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Abstract. Let U := L\G be a homogeneous variety defined over a number field
K, where G is a connected semisimple K-group and L is a connected maximal semi-
simple K-subgroup of G with finite index in its normalizer. Assuming that G(Kv)
acts transitively on U(Kv) for almost all places v of K, we obtain an asymptotic
for the number of rational points U(K) with height bounded by T as T → ∞,
and settle new cases of Manin’s conjecture for many wonderful varieties. The main
ingredient of our approach is the equidistribution of semisimple adelic periods, which
is established using the theory of unipotent flows.
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1 Introduction

Let K be a number field and X a projective variety defined over K. Understanding
the set X(K) of K-rational points in X is a fundamental problem in arithmetic
geometry. In this paper we study the asymptotic number (as T → ∞) of the points
in X(K) of height less than T for compactifications of affine homogeneous varieties
U = L\G of a connected semisimple algebraic K-group G when L is a semisimple
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2 A. GORODNIK AND H. OH GAFA

maximal connected K-subgroup. Our results solve new cases of Manin’s conjecture
[BM] on rational points of Fano varieties.

Manin’s conjecture has been proved for equivariant compactifications of homo-
geneous spaces: flag varieties ([FMT], [P1]), toric varieties [BT1,2], horospherical
varieties [StT], equivariant compactifications of unipotent groups (see [CT2], [StT],
[ShT1]), and for the wonderful compactification of a semisimple adjoint group de-
fined over a number field ([ShTT2], [GMO]). We refer to survey papers by Tschinkel
[Ts1,2] for a more precise background on this conjecture.

1.1 Counting rational points of bounded height. We begin by recalling
the notion of a height function on the K-rational points Pd(K) of the projective
d-space Pd. Denote by R the set of all normalized absolute values x 7→ |x|v of K,
and by Kv the completion of K with respect to | · |v.

For each v ∈ R, choose a norm Hv on Kd+1
v which is simply the max norm

Hv(x0, . . . , xd) = maxdi=0 |xi|v for almost all v. Then the height function H :
Pd(K) → R>0 associated to OPd(1) is given by

H(x) :=
∏

v∈R

Hv(x0, . . . , xd)

for x = (x0 : · · · : xd) ∈ Pd(K). Since Hv(x0, . . . , xd) = 1 for almost all v ∈ R, we
have 0 < H(x) <∞ and by the product formula, H is well defined, i.e. independent
of the choice of representative for x.

For instance, for K = Q, if we choose Hp to be the maximum norm of Qd+1
p for

each prime p and set H∞(x0, . . . , xd) =
(

x20 + · · ·+ x2d
)1/2

for xi ∈ R, we have

H(x0 : · · · : xd) =
(

x20 + · · ·+ x2d
)1/2

where x0, . . . , xd ∈ Z and gcd(x0, . . . , xd) = 1.
Let G be a linear algebraic group defined over K, with a given K-representation

ι : G → GLd+1. Then G acts on Pd via the canonical map GLd+1 → PGLd+1.
Consider U := u0G ⊂ Pd for u0 ∈ Pd(K). Fixing a height function H on Pd(K), we
study the asymptotic of the following number (as T → ∞):

NT (U) := #
{

x ∈ U(K) : H(x) < T
}

.

Our main results are proved under the following assumptions:

(i) G is a connected semisimple K-group.
(ii) L = StabG(u0) is a semisimple maximal connected K-subgroup of G.
(iii) For almost all v ∈ R, G(Kv) acts transitively on U(Kv).

If L is the fixed points of an involution of G, U is called a symmetric space. A
symmetric space U = L\G satisfies (ii) if L is connected and semisimple, since L is
then a maximal connected K-subgroup [Bor2].

Borovoi gave a classification of symmetric spaces U = L\G satisfying (i)–(iii)
with G absolutely almost simple (see the Appendix).

When both G and L are connected, the property (iii) is equivalent to the finite-
ness of the set of G(K)-orbits in U(K) (Theorem A.1.2). We remark that (iii)
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always holds for L simply connected, by Corollary A.2.1. Note that there are many
examples of nonsymmetric homogeneous spaces U = L\G satisfying (i)–(iii), see
A.6.3.

Denote by X ⊂ Pd the Zariski closure of U. Then X is a G-equivariant compact-
ification of U, and the pull back L to X of the line bundle OPd(1) is a G-linearized
very ample line bundle of X defined over K.

Theorem 1.1. Assume that there is a global section s of L such that U = {s 6= 0}.
Then there exist a ∈ Q>0 and b ∈ N such that

NT (U) ≍ T a(log T )b−1.

(A(T ) ≍ B(T ) means that for some c > 1, c−1B(T ) ≤ A(T ) ≤ cB(T ) holds for all
sufficiently large T > 0.) Moreover, if G is simply connected, there exists c > 0 such
that

NT (U) ∼ c · T a(log T )b−1.

We note that the assumption in Theorem 1.1 is automatic in many cases, for
instance, if L is in the interior of the cone of effective divisors Λeff(X); also see
Example 1.3 below.

The exponents a and b are given as follows: First, we assume that X is smooth
and X\U is a divisor of normal crossings with smooth irreducible components Dα,
α ∈ A, defined over a finite field extension of K. Let ω be a differential form of X
of top degree, which is nowhere zero on U, and choose a global section s of L with
U = {s 6= 0}. Then for mα ∈ N and nα ∈ Z,

div(s) =
∑

α∈A

mαDα and − div(ω) =
∑

α∈A

nαDα .

The Galois group ΓK = Gal(K̄/K) acts on A. We denote by A/ΓK the set of
ΓK-orbits. Then

a = max
α∈A

{

nα
mα

}

and b = #

{

α ∈ A/ΓK :
nα
mα

= a

}

. (1.2)

We note that a and b are independent of the choices of s and ω, since there are unique
choices of them up to multiplication by constants as a consequence of Rosenlicht’s
theorem [BoroR, Lem. 1.5.1].

For a general projective variety X, we take an equivariant resolution of singu-
larities π : X̃ → X such that X̃ is smooth and π−1(X\U) is a divisor with normal
crossings. Then the constants a and b are defined as above with respect to the
pull-backs π∗(s) and π∗(ω).

Example 1.3 (Rational points on affine varieties). Let ι0 : G → SLd be a Q-
rational representation, and V = v0G ⊂ Ad be Zariski closed for some non-zero
v0 ∈ Qd. We write an element of V(Q) as

(

x1

x0
, . . . , xd

x0

)

where x0, . . . , xd ∈ Z, x0 > 0
and g.c.d(x0, . . . , xd) = 1. If G and L := stabG(v0) satisfy the assumptions (i)–(iii),
Theorem 1.1 implies
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#

{(

x1
x0
, . . . ,

xd
x0

)

∈ V(Q) :
√

x20 + · · ·+ x2d < T

}

≍ T a(log T )b−1;

#

{(

x1
x0
, . . . ,

xd
x0

)

∈ V(Q) : max
{

|x0|, . . . , |xd|
}

< T

}

≍ T a(log T )b−1.

To deduce this from Theorem 1.1, consider the embedding of SLd into PGLd+1 by
A 7→ diag(A, 1), and of Ad into Pd by (x1, . . . , xd) 7→ (x1 : · · · : xd : 1). This identifies
V with the orbit U := (v0 : 1)G in Pd, and s = xd+1 is an invariant section of the
line bundle L obtained by pulling back OPd(1), satisfying U = {s 6= 0}. Finally,
H
(

x1

x0
: · · · : xd

x0
: 1

)

= H(x1 : · · · : xd : x0), and hence the claim follows.

Since U = {X ∈ SL2n : Xt = −X} is a homogeneous variety Sp2n \SL2n for the
action v.g = gtvg and SL2n(Qp) acts transitively on U(Qp) for all p, we have

Example 1.4. Let n ≥ 2. For some a ∈ Q+, b ∈ N and c > 0, as T → ∞,

#
{

X ∈ SL2n(Q) : Xt = −X , max
1≤i,j≤2n

{

|xij |, |x0|
}

< T
}

∼ c · T a(log T )b−1.

where X =
(xij

x0

)

, xij ∈ Z, x0 ∈ N and g. c.d{xij , x0 : 1 ≤ i, j ≤ 2n} = 1.

