kt,−t), hull(t,Kt)) = ε0/2 ≥ d(hull(Bi),hull(Bj)) ≥ ε0.
This contradicts the choice of K.

�
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Relative U-minimal sets. In the rest of this lecture, we just assume that
Γ is convex cocompact and Zariski dense.

We suppose that we have a compact A-invariant subset

R ⊂ RFM

such that for any x ∈ R,

T (x) := {t ∈ R : xut ∈ R}
is K-thick for some fixed K > 1 independent of x ∈ R.

Let X be a closed H-invariant subset intersecting R. For instance X =
xH for some x ∈ R.

Definition 3.2. A closed U -invariant subset Y ⊂ X is called U -minimal
with respect to R, if Y ∩R 6= ∅ and yU is dense in Y for every y ∈ Y ∩R.

By Zorn’s lemma, X always contains a U -minimal subset with respect to
R.

By a one-parameter semisubgroup of G, we mean a semigroup of the form
{exp(tξ) : t ≥ 0} for some ξ ∈ Lie(G).

Lemma 3.3 (Translates of Y inside of Y ). Let Y ⊂ X be a U -minimal set
with respect to R. Then

Y L ⊂ Y
for some one-parameter semigroup L < AV .

Proof. It suffices to find qn → e in AV such that Y qn ⊂ Y . It is an exercise
to show the following: if qn = exp(ξn) for ξn ∈ Lie(G) and ξ∞ is the limit
of ‖ξn‖−1ξn, then Y L ⊂ Y where L = {exp(tξ∞) : t ≥ 0}.
Step 1: There exists gn → e in G−U such that y0gn ∈ Y for some y0 ∈ Y ∩R.
We will use the fact that there is no periodic U -orbit in Γ\G due to our
assumption that Γ is convex cocompact. Take any y ∈ Y ∩R and any tn →∞
in T (y0) so that yutn converges to some y0 ∈ Y ∩R. Write yutn = y0gn for
gn ∈ G. Then gn → e in G−U , because if gn were in U , then y0 ∈ yU , and
hence yu = y for some non-trivial u ∈ U . This yields a contradiction.
Step 2(i): If gn ∈ AN , by modifying gn with elements of U , we may assume
gn ∈ AV , and get y0gn ∈ Y . Since gn ∈ N(U) and y0 ∈ Y ∩ R, we get
y0Ugn = y0gnU ⊂ Y and hence y0Ugn = Y gn ⊂ Y .
Step 2(ii): If gn /∈ AN , then by the unipotent blowup Proposition 2.5(1),
for any neighborhood O of e, there exist tn ∈ −T (y0) and sn ∈ R such that
utngnusn converges to some q ∈ (AV − {e}) ∩ O. Since y0u−tn ∈ R and R
is compact, y0u−tn converges to y1 ∈ Y ∩ R, by passing to a subsequence.
Therefore

y0usn = (y0u−tn)(utngnusn)→ y1q ∈ Y.
As y1 ∈ Y ∩ R, it follows Y q ⊂ Y . Since such q can be found in any
neighborhood of e, this finishes the proof.

�

We leave it as an exercise to show the following:
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Lemma 3.4. A one-parameter semi-subgroup L < AV is one of the follow-
ing form:

V+, vA+v
−1, A+

for some non-trivial v ∈ V , where V+ and A+ is a one-parameter semisub-
group of V and A respectively.

When L = V+ or vA+v
−1 for a non-trivial v ∈ V , Lemma 3.3 produces

translates Y L in Y in directions transversal to H, which is a new infor-
mation! When L = A+, Y A+ ⊂ Y ⊂ X does not appear to be a useful
information as A ⊂ H. However we will be able to combine that informa-
tion with the following lemma to make it useful.

Lemma 3.5 (One translate of Y inside of X). Let Y ⊂ X be a U -minimal
set with respect to R such that

y0gn ∈ X
for some y0 ∈ Y ∩R and for some gn → e in G−H. Then

Y v ⊂ X
for some v ∈ V − {e}.

Proof. If gn = vnhn ∈ V H, then vn 6= e as gn /∈ H. Hence y0vn ∈ X,
implying that Y vn ⊂ X as desired.