Theorem 1.1 settles new cases of Manin’s conjecture on rational points of some
wonderful varieties, which we recall. Let X be a Fano K-variety, i.e. a smooth
projective K-variety with its anticanonical class −KX being ample. Let Pic(X)
denote the Picard group of X and Λeff(X) ⊂ Pic(X)⊗R the cone of effective divisors.
Given a line bundle L on X, there exists an associated height function HL on X(K),
unique up to the multiplication by bounded functions, via Weil’s height function.
For instance if L is very ample with a K-embedding ψ : X → Pd, then a height
function HL is simply the pull-back of a height function of Pd(K) to X(K) via ψ.

Note this depends on the choice of ψ. For an ample line bundle L, HL = H
1/k

Lk for

k ∈ N such that Lk is very ample.
The conjecture of Manin [BM], generalized by Batyrev and Manin, predicts that

there exist a Zariski open subset U ⊂ X and a finite field extension K ′ of K such
that

#
{

x ∈ U(K ′) : HL(x) < T
}

∼ c · T aL(log T )bL−1,

where c > 0 and

aL := inf
{

a : a[L] + [KX] ∈ Λeff(X)
}

,

bL := the maximal codimension of the face of Λeff(X) containing aL[L] + [KX] .

A smooth connected projective G-variety X defined over K is said to be won-
derful (of rank l), as introduced by Luna [Lu1], if

(1) X contains l irreducible G-invariant divisors with strict normal crossings.
(2) G has exactly 2l orbits in X.

For a G-homogeneous variety U, a wonderful variety X is called the wonderful
compactification of U if it is a G-equivariant compactification of U. Luna showed
in [Lu1] that every wonderful variety is spherical; in particular a wonderful com-
pactification of a homogeneous space U = L\G exists only when L is a spherical
subgroup, that is, a Borel subgroup of G has an open orbit in U.
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The following can be deduced from Theorem 1.1:

Corollary 1.5. LetU be as in Theorem 1.1 andX the wonderful compactification
of U. Then for any ample line bundle L on X over K and an associated height
function HL, we have

#
{

x ∈ U(K) : HL(x) < T
}

≍ T aL(log T )bL−1.

Moreover, if G is simply connected, there exists c = c(HL) > 0 such that

#
{

x ∈ U(K) : HL(x) < T
}

∼ c · T aL(log T )bL−1.

Several examples for the above corollary are given in 3.4. De Concini and Procesi
[DeP] constructed the wonderful compactification of a symmetric variety L\G for
G semisimple adjoint. In these cases, aL and bL can also be interpreted in terms of
the representation theoretical data of G (see 3.2).

Generalizing the work in [DeP], Brion and Pauer [BriP] established that a spher-
ical variety L\G possesses an equivariant compactification with exactly one closed
orbit if and only if [NG(L) : L] < ∞, where NG(L) denotes the normalizer of L
in G. Knop [Kn, Cor. 7.2] showed that the wonderful compactification of a spheri-
cal variety exists when NG(L) = L. See [Kr] and [Bri4] for a complete classification
of homogeneous spherical varieties.

1.2 On the proofs. To explain our strategy, let A denote the Adele ring over K.
The first key observation is that the global section s of L with U = {s 6= 0} is in
fact G-invariant. We use Luna’s theorem for this step. And the extension of H to
U(A) using s is uniformly continuous and proper for the action of compact subsets
of G(A). Set

BT :=
{

x ∈ U(A) : H(x) < T
}

so that NT (U) := #BT ∩U(K). Under the assumption (iii), there are only finitely
many G(K)-orbits in U(K), and hence the counting problem reduces to each G(K)-
orbit. In general, the naive heuristic

#
(

u0G(K) ∩BT

)

∼ vol
(

u0G(A) ∩BT

)

is false. The reason behind this is the existence of non-trivial automorphic char-
acters of G(A). From the dynamical point of view, this means that the translates
L(K)\L(A)gi of periods do not get equidistributed in the whole space G(K)\G(A)
as gi → ∞ in L(A)\G(A). This requires us to pass to a suitable finite index sub-
group of G(A). Denote by π : G̃ → G a simply connected covering of G defined
over K. For any compact open subgroup W of the subgroup G(Af ) of finite adeles,
we show that the product GW := G(K)π(G̃(A))W is a normal subgroup of finite
index in G(A), and the translates L(K)\(L(A) ∩ GW )gi become equidistributed in
the space G(K)\GW relative to W -invariant functions. The last statement is a spe-
cial case of our main ergodic theorems in adelic setting, to be detailed in the next
subsection. We mention that our assumption L is semisimple is crucial.

In order to deduce

#
(

u0G(K) ∩BT

)

∼ vol(u0GW ∩BT ) ,
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we prove that for any compact open subgroup W of G(Af ) by which H is invariant,
the family {BT ∩ u0GW } is well-rounded; roughly speaking, for any ǫ > 0, there is
a neighborhood Uǫ of the identity in G(A) such that the volume of (BT ∩ u0GW )Uǫ

is at most (1 + ǫ)vol(BT ∩ u0GW ) for all large T . Establishing this is based on
the work of Chambert-Loir and Tschinkel [CT2] and of Benoist–Oh [BeO2] (also
of Gorodnik–Nevo [GN]). Finally, we deduce the asymptotics of vol(u0GW ∩ BT )
up to a bounded constant from [CT2,3]. When G is simply connected, we have
GW = G(A) and deduce the precise volume asymptotic for u0G(A) ∩ BT . We
remark that if G(Kv) has no compact factors for some archimedean v ∈ R and
G(A) = G(K)π(G̃(A))WH where WH is a compact open subgroup of G(Af ) under
which H is invariant, we also have

#
(

u0G(K) ∩BT

)

∼ vol
(

u0G(A) ∩BT

)

∼ c · T a log T b−1.

In general, replacing ≍ with ∼ in Theorem 1.1 requires regularizing the height in-
tegrals

∫

u0G(A)H
−s(u0g) · χ(g)dµ for L(A)-invariant automorphic characters χ of

G(A) as in [ShTT2, Th. 7.1]. We mention that the strategy of relating the counting
problem with the equidistribution of orbits originated in the work of Duke–Rudnick–
Sarnak [DuRS] (see section 5 for more details). Perhaps the most unsatisfying as-
sumption is (iii): the finiteness of G(A)-orbits in U(A). We believe this assumption
should not be necessary to deduce #(u0G(K) ∩ BT ) ∼ vol(u0GW ∩ BT ); however
our proof of well-roundedness of u0GW ∩ BT relies on the finiteness assumption.
With a proper use of motivic integration, it may be possible to deal with a general
case. Finally we mention that there are examples where the orders of magnitude
for #(u0G(K) ∩ BT ) and #NT (U) are not the same. This is already the case for
G = SL2 and U = G/Z(G).

1.3 Equidistribution of Adelic periods. We now describe our main ergodic
results on the equidistribution of Adelic periods. Our results presented in this section
are much more general than is needed for the application on rational points.

Let G be a connected semisimple group defined over a number field K. Set
X := G(K)\G(A) and x0 := [G(K)] ∈ X. For a connected semisimple K-subgroup
L of G, we denote by π : L̃ → L a simply connected covering over K, which is unique
up to K-isomorphism. Then π induces the map L̃(A) → L(A) and hence L̃(A) acts
on X via π, and the orbit x0.L̃(A) is closed and carries a unique L̃(A)-invariant
probability measure supported in the orbit.

Let {Li} be a sequence of connected semisimple K-subgroups of G and
{gi ∈ G(A)} be given. Let µi denote the (unique) L̃i(A)-invariant probability mea-
sure in X supported on the orbit Yi := x0.L̃i(A). The translate giµi of µi by gi is
defined by

giµi(E) := µi(Eg
−1
i )

for any Borel subset E ⊂ X.
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Denoting by P(X) the space of all Borel probability measures on X, that a
sequence νi ∈ P(X) weakly converges to µ ∈ P(X) means that, for every f ∈ Cc(X),

lim
i→∞

∫

X
f(x)dνi(x) =

∫

X
f dµ .

We study the following question:

Describe the weak-limits of giµi in P(X) .

We remark that the reason of considering the translates of x0L̃i(A) rather than
those of the orbit x0Li(A) is essentially because X has more than one connected
component and the adele group of the simply connected cover plays exactly the role
of the identity component in a suitable sense.

Definition 1.6. A valuation v ∈ R is said to be strongly isotropic for G if for
every connected non-trivial normal Kv-subgroup N of G, N(Kv) is non-compact.
We denote by IG the set of all strongly isotropic v ∈ R for G.

For a compact open subgroup Wf of the group G(Af ) of finite adeles, we denote
by Cc(X,Wf ) the set of all continuous Wf -invariant functions on X whose support
is compact and contained in the set x0π(G̃(A))Wf .

Theorem 1.7. Suppose that ∩iILi 6= ∅, and let gi ∈ G(K)π(G̃(A)).

(1) If the centralizer of Li is K-anisotropic for each i, then the sequence {giµi}
does not escape to infinity, that is, for any ǫ > 0, there exists a compact subset
Ω ⊂ X such that

giµi(Ω) > 1− ǫ for all large i .

(2) Let µ ∈ P(X) be a weak limit of giµi. Then there exists a connected K-
subgroup M of G such that

• for some δi ∈ G(K),

δiLiδ
−1
i ⊂ M for all sufficiently large i ;

• for any compact open subgroup Wf of G(Af ), there exist a finite
index normal subgroup M0 of M(A) containing M(K)π(M̃(A)) and
g ∈ π(G̃(A)) such that

µ(f) = gµM0
(f) for all f ∈ Cc(X,Wf )

where gµM0
is the invariant probability measure supported on x0M0g,

and there exists hi ∈ π(L̃i(A)) such that δihigi converges to g as i→ ∞.

Moreover, if the centralizers of Li’s are K-anisotropic, M is semisimple.

See Corollaries 4.12 and 4.14 where we discuss special cases of the above theorem
for Li maximal semisimple.

We mention that Theorem 1.7 solves a stronger version of the conjecture of
Clozel and Ullmo in a greater generality (see [ClU, p. 1258], also [Br, Con. 6.4]). We
also refer to [O3] for discussions on the application of Theorem 1.7 regarding Hecke
operators.
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The analogous theorems in the case of a homogeneous space of a connected
semisimple real Lie group have been studied previously in [DM1], [DuRS], [EM],
[EMS1], [MoS], [EO1] and [EMV], etc. Via the strong approximation properties
of simply connected semisimple groups, our proof of Theorem 1.7 is reduced to the
generalizations of the aforementioned results, especially of Dani–Margulis [DM1] and
Mozes–Shah [MoS], in the S-algebraic setting (see Theorem 4.6). We make crucial
use of the classification theorem on ergodic measures invariant under unipotent flows
in this set-up obtained by Ratner [R], Margulis–Tomanov [MT1], and also refined by
Tomanov [To] in the arithmetic situation. Our approach is based on the linearization
methods developed by Dani–Margulis [DM2].

In the case of G = PGL2, and Li a K-anisotropic torus, the analogue of the
above theorem can be deduced from a theorem of Venkatesh (Theorem 6.1 in [V])
using Waldspurger’s formula (cf. [MiV, 2.5]) which relates the integral over a period
with special values of L-functions. For G = PGL3 and Li a Q-anisotropic maximal
torus, it was obtained by Einsiedler, Lindenstrauss, Michel, and Venkatesh [ELMV].
Li’s being tori, the methods in [V] and [ELMV] are very different from ours. The
powerful theorems on unipotent flows ([R] and [MT1]) are essentially what makes
our Theorem 1.7 so general.

1.4 Other applications. Theorem 1.7 should be useful in many future arith-
metic applications. For instance, an application of Theorem 1.7 in a problem of
Linnik, considered in [EO1] and [ElV], is discussed in [O3]. We state only two
below, which are most relevant to the subject of this paper. One application of
Theorem 1.7 is an ergodic theoretic proof of the adelic mixing theorem obtained in
[GMO] though given only in a non-effective form.

Theorem 1.8 (Adelic mixing). Let G be simply connected and almost K-simple.
For any f1, f2 ∈ L2(G(K)\G(A)) and any sequence gi ∈ G(A),

∫

G(K)\G(A)
f1(xgi)f2(x)dµG →

∫

f1dµG ·

∫

f2dµG as gi → ∞ ,

where µG is the invariant probability measure on G(K)\G(A).

The adelic mixing theorem in particular implies the equidistribution of Hecke
points studied in [ClOU] and [EO2] (see [O3] for details). The proof in [GMO] is
based on the information on local harmonic analysis of the groupsG(Kv) [O1] as well
as the automorphic theory of G [Cl], and gives a rate of convergence. In the methods
of this paper, it suffices to know the mixing property of GS :=

∏

v∈S G(Kv) for some
finite S containing all archimedean valuations and containing at least one strongly
isotropic v. This property can either be deduced from the classical Howe–Moore
theorem [HoM], or from the property of unipotent flows in GS modulo lattices.

In the following corollary, let U be an affine variety defined over Z such that
U = v0G where G ⊂ GLN is a connected simply connected semisimple Q-group and
v0 ∈ QN r {0}. Suppose that L := stabG(v0) is a semisimple maximal connected
Q-subgroup of G. We let µp, p ∈ R, be invariant measures on v0G(Qp) such that
µ =

∏

µp is a measure on v0G(A) compatible with the probability invariant measures
µG and µL on G(Q)\G(A) and L(Q)\L(A) respectively.
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As another corollary, we obtain the following local-global principle, which can be
viewed as a higher-dimensional analogue of the classical Hasse principle:

Corollary 1.9. (1) For all sufficiently large m ∈ N,

U(m−1Z) 6= ∅ if and only if U(m−1Zp) 6= ∅ for all primes p .

(2) If L is simply connected, then for any compact subset Ω ⊂ v0G(R) of bound-
ary of measure zero, as m→ ∞,

#U(m−1Z) ∩ Ω ∼ µ∞(Ω)
∏

p

µp
(

U(m−1Zp)
)

provided the right-hand side is not zero.

We remark that the assumption that both G and L are simply connected implies
that the group G(Af ) of finite adeles acts transitively on U(Af ) [BR], and hence
µp’s are invariant measures on v0G(Qp) = U(Qp) for each finite p.

When U = G, i.e. a group variety, Corollary 1.9 was observed in [Gu], as an
application of the Adelic mixing theorem of [GMO]. Corollary 1.9(2) was previously
obtained in [EO1] and [O2] assuming that both G(R) and L(R) have no compact
factors and that U(m−1Z) 6= ∅. See also [BeO1] and [ELMV] for the case when L
is a torus.

Organization. In section 2, we discuss how to extend a height function of U(K)
to U(A) so that the action of G(A) is uniformly continuous and proper, and obtain
the asymptotic of the volume of the height balls in each M -orbit of U(A) for a finite
index subgroup M of G(A). The second part uses the work of Chambert-Loir and
Tschinkel. In section 3 we discuss the wonderful varieties, introduced by Luna, which
are the generalization of the wonderful compactification of symmetric varieties con-
structed by De Concini–Procesi. They provide main examples of our Theorem 1.5.
In section 4, we deduce Theorem 1.7 from the corresponding Theorem 4.6 in the S-
arithmetic setting, which is proved in the last 2 sections of this paper. In section 5,
we prove the main theorems of the introduction. In section 6, we prove one of the
two parts of Theorem 4.6, and the other part is proved in section 7.

Acknowledgment. We thank Akshay Venkatesh for generously sharing his in-
sights. We thank Mikhail Borovoi who kindly wrote up the appendix on our request.
Oh also wants to thank IAS where some part of this work was done during her stay
in February-March, 2006. Gorodnik would like to thank Princeton University for
hospitality.

2 Heights and Volume Estimates

LetK be a number field and R the set of all normalized absolute values ofK. By R∞,
we mean the subset of R consisting of all archimedean ones and set Rf := RrR∞.
For each v ∈ R, we denote by Kv the completion of K with respect to the absolute
value | · |v, by kv the residue field, and by Ov the ring of integers of Kv. The
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cardinality of kv is denoted by qv. For a finite subset S of R, the ring of S-integers is
the subring ofK defined by OS := {x ∈ K : |x|v ≤ 1 for all non-archimedean v /∈ S}.

Throughout section 2, we let G be a connected semisimple algebraic K-group
with a given K-representation G →֒ GLd+1. Fix u0 ∈ Pd(K) such that the or-
bit U := u0G is a K-subvariety. We fix integral models U and G of U and G,
respectively, over the ring OS for some S.

Then the adelic space U(A) is the restricted topological product of U(Kv)’s with
respect to U(Ov)’s. As is well-known, this is a locally compact space.

For finite S ⊂ R, we set US :=
∏

v∈S U(Kv) and denote by U(AS) the restricted
topological product of U(Kv)’s, v ∈ Rr S, with respect to U(Ov)’s. Then U(A) is
canonically identified with the direct product US ×U(AS). We set UAf

:= UAR∞

and U∞ :=
∏

v∈R∞
U(Kv). The notations G(A), GS and G∞ etc. are similarly

defined. Note that both GS and G(AS) can be considered as subgroups of G(A) in
a canonical way.