If gn /∈ V H, we use the unipotent blowup Proposition 2.5(2) to get tn ∈
−T (y0) and hn ∈ H so that utngnhn converges to some non-trivial v ∈ V .
Hence by passing to a subsequence, y0gnhn = y0u−tn(utngnhn) converges to
an element of the form y1v for some y1 ∈ Y ∩ R, as y0u−tn ∈ Y ∩ R and
v ∈ V − {e}. Therefore Y v ⊂ Y as desired. �

4. Lecture IV

In this last lecture, we will now prove the following Proposition 2.3, and
hence Theorem 1.10, for the rigid acylindrical case:

Proposition 4.1. Let Γ be rigid acylindrical and x ∈ F ∗. If xH is not
closed in F ∗, then

xH ⊃ x0N

for some x0 ∈ RF+M .

Since U ⊂ H, it suffices to find an orbit of V inside the closure of xH.
The following observation shows that it suffices to find an orbit of a point in
F ∗∩RF+M under an interval of V containing 0. We write VI = {uit : t ∈ I}
for any subset I ⊂ R.

Lemma 4.2. Let X = xH for x ∈ RFM. If

X ⊃ x0VI

for x0 ∈ F ∗ ∩ RF+M and an interval I containing 0, then

X ⊃ z0N
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for some z0 ∈ RFM, and hence X = FΛ.

Proof. We will use the following two facts:

(1) For any z ∈ F ∗ ∩ RF+M , zU ∩ RFM 6= ∅.
(2) F ∗ is open in FΛ.

The first fact is equivalent to the statement that for any circle C separating
Λ, C ∩ Λ contains at least 2 points.

Without loss of generality, we may assume I = [0, s] for some s > 0. We
write vt := uit. Since x0 ∈ F ∗ ∩RF+M , x0vε ∈ F ∗ for some small 0 < ε < s
by (1) above.

By (2), there exists x1 ∈ x0vεU ∩ RFM. Hence x1V[−ε,s−ε] ⊂ X. Since
atvsa−t = vets, and RFM is a compact A-invariant subset, we can now take a
sequence atn →∞ in A so that a−1

tn V[−ε,s−ε]atn → V and x1atn → z0 ∈ RFM.
As

x1V[−ε,s−ε]atn = x1atn(a−1
tn V[−ε,s−ε]atn) ⊂ X

we obtain

z0V ⊂ X
as desired. �

Proof of Proposition 4.1 We now begin the proof of Proposition 4.1. Let
x ∈ F ∗ be such that xH is not closed in F ∗. We set

X := xH.

We break the proof of Proposition 4.1 into two cases depending on the
compactness of the following set

R := X ∩ RFM∩F ∗.

We will show that R is always non-compact by showing the following
proposition (note that X = FΛ implies R = F ∗ ∩ RFM, which is not com-
pact):

Proposition 4.3. If R := X ∩ F ∗ ∩ RFM is compact, then X = FΛ.

Proof. Observe that R is then a compact A-invariant subset of RFM such
that for any x ∈ R,

T (x) = {t : xut ∈ R} = {t : xut ∈ RFM}

is K-thick.

Step 1: We claim that X contains a U -minimal subset Y with respect to
R such that y0gn ∈ X for some y0 ∈ Y ∩ R and gn → e in G − H. Note
that the claim about y0 is equivalent to the non-closedness of X − y0H. We
divide our proof into two cases:

Case (a). Suppose that xH is not locally closed, i.e., X − xH is not closed.
In this case, any U -minimal subset Y ⊂ X with respect to R works.
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If Y ∩R ⊂ xH, then choose any y0 ∈ Y ∩R; then xH−y0H = xH−xH is
not closed, which implies the claim. If Y ∩R 6⊂ xH, choose y0 ∈ (Y ∩R)−xH.
Then xH − y0H contains xH, and hence cannot be closed.

Case (b). Suppose that xH is locally closed. Then X − xH is a closed
H-invariant subset and intersects R non-trivially, since X −xH contains an
H-orbit inside F ∗ (since xH is not closed in F ∗) and any H-orbit in F ∗

contains an RFM point. Therefore X − xH contains a U -minimal set Y
with respect to R. Then any y0 ∈ Y ∩ R has the desired property; since
y0 ∈ X−xH, there exists hn ∈ H such that xhn → y. If we write xhn = ygn,
then gn → e in G−H, since y /∈ xH.

Step 2: We claim that X contains x0VI for some x0 ∈ F ∗ ∩RF+M and for
an interval I containing 0; this finishes the proof by Lemma 4.2.

Let Y ⊂ X be given by Step (1). Then by Lemmas 3.3 and 3.5, we have

Y L ⊂ Y and Y v0 ⊂ X
where L is one of the following: V+, vA+v

−1 or A+ for some v ∈ V , and
v0 ∈ V − {e} (here V+ and A+ are one-parameter semisubgroups of V and
A respectively).