Let X ⊂ Pd be the Zariski closure of U, which is then a G-equivariant compact-
ification of U. Consider the line bundle L of X given by the pull-back of OPd(1).
Then L is very ample and G-linearized; in fact any G-linearized very ample line
bundle is of this form for some embedding.

Since U(K) 6= ∅, Rosenlicht’s theorem implies (cf. [BoroR, Lem. 1.5.1]):

Lemma 2.1. There is no non-constant invertible regular function on U.

Using a theorem of Luna [Lu1] and the above lemma, we obtain the following:

Theorem 2.2. Suppose that L := stabG(u0) is semisimple and [NG(L) : L] <∞.
Then any global section s of L such that U = {s 6= 0} is G-invariant, and unique
up to a scalar multiple.

Proof. Pick a point y ∈ Kd+1r {0} lying above u0. Let H denote the stabilizer of y
in G. Since H is a normal co-abelian subgroup of L and L is semisimple, H is also
semisimple and H◦ is a finite index in L. Hence, the finiteness of [NG(L) : L] implies
that H has finite index in its normalizer. Now a theorem of Luna [Lu1, Cor. 3] says
that the orbit of y is closed. By [Mu, Ch. 2, §1, Prop. 2.2], there exists a global
G-invariant section s1 of Lk for some k such that s1(u0) 6= 0. Hence, U ⊂ {s1 6= 0}.

Since U = {sk 6= 0}, the ratio s1 / s
k is an invertible regular function on U,

which is a constant by Lemma 2.1. Hence sk is G-invariant. For any g ∈ G, sg/s is
a constant function, say, αg, on U by the above lemma. Now α : g 7→ αg defines a
homomorphism from G into the group of k-roots of unity. Since G is connected, α
must be 1. Hence, s is invariant. The uniqueness follows by a similar argument. �

2.1 Heights. Let s0, . . . , sd be the global sections of L obtained by pulling back
the coordinate functions xi’s. We assume that there is a G-invariant global section
s of L such that U = {s 6= 0}.

Definition 2.3. An adelic metrization on the G-linearized line bundle L on X
(with respect to s) is a collection of v-adic metrics on L for all v ∈ R such that

(1) for each v ∈ Rf , ‖ · ‖v is locally constant in U(Kv) in the v-adic topology;
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(2) for almost all v ∈ R,

‖ s(x)‖v =

(

max
0≤i≤d

∣

∣

∣

∣

si(x)

s(x)

∣

∣

∣

∣

v

)−1

for all x ∈ U(Kv) ;

(3) for each v ∈ R∞ and for any ǫ > 0, there exists a neighborhood Wǫ of e in
G(Kv) such that for all x ∈ U(Kv) and g ∈Wǫ,

(1− ǫ)‖ s(x)‖v ≤ ‖ s(xg)‖v ≤ (1 + ǫ)‖ s(x)‖v .

Recall that a v-adic metric ‖·‖v on L is a family (‖·‖x,v)x∈X(Kv) of v-adic Banach
norms on the fibers Lx such that for every Zariski open U ⊂ X and every section
s ∈ H0(U,L), the map U(Kv) → R given by x→ ‖ s ‖x,v is continuous in the v-adic
topology on U(Kv).

We write (‖ · ‖v)v∈R for an adelic metric on L and call a pair L = (L, ‖ · ‖v)
an adelically metrized line bundle. Note that an adelic metrization of L extends
naturally to tensor products Lk for any k ∈ N.

An adelically metrized line bundle L induces a family of local heights on U(Kv):

HL,v(x) := ‖ s(x)‖−1
v .

The following lemma can be proved in a standard way (see [BoG, Ch. 2] for a
detailed discussion of heights).

Lemma 2.4. (1) For each v ∈ R, infx∈U(Kv)HL,v(x) > 0.
(2) For almost all v, infx∈U(Kv)HL,v(x) = 1.
(3) For almost all v, {x ∈ U(Kv) : HL,v(x) = 1} = U(Ov).
(4) Let v ∈ R. If x → ∞ in U(Kv) (i.e. x escapes every compact subset), then

HL,v(x) → ∞.

Definition 2.5. An adelic height function HL : U(A) → R>0 associated to L is
defined by

HL(x) :=
∏

v∈R

HL,v(x) for x ∈ U(A) . (2.6)

The previous lemma implies that HL is a well-defined continuous proper function.
Moreover, the following holds:

Lemma 2.7. (1) Set

WHL
:=

{

g ∈ G(Af ) : HL(xg) = HL(x) for all x ∈ U(A)
}

.

Then WHL
is an open subgroup of G(Af ).

(2) For every compact subset B ⊂ G(A), there exists c > 0 such that, for every
g ∈ B and x ∈ U(A),

HL(xg) < c HL(x) .

(3) For every ǫ > 0, there exists a neighborhood W of e in G(A) such that, for
every x ∈ U(A) and g ∈W ,

HL(xg) < (1 + ǫ)HL(x) .
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Proof. Since ‖ · ‖v is locally constant for all v ∈ Rf , WHL
∩ G(Kv) is an open

subgroup of G(Kv) for each v ∈ Rf . Since G acts on U via the linear action of
SLd+1 on Pd and s is invariant, WHL

∩G(Kv) = G(Ov) for almost all v ∈ Rf by (3)
of Definition 2.3. It follows that WHL

is open. Any compact subset B of G(A) is
contained in

∏

v∈S Bv ×
∏

v/∈S G(Ov) for some finite S ⊂ R where Bv is a compact
subset in G(Kv). By enlarging S, we may assume

∏

v/∈S G(Ov) ⊂ WHL
. On the

other hand, for each v ∈ R, there exists cv > 1 such that

HL,v(xg) ≤ cv ·max
i,j

|gij |v ·HL,v(x)

for all g = (gij) ∈ G(Kv) and x ∈ U(Kv). Hence, it suffices to take c =
∏

v∈S(cv ·maxg∈Bv |gij |v) for the claim (2).
The claim (3) follows from the claim (1) and (3) of Definition 2.3. �

We will call the height function HL regular if the function
∏

v∈R∞
H2

L,v is regular
on U∞, considered as the real algebraic variety via the restriction of scalars. For
instance, the following height function is given by a regular adelic metrization:

HL,v(x) =

{

(
∑

i | si(x)|
2
v)

1/2

| s(x)|v
for archimedean v ,

maxi | si(x)|v
| s(x)|v

for non-archimedean v .
(2.8)

This property will be used to deduce that the volume is Hölder.
The following example shows that our settings apply to any affine homogeneous

varieties:

Example 2.9. Denote by Ad the d-dimensional affine space. Let U = v0G ⊂ Ad be
an affine homogeneous K-variety for a connected K-group G ⊂ GLd and a non-zero
v0 ∈ Ad(K). Via the embedding ι : Ad →֒ Pd given by

ι(x0, . . . , xd−1) 7→ (x0 : · · · : xd−1 : 1)

and the embedding GLd → PGLd+1 by A 7→ diag(A, 1), the Zariski closure X ⊂ Pd

of ι(U) is a G-equivariant compactification.
Consider the line bundle L = ι∗(OPd(1)) and sections si = ι∗(xi) for 0 ≤ i ≤ d.

Since ι(U) = {sd 6= 0} for the G-invariant section sd, we can choose an adelic
metrization L of L so that the local height functions HL,v on U(Kv) are given by

{

(

|x0|2v + · · ·+ |xd−1|
2
v + 1

)1/2
for archimedean v ,

max {|x0|v , . . . , |xd−1|v , 1} for non-archimedean v .
(2.10)

2.2 Tamagawa volumes of height balls. We assume that L := stabG(u0)
is semisimple, and s is an invariant global section of L such that U = {s 6= 0}.
Fix an adelic metrization L of L and consider the height function H = HL on
U(A) defined in (2.6). For simplicity, we set Hv = HL,v. We observe that U
is a geometrically irreducible nonsingular algebraic variety and that U supports a
nowhere zero differential form ω of top degree. We refer to [We] for the following
discussion on the Tamagawa measure on U(A). To the form ω, we can associate
measures µv on each U(Kv). Then µv(U(Ov)) = #U(kv)/q

dimU
v for almost all v ∈ R.
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Since U is a homogeneous space of a connected semisimple algebraic group with the
stabilizer subgroup being semisimple,

∏

v µv(U(Ov)) converges absolutely, and ω
defines the Tamagawa measure

µ = |∆K |−
1

2
dimU

∏

v

µv

on the space U(A) where ∆K is the discriminant of K.
For t > 0, set

Bt :=
{

y ∈ U(A) : H(y) < t
}

.

In this section, we review a theorem of Chambert-Loir and Tschinkel on asymp-
totic properties (as t→ ∞) of the Tamagawa volume

V (t) := µ(Bt) .

First, we assume that X is smooth and X\U is a divisor with normal crossings of
irreducible components Dα, α ∈ A, defined over finite field extensions Kα of K. By
extending ω to X, which we denote by ω by abuse of notation, we obtain a non-zero
rational differential form on X of top degree. Since {s = 0} = X\U and ω is nowhere
zero on U,

div(s) =
∑

α∈A

mαDα and − div(ω) =
∑

α∈A

nαDα

for mα ∈ N and nα ∈ Z. The Galois group ΓK = Gal(K̄/K) acts on A. We denote
by A/ΓK the set of ΓK-orbits. Define

a(L) = max
α∈A

{

nα
mα

}

and b(L) = #

{

α ∈ A/ΓK :
nα
mα

= a(L)

}

. (2.11)

Lemma 2.12. (1) Dα’s are not rationally equivalent;
(2) a(L) and b(L) are independent of choices of s and ω

Proof. If Dα = div(f) + Dβ for some f ∈ K(X)∗, then the poles as well as the
zeros of f must lie outside U, and hence f is constant by Lemma 2.1, proving (1).
Since s is unique up to constant, again by Lemma 2.1, the independence of mα’s
on s is clear. Similarly, any non-zero differential form on X of top degree, which is
nowhere zero on U, is a multiple of ω by a constant. Hence nα’s are determined
independently on the choice of ω. �

In general, we take an equivariant resolution of singularities π : X̃ → X such that
X̃ is smooth and the boundary π−1(X\U) is a divisor with normal crossings. Then
the constants a(L) and b(L) are defined as above with respect to the pull-backs π∗(s)
and π∗(ω). We refer to [BiM] and [Vi] for constructions of equivariant resolutions
of singularities.

We consider the Mellin transform of V (t):

η(s) : =

∫ ∞

0
t−sdV (t)

=

∫

U(A)
H(x)−sdµ(x) .
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Hence
η(s) = |∆K |−

1

2
dimX

∏

v

ηv(s)

where

ηv(s) :=

∫

U(Kv)
Hv(x)

−sdµv(x) .

Let
Ωt =

{

s ∈ C : Re(mαs− nα) > t , α ∈ A
}

.

Theorem 2.13 (Chambert-Loir, Tschinkel). (1) For each v ∈ R, the integral ηv(s)
is absolutely convergent for s ∈ Ω−1.

(2) The integral η(s) converges absolutely for s ∈ Ω0, and

η(s) = φ(s)
∏

α∈A/ΓK

ζKα(mαs− nα + 1)

where ζKα is the Dedekind zeta function of Kα, and φ(s) is a bounded holomorphic
function for s ∈ Ω−1/2+ǫ, ǫ > 0.

The first claim follows from [CT2, Lem. 8.2] for v non-archimedean. For v
archimedean, if H2

v is regular on U, the same proof applies. Since any two norms on
a finite-dimensional vector space are equivalent to each other, this implies the first
claim for any local height Hv. The second claim is [CT2, Cor. 11.4]. See also the
recent preprint [CT3].

Corollary 2.14. If a(L) > 0, then there exist a polynomial P of degree b(L)− 1
and δ > 0 such that

V (t) = ta(L)P (log t) +O
(

ta(L)−δ
)

as t→ ∞ .

Proof. It follows from Theorem 2.13 and the properties of the Dedekind zeta func-
tions that for some ǫ > 0, η(s) has a meromorphic continuation to the region Ω−1/2+ǫ

with a single pole at s = a(L) of order b(L). Moreover, in this region, η(s) satisfies
the bound

∣

∣

∣

∣

(s− a(L))b(L)

sb(L)
η(s)

∣

∣

∣

∣

≤ c ·
∣

∣1 + Im(s)
∣

∣

N

for some c,N > 0. Hence, the claim follows from the Tauberian theorem (see [GMO,
Th. 4.4] and [CT1, App.]). �

2.3 Volumes of homogeneous varieties. We additionally assume that the
subgroup L is connected. We recall the properties of orbits of algebraic groups over
local fields and over adeles.

Lemma 2.15. (1) For each v ∈ R, the space U(Kv) consists of finitely many
G(Kv)-orbits, and each orbit is open and closed.

(2) For almost all v, G(Ov) acts transitively on U(Ov).

(3) The orbits of G(A) in U(A) are open and closed.
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Proof. The orbits in (1) are open by [PlR, Ch. 3, §3.1]. This also implies that every
orbit is closed. The finiteness of G(Kv)-orbits follows from finiteness of Galois
cohomology over local fields (see [PlR, Ch. 3, §6.4]). (2) follows from Lang’s theorem
[L] and Hensel’s lemma (see [BoroR, Lem. 1.6.4]). (3) follows from (1) and (2). �

Theorem 2.16. Assume that there are finitely many G(A)-orbits in U(A). Let
x ∈ U(A) and

V (x, t) := µ
(

xG(A) ∩Bt

)

.

Then a(L) > 0 and there exist a nonzero polynomial Px of degree b(L)−1 and δ > 0
such that

V (x, t) = ta(L)Px(log t) +O
(

ta(L)−δ
)

as t→ ∞ .

Proof. As in the proof of Corollary 2.14, we consider the Mellin transform

η(x, s) :=

∫ ∞

0
t−s dV (x, t)

=

∫

xG(A)
H(y)−s dµ(y) = |∆K |−

1

2
dimX ·

∏

v

ηv(xv, s)

where

ηv(xv , s) :=

∫

xvG(Kv)
Hv(y)

−sdµv(y) .

By Theorem A.1.2, our assumption implies that for almost all v, xvG(Kv) = U(Kv)
and hence ηv(xv, s) = ηv(s). Also, by Theorem 2.13(1), ηv(xv, s) is absolutely con-
vergent for s ∈ Ω−1+ǫ, ǫ > 0. Hence, it follows from Theorem 2.13(2) that

η(x, s) = φ(x, s)
∏

α∈A/ΓK

ζKα(mαs− nα + 1) (2.17)

where φ(x, s) is a bounded holomorphic function for s ∈ Ω−1/2+ǫ.
Note that for almost all v, G is quasi-split over Kv, and hence there is a unipotent

one-parameter subgroup of G(Kv) acting nontrivially on U(Kv). It was shown in
[BeO2] that this property implies that, for some a′ > 0,

µv
(

{y ∈ xvG(Kv) : Hv(y) < t}
)

≥ c ta
′

for all large t > 0. This implies that ηv(xv, s) has a pole in the region Re(s) ≥ a′.
Hence, a(L) > 0.

Now the claim follows from (2.17) using the Tauberian theorem. �

Denoting by G◦
∞ the identity component of G∞, we set, for x ∈ U∞,

Ṽ∞(x, t) := µ∞
(

{y ∈ xG◦
∞ : H∞(y) < t}

)

where µ∞ :=
∏

v∈R∞
µv and H∞ :=

∏

v∈R∞
Hv. The following is proved in [BeO2,

Lem. 7.8].

Theorem 2.18. If H∞ is regular and not constant on xG◦
∞ for x ∈ U∞, then

there exist c0, κ > 0 such that, for all t > 0 and ǫ ∈ (0, 1),

Ṽ∞
(

x, t(1 + ǫ)
)

− Ṽ∞(x, t) ≤ c0ǫ
κ
(

Ṽ∞(x, t) + 1
)

.
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Proposition 2.19. Assume that there are only finitely many G(A)-orbits in
U(A), and that H is regular. Let M = G◦

∞Mf for a finite index closed subgroup
Mf of G(Af ), x ∈ U(A), and

V M (x, t) := µ(xM ∩Bt) .

Then

(1)
VM (x, t) ≍ ta(L)(log t)b(L)−1.

(2) If H∞ is not constant on x∞G◦
∞ where x = x∞xf ∈ U∞UAf

, there exist
c0, κ, t0 > 0 such that for every t > t0 and ǫ ∈ (0, 1),

VM
(

x, (1 + ǫ)t
)

− VM (x, t) ≤ c0ǫ
κV M (x, t) .