Case (a). When L = V+, the claim follows from Lemma 4.2.

Case (b). If L = vA+v
−1 for a non-trivial v ∈ V , then

X ⊃ Y (vA+v
−1)A.

Since vA+v
−1A contains VI for some interval I containing 0, the claim fol-

lows from Lemma 4.2.

Case (c). If L = A+, we first note that Y A ⊂ Y ; take any sequence an →∞
in A+, and y0 ∈ Y ∩R. Then y0an ∈ Y ∩R converges to some y1 ∈ Y ∩R.
Now lim sup a−1

n A+ = A. Therefore Y ⊃ y1A, and hence Y ⊃ Y A, using
y1U = Y .

Therefore Y ⊃ Y A and hence

X ⊃ Y v0A ⊃ Y Av0A ⊂ Y V+

as desired. �

It now remains to deal with the case when R = X∩RFM∩F ∗ is not com-
pact. Since X ∩RFM is compact, this situation arises when some points in
R accumulate on the boundary of F ∗. In order to understand the situation,
we need to understand the structure of the boundary of F ∗, and it is mainly
in this step where the geometric structure of a rigid acylindrical manifold
plays an important role.

We will call z = [g] a boundary frame if ∂(zH), more precisely, the
boundary of the plane π(gH), is equal to the circle ∂(Bi) for a component
Bi of S2−Λ. We will denote by BFM the collection of all boundary frames.
For z = [g] ∈ BFM, zH is compact, as π(gH) lies in the boundary of the
core of M .
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Figure 10. Planes in rigid acylindrical manifolds

We observe:

(1) FΛ − F ∗ ⊂ BFM ·V ; and
(2) (FΛ − F ∗) ∩ RFM ⊂ BFM .

It is only in the following lemma where we use the main feature of the
rigid structure of Γ, which is that the boundary of the core of M is a compact
geodesic surface;

Note that the stabilizer of Bi in G is isomorphic to PSL2(R) and the
stabilizer of Bi in Γ is cocompact in PSL2(R) (first note that Γ(B) is locally
finite, i.e., ΓH is closed. As (Γ ∩H)\H lies above the boundary of the core
of M , it is compact.

Let Z̃ = ∪ziHV+H where V+ is so that π(Z) does not meet the interior

of the core of M . We note that Z̃ ∩ RFM = ∪ziH.
In the following lemma, we use the following classical theorem of Hedlund

[3]: if xH is compact, then every U orbit is dense in xH.

Lemma 4.4. If X ∩ F ∗ contains z0v for some z0 ∈ BFM and v ∈ V − {e},
then X = FΛ.

Proof. Since z0Uv ⊂ X, it follows from the aforementioned theorem of Hed-
lund that z0U ⊃ z0A. So we get z0AvA ⊂ X and hence

z0V+ ⊂ X
for a semigroup V+ of V containing v. Now z0V = (z0v)(v−1V+).

Since z0v ∈ F ∗ ∩ RF+M by the assumption, and v−1V+ contains VI for
some interval I containing 0, the claim follows from Lemma 4.2. �

Proposition 4.5. Suppose that R = X ∩ F ∗ ∩RFM is non-compact. Then

X = FΛ.

Proof. By the assumption there exists xh′n ∈ R converging to z ∈ X ∩
RFM∩(FΛ − F ∗). It follows that z ∈ BFM. Writing xh′n = zgn, we have
gn → e in G−H.
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If gn = hnvn ∈ HV for some n, then vn 6= e and zhn ∈ BFM. Since
(zhn)vn ∈ X ∩ F ∗, the condition of Lemma 4.4 has been satisfied.

Now suppose gn /∈ HV for all n. By applying the unipotent blowup
Proposition (2) to g−1

n , we get sequences tn ∈ T (xh′n) and hn ∈ H such that
hngnutn → v ∈ V − {e}.

Hence
xh′nutn = zgnutn = (zh−1

n )(hngnutn)→ z1v

for some z1 ∈ BFM.
On the other hand, xh′nutn ∈ RFM by the choice of tn. Since v 6= e and

z1v ∈ RFM for z1 ∈ BFM,
z1v ∈ F ∗ ∩X

as desired.
This implies the claim by Lemma 4.4. �

Propositions 4.3 and 4.5 imply Proposition 4.1.
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