Proof. Since VM (x, t) ≤ V (x, t), the upper estimate follows from Theorem 2.16. To
prove the lower estimate, we write G(A) = ∪n

i=1Mgi for some gi ∈ G(A). Then by
2.7(2) and invariance of µ, we obtain that for some c > 1,

V (x, t) ≤
n
∑

i=1

VMgi(x, t) ≤ nVM (x, c · t) for all t > 0 .

Hence, the lower estimate in (1) follows from Theorem 2.16. To prove (2), consider
the decompositions

U(A) = U∞UAf
and µ = µ∞ ⊗ µf

where µf =
∏

v∈Rf
µv.

Set

Ṽ∞(t) := µ∞
(

{y ∈ x∞G◦
∞ : H∞(y) < t}

)

,

Ṽf (t) := µf
(

{y ∈ xfMf : Hf (y) < t}
)

,

where Hf =
∏

v∈Rf
Hv.

We claim that there exist ρ1, ρ2 > 0 such that, for every t > 0,

Ṽf (t) ≤ ρ1V
M (x, ρ2t) . (2.20)

Let Ω be a compact subset of x∞G◦
∞ such that µ∞(Ω) > 0 and ρ2 = maxx∈ΩH∞(x).

Then
Ω ·

{

y ∈ xfMf : Hf (y) < t
}

⊂
{

y ∈ xM : H(y) < ρ2t
}

,

and hence

Ṽf (t) ≤
VM (ρ2t)

µ∞(Ω)
.

By Theorem 2.18, there exist c0, κ > 0 such that, for all t > 0 and ǫ ∈ (0, 1),

Ṽ∞
(

t(1 + ǫ)
)

− Ṽ∞(t) ≤ c0ǫ
κ
(

Ṽ∞(t) + 1
)

.

Let α = infy∈x∞G◦
∞
H∞(y) > 0. Then using (2.18) and (2.20),

VM
(

(1 + ǫ)t
)

− VM (t)

=

∫

y∈xfMf

(

Ṽ∞

(

(1 + ǫ)t

Hf (y)

)

− Ṽ∞

(

t

Hf (y)

))

dµf (y)
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=

∫

y∈xfMf :Hf (y)<α−12t

(

Ṽ∞

(

(1 + ǫ)t

Hf (y)

)

− Ṽ∞

(

t

Hf (y)

))

dµf (y)

≤ cǫκ
∫

y∈xfMf :Hf (y)<α−12t

(

Ṽ∞

(

t

Hf (y)

)

+ 1

)

dµf (y)

≤ cǫκ
(
∫

y∈xfMf

Ṽ∞

(

t

Hf (y)

)

dµf (y) + µf
(

{y ∈ xfMf : Hf (y) < α−12t}
)

)

= cǫκ
(

VM (t) + Ṽf (α
−12t)

)

≤ cǫκ
(

VM (t) + ρ1V
M (ρ2α

−12t)
)

≤ c′ǫκVM (t)

for some c′ > 1, where the last inequality holds by the claim (1).
This completes the proof. �

Theorem 2.21. Assume that there are only finitely many G(A)-orbits in U(A).
Let M be a finite index closed subgroup of G(A) and W a compact open subgroup
of G(Af ) contained in M ∩WH. Fixing x ∈ U(A), set B̃t := Bt ∩ xM for t > 0.

(1) We have
µ(B̃t) ≍ ta(L)(log t)b(L)−1.

(2) Suppose that H is regular. Then there exists c > 0 such that, for any ǫ > 0,
there exists a neighborhood Uǫ of e in M such that, for all sufficiently large t,

(1− c · ǫ)µ(B̃tUǫW ) ≤ µ(B̃t) ≤ (1 + c · ǫ)µ(∩u∈UǫW B̃tu) . (2.22)

Proof. Consider the subgroups M∞ = M ∩ G∞ and Mf = M ∩ G(Af ), which
are closed subgroups of G∞ and G(Af ) respectively. Then G◦

∞ is a finite index
subgroup of G∞ contained in M∞, and M0 := G◦

∞Mf is a finite index subgroup
of M . Hence, xM = ⊔n

i=1xmiM0 for some mi ∈M . Therefore, in proving the above
claims (1) and (2), we may assume without loss of generality that M = G◦

∞Mf for
some finite index subgroup Mf of G(Af ).

Note that any height function H = HL on U(A) is equivalent to a regular height
function, i.e. there is an adelic metrization L′ such that, for some c ≥ 1,

c−1 ·HL(y) ≤ HL′(y) ≤ c ·HL(y)

for all y ∈ U(A). Hence, the claim (1) follows from Proposition 2.19.
Let x∞ denote the U∞-component of x. If H∞ is constant on x∞G◦

∞, then H is
invariant under G◦

∞. Hence, H is invariant under G◦
∞×W . Therefore, by taking Uǫ

to be G◦
∞ ×W , (Bt ∩ xM)u = Bt ∩xM for all u ∈ Uǫ, and hence B̃t satisfies (2.22).

Now suppose that H∞ is non-constant on x∞G◦
∞. Let κ, c0 and t0 be as in

Proposition 2.19 (2).
For ǫ > 0 small, take a neighborhood of Vǫ of e in G◦

∞ such that for all large t,

BtVǫ ⊂ B(1+ǫ1/κ)t and B(1−ǫκ)t ⊂ ∩v∈VǫBtv .

We may assume that this holds for all t > t0 by replacing t0 by a larger number if
necessary. Set Uǫ = Vǫ ×W . Since W ⊂WH ∩Mf , for all t > t0,

B̃tUǫW ⊂ B̃(1+ǫ1/κ)t and B̃(1−ǫ1/κ)t ⊂ ∩u∈UǫW B̃t . (2.23)
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By Proposition 2.19(2), there is c > 0 such that for all t > t0, we have

µ
(

B̃(1+ǫ1/κ)t − B̃(1−ǫ1/κ)t

)

≤ c ǫ µ(B̃t) .

Using (2.23), this proves (2). �

3 Wonderful Varieties

3.1 Symmetric varieties. We review some basic properties of symmetric va-
rieties and their wonderful compactifications due to De Concini and Procesi (see
[DeP] for details).

Let G be a connected semisimple algebraic subgroup and σ : G → G an involu-
tion of G. We denote by L the normalizer of the subgroup Gσ of invariants of σ.
Then L\G is a symmetric variety.

A torus T ⊂ G is called σ-split if σ(t) = t−1 for every t ∈ T. Let T1 be a
σ-split torus of maximal dimension and T a maximal torus containing T1. Then T
is invariant under σ and it is an almost direct product T = T1T0 where T0 is the
subtorus of T on which σ acts trivially.

Let Φ be the set of roots of T. We set

Φ0 = {α ∈ Φ : ασ = α} and Φ1 = Φ\Φ0 .

One can choose a Borel subgroup B containing T such that the corresponding set
Φ+ of positive roots has the property that

(Φ1 ∩ Φ+)σ = −(Φ1 ∩ Φ+) . (3.1)

For a root α ∈ Φ, we set α̃ = α − ασ. The set Φ̃ = {α̃} is a (possibly nonreduced)
root system of rank dim(T1) with the set of simple roots ∆σ := ∆̃\{0}.

Let Λ be the weight lattice and Λ+ ⊂ Λ the set of dominant integral weights. For
λ ∈ Λ+, we denote by ιλ : G → GL(Vλ) the corresponding irreducible representation
with the highest weight λ. The weight λ is called spherical if there exists a nonzero
vector v0 ∈ Vλ such that Lie(L) · v0 = 0. Let Ω+ ⊂ Λ+ be the subset of spherical
weights. Every spherical weight λ satisfies λσ = −λ. Since every dominant weight
lies in the interior of the cone generated by positive roots, this implies that every
dominant spherical λ can written as

λ =
∑

α∈∆σ

nαα

for some nα ∈ Q+. A weight λ is called σ-regular if (λ, α) 6= 0 for all α ∈ ∆σ.

3.2 Wonderful compactification of a symmetric variety. Given a σ-regular
spherical representation ι : G → GL(V ) and a nonzero vector v0 ∈ V fixed by L,
one defines the wonderful compactification X of L\G as the closure of U := [v0]G
in the projective space P(V ). It was proved in [DeP] that X satisfies the following
properties:

(1) X is a Fano variety.
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(2) X\U is a divisor with normal crossings and has smooth irreducible compo-
nents X1,. . . ,Xl where l = dim(T1).

(3) The closures of G-orbits in X are precisely the partial intersections of Xi’s.
(4) X contains the unique closed G-orbit Y := ∩l

i=1Xi isomorphic to P\G where
P is the parabolic subgroup with the unipotent radical exp(⊕α∈Φ1∩Φ+gα).

(5) X is independent of the representation ι.

We also recall a description of the Picard group of X. The map Pic(X) → Pic(Y)
induced by the inclusion Y → X is injective. The Picard group of Y ≃ P\G can
be identified with a sublattice of the weight lattice Λ and under this identification

Pic(X) −→ sublattice generated by Ω+,

[Xi] −→ α, α ∈ ∆σ ,

−KX −→
∑

β∈Φ1∩Φ+

β +
∑

α∈∆σ

α .

Now we assume that G is defined over a number field K, the representation ι is
K-rational and v0 ∈ V (K). Then the action of the Galois group ΓK preserves the
unique open G-orbit U and permutes the boundary components X1, . . . ,Xl. The
identification of Pic(X) with a sublattice of the weight lattice Λ is ΓK -equivariant
with respect to the twisted Galois action on Λ.

3.3 Wonderful varieties. A generalization of the wonderful compactification
was introduced in [Lu2]. A smooth connected projective G-variety X is called
wonderful of rank l if

(1) X contains l irreducible G-invariant divisors X1, . . . ,Xl with strict normal
crossings.

(2) G has exactly 2l orbits in X.

It follows that X contains a unique open G-orbit, which we denote by U, and
that the irreducible components of the divisor X rU are X1, . . . ,Xl. Fix u0 ∈ U
and set L = StabG(u0).

In the following, we assume that the subgroup L is semisimple. A description of
the Pic(X) was given by Brion [Bri3, Prop. 2.2.1]. Since L is semisimple, Pic(L\G) is
finite, and it follows that Pic(X) is a finite extension of the free abelian group gener-
ated by [Xi], i = 1, . . . , l. Then, by [Bri3, Lem. 2.3.1], the cone Λeff(X) ⊂ Pic(X)⊗ R

of effective divisors is generated by [Xi], i = 1, . . . , l. The cone of ample divisors
was computed in [Bri1, §2.6]. Combining this description with [Bri3, Lem. 2.1.2], it
follows that the ample cone is contained in the interior of the effective cone. The
canonical class KX was computed in [BriI]. The formula from [BriI] implies, in
particular, that −KX lies in the interior of the effective cone Λeff(X).

For an ample line bundle L on X, we define

aL := inf
{

a : aL+KX ∈ Λeff(X)
}

,

bL := the maximal codimension of the face of Λeff(X) containing aLL+KX .

Since L and −KX belong to the interior of Λeff(X), the parameter aL is well-defined
and aL > 0.
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Remark 3.2. In the case when X is the wonderful compactification of a symmetric
variety, and L is the restriction of OP(V )(1) to X, the parameters aL and bL can
be computed in terms of the highest weight λι of the representation ι as follows.
Writing

∑

β∈Φ1∩Φ+

β =
∑

α∈∆σ

mαα and λι =
∑

α∈∆σ

nαα ,

we have

aL = max

{

mα + 1

nα
: α ∈ ∆σ

}

and bL = #

{

α ∈ ∆σ/ΓK : aL =
mα + 1

nα

}

.

Luna showed that any wonderful variety is spherical. It follows that L has finite
index in its normalizer. Hence using Theorem 2.2, we have an invariant global
section s of any ample line bundle L such that U ⊂ {s 6= 0}. Since any ample line
bundle is contained in the interior of the cone of effective divisors, it follows that
U = {s 6= 0}.

Corollary 3.3. For any adelic metrization L of a very ample line bundle L of a
wonderful variety X, there exist a polynomial PHL

of degree bL − 1 and δ > 0 such
that

µ
(

{x ∈ U(A) : HL(x) < t}
)

= taLPHL
(log t) +O(taL−δ) as t→ ∞ .

Proof. Since X r U is a divisor whose irreducible components are given by Xi,
1 ≤ i ≤ l, and Λeff(X) is generated by Xi’s, we have a(L) = aL and b(L) = bL for
a(L) and b(L) defined in (2.11). Hence, the claim is a special case of Corollary 2.14. �

In the same way, the following is a special case of Theorem 2.16:

Corollary 3.4. Assume that there are only finitely many G(A)-orbits in U(A).
Then for L as in the above corollary and for every x ∈ U(A), there exist a polynomial
PHL ,x of degree bL − 1 and δ > 0 such that

µ
(

{y ∈ xG(A) : HL(y) < t}
)

= taLPHL ,x(log t) +O(taL−δ) as t→ ∞ .

3.4 Examples. (1) (group varieties) Let ι : L → GL(W ) be an adjoint semi-
simple algebraic group defined over a number field K. Then ι(L) is a homogeneous
variety of G = L× L with the action

(l1, l2) · x = ι(l1)
−1 · x · ι(l2) .

The stabilizer of the identity is the symmetric subgroup corresponding to the invo-
lution σ(l1, l2) = (l2, l1). Let S be a maximal torus of L with a root system ΦL and
set of simple roots ∆L. Then T = S× S is a maximal torus of G and

Φ+
1 =

{

(α,−β) : α, β ∈ Φ+
L

}

,

∆σ =
{

(α,−α) : α ∈ ∆L

}

.
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Let λι be the highest weight of the representation ι and ρ the sum of roots in Φ+
L
.

Then the highest weight for the corresponding representation of G is (λι,−λι), and
the sum of positive roots of G is (2ρ,−2ρ). Writing

2ρ =
∑

α∈∆L

mαα and λι =
∑

α∈∆L

nαα ,

we have

a = max

{

mα + 1

nα
: α ∈ ∆σ

}

and b = #

{

α ∈ ∆L/ΓK : a =
mα + 1

nα

}

.

These formulas agree with the ones obtained in [GMO].

(2) (space of symplectic forms) Consider the space U of symplectic forms of
dimension 2n modulo the equivalence defined by scaling. It can be identified with
the symmetric variety U = L\G where G = PGL2n and L = PSp2n. Note that L
is the set of fixed points of the involution

σ(g) = −J tg−1J

where J =
∑n

i=1Ei,2n−i+1−
∑n

i=1En+i,n−i+1. Consider the maximal torus in Lie(G)
given by

t =

{

diag(u1, . . . , un, vn, . . . , v1) :
n
∑

i=1

(ui + vi) = 0

}

.

Then
σ(s1, . . . , sd, td, . . . , t1) = (−t1, . . . ,−td,−sd, . . . ,−s1) ,

and we have the decomposition t = t0 + t1 where

t0 = {ui = −vi , 1 ≤ i ≤ n} and t1 = {ui = vi , 1 ≤ i ≤ n} .

The root system Φ is given by

Φ = {αij := si − sj , βij := ti − tj , γkl := sk − tl : 1 ≤ i 6= j, k, l ≤ n} ,

and Φ0 = {γkk : 1 ≤ k ≤ n}. If we choose the set of positive roots as

Φ+ = {αij , βij , γkl : 1 ≤ i < j, k, l ≤ n} ,

then (3.1) holds, the set of simple roots is

∆ = {αi,i+1, βi,i+1, γn,n : 1 ≤ i ≤ n− 1} ,

and
∆̃ = {αi := αi,i+1 + βi,i+1 : 1 ≤ i ≤ n− 1} ∪ {0} .

The sum of positive roots is given by

2ρ = 2

(n−1
∑

i=1

i(2n − i)αi + n2γn,n

)

.

Since {αi} forms a basis of t∗1 and
(

∑

β∈Φ1∩Φ+

β
)

∣

∣

t1
= 2ρ|t1 ,
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it follows that
∑

β∈Φ1∩Φ+

β = 2

n−1
∑

i=1

i(2n − i)αi .

Now take an irreducible spherical representation ι : G → GL(V ) with its regular
highest weight given by

λι =
n−1
∑

i=1

niαi

and v0 ∈ V (K) such that L = StabG([v0]). We then have an embedding

ι : U → X := [v0]G : u 7→ [v0]u

of the space of symplectic forms in its wonderful compactification X. The parameters
a and b are computed as follows

a = max
1≤i≤n−1

{

2i(2n − i) + 1

ni

}

; and

b = #

{

i = 1, . . . , n− 1 : a =
2i(2n − i) + 1

ni

}

.

4 Equidistributions of Adelic Periods

Let G ⊂ GLN be a connected semisimple K-group. Let S be a finite subset of R
which contains all archimedean valuations v ∈ R such that G(Kv) is non-compact.
This assumption is needed so that the diagonal embedding of G(OS) into GS is a
discrete subgroup of GS . Let Γ ⊂ G(OS) be a finite index subgroup; hence Γ is a
lattice in GS .

Definition 4.1. • S is called isotropic for G if for any connected non-trivial normal
K-subgroup N of G, NS =

∏

v∈S N(Kv) is non-compact.

• S is called strongly isotropic for G if S contains v such that every Kv-normal
subgroup N of G is isotropic over Kv, i.e. N(Kv) is non-compact.

Clearly a strongly isotropic subset for G is isotropic for G.
For any connected semisimple K-subgroup L of G, π : L̃ → L denotes the simply

connected covering, that is, L̃ is a connected simply connected semisimple K-group
and π is a K-isogeny. Note that π induces a map L̃(Kv) → L(Kv) for each v ∈ R,
which is no more surjective in general.

Definition 4.2. G satisfies the strong approximation property with respect to S
if the diagonal embedding of G(K) into G(AS) is dense.

For the strong approximation theorems of algebraic groups, we refer to [PlR], for
instance, see Proposition 7.2 and Theorem 7.12 in [PlR] for the following:

Theorem 4.3. • If S is isotropic for G, then G̃ satisfies the strong approximation
property with respect to S.

• If v ∈ S is isotropic for G, then G̃(OS) is dense in G̃Sr{v}.
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Following Tomanov [To], we define the following:

Definition 4.4. A connected K-subgroup P of G is in class F relative to S if the
radical of P is unipotent and every K-simple factor of P is Kv-isotropic for some
v ∈ S.

The following is well-known, see [EMS1, Lem. 5.1], for example.

Lemma 4.5. Let L ⊂ G be connected reductive algebraic K-subgroups with no
non-trivial K-character. The following are equivalent:

(1) the centralizer of L is anisotropic over K;
(2) L is not contained in any proper K-parabolic subgroup of G;
(3) any K-subgroup of G containing L is reductive.

Set XS := Γ\GS , and let P(XS) denote the space of all Borel probability mea-
sures of XS . Let {Li} be a sequence of connected semisimple K-subgroups of G.
We denote by νi ∈ P(XS) the unique invariant probability measure supported on
Yi,S := Γ\Γπ(L̃i,S). For a given gi ∈ GS , giνi denotes the translated measure:
(giνi)(E) = νi(Eg

−1
i ) for Borel subsets E ⊂ XS

Theorem 4.6. Let S be strongly isotropic for all Li.

(1) Suppose that the centralizer of each Li is anisotropic over K. Then {giνi} is
relatively compact in P(XS).

(2) If giνi weakly converges to ν ∈ P(XS) as i→ ∞, then the followings hold:

(a) There exists a connected K-subgroup M in class F (with respect to S)
such that ν is the invariant measure supported on Γ\ΓMg for some closed
subgroup M of MS with finite index and for some g ∈ GS .

(b) There exists a sequence {γi ∈ Γ} such that for all sufficiently large i,

γiLiγ
−1
i ⊂ M .

(c) There exists a sequence {hi ∈ π(L̃i,S)} such that γihigi converges to g as
i→ ∞.

(d) If the centralizers of Li’s are K-anisotropic, M is semisimple.

Definition 4.7. For a closed subgroup L of GS , the Mumford–Tate subgroup
of L, denoted by MT(L), is defined to be the smallest connected K-subgroup of G
such that

L
0
⊂

∏

v∈S

MT(L)

where L
◦
denotes the identity component of the Zariski closure of L in GS .

In this terminology, M in the above Theorem 4.6 is the Mumford–Tate subgroup
of M .

Theorem 4.6 will be proved in sections 6 and 7 (see (6.2) and (7.2)). We will
deduce Theorem 1.7 from Theorem 4.6 in the rest of this section.

Lemma 4.8. If G0 is a subgroup of G(A) and G(K)G0 contains [G(A),G(A)],
then G(K)G0 is a normal subgroup of G(A).
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Proof. Let γi ∈ G(K) and gi ∈ G0. Using the notation [g, h] = ghg−1h−1,

γ1g1γ2g2 = γ1γ2[γ
−1
2 , g1]g1g2 ∈ G(K)G0 ;

(γ1g1)
−1 = γ−1

1 [γ1, g
−1
1 ]g−1

1 ∈ G(K)G0 ;

and for any g ∈ G(A),

g(γ1g
−1
1 )g−1 = γ1[γ

−1
1 , g−1][g−1, g1]g1 ∈ G(K)

[

G(A),G(A)
]

G0 = G(K)G0 .

This proves the claim. �

Of course the same argument shows a more genereal lemma that, if H1 and H2

are subgroups of a group G and [G,G] ⊂ H1H2, then H1H2 is a normal subgroup
of G.

Proposition 4.9. Let S be isotropic for G. For any compact open subgroup WS

of G(AS), the product GWS
:= G(K)π(G̃S)WS is a co-abelian (normal) subgroup

of finite index of G(A), which contains π(G̃(A)).

Proof. Consider the exact sequence 1 → F → G̃ → G → 1. This induces the exact
sequence

G̃(A) →π G(A) →
∏

v

H1(Kv, F )

(see the proof of Proposition 8.2 in [PlR]). Since
∏

vH
1(Kv, F ) is abelian, it follows

that [G(A),G(A)] ⊂ π(G̃(A)).
Since G̃ has the strong approximation property with respect to S,

G̃(AS) = G̃(K)π−1(WS) .

Therefore, we have
[

G(A),G(A)
]

⊂ π
(

G̃(A)
)

= π
(

G̃(AS)
)

π(G̃S)

⊂ G(K)π(G̃S)WS .

Hence, the claim follows from the above lemma. �

Corollary 4.10. (1) Let S be strongly isotropic for G. If G0 is a subgroup of
finite index inGS andWS is an open compact subgroup of G(AS), thenG(K)G0WS

is a normal subgroup of finite index of G(A).

(2) For any compact open subgroup W of G(Af ), the product

GW :=
{

γxw ∈ G(A) : γ ∈ G(K) , x ∈ π(G̃(A)) , w ∈W
}

is a normal subgroup of finite index in G(A) which contains π(G̃(A)).

Proof. Let v ∈ S be strongly isotropic forG. Then π(G̃(Kv)) coincides with the sub-
group G(Kv)

+ generated by all unipotent one-parameter subgroups of G(Kv), and
hence G0 contains π(G̃(Kv)). Choose any compact open subgroup W0 of GS−{v}.
Then

G(K)G0WS ⊃ G(K)π
(

G̃(Kv)
)

(W0WS)
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which is a normal subgroup of G(A) with finite index and contains [G(A),G(A)]
by the previous corollary. Therefore, by Lemma 4.8, the first claim follows. For the
second claim, let S be a strongly isotropic subset of G. Let WS < W be a compact
open subgroup of G(AS). Then GWS

is a co-abelian normal subgroup of G(A) of
finite index by Proposition 4.9. Since GW = GWS

W , the claim follows. �

For an isotropic set S for G, and a compact open subgroup WS of G(AS), every
element g of GWS

can be written as

g = (γg, γg)(gS , w)

where γg ∈ G(K) and gS ∈ π(G̃S) and w ∈ WS (here we are using the identifi-
cation G(A) = GS × G(AS)). The choice of gS ∈ G(K) is unique up to the left
multiplication by the elements of the group

Γ :=
{

γ ∈ G(K) : γ ∈WS , γ ∈ π(G̃S)
}

= (G(K) ∩WS) ∩ π(G̃S) .

Lemma 4.11. Let L be a connected semisimple K-subgroup of G and assume that
S is isotropic both for L and G. Let g ∈ GWS

.

(1) The map g 7→ gS induces a π(G̃S)-equivariant homeomorphism, say Φ, be-
tween G(K)\GWS

/WS and Γ\π(G̃S) where Γ = G(K) ∩ π(G̃S) ∩WS.
(2) The map Φ maps G(K)\G(K)π(L̃(A))gWS/WS onto Γ\Γ(γ−1

g π(L̃S)γg)gS ,
inducing a measurable isomorphism between them.

(3) If µ is the invariant probability measure supported on G(K)\G(K)π(L̃(A))
(considered as a measure on G(K)\GWS

), then the measure g.µ, considered
as a functional on Cc(G(K)\GWS

)WS , is mapped by Φ to the invariant prob-
ability measure supported on Γ\Γ(γ−1

g π(L̃S)γg)gS , which will be denoted by
Φ∗(g.µ).

Proof. It is easy to check that the map g 7→ (gS , w) induces a π(G̃S)-equivariant
homeomorphism between G(K)\GWS

and Γ\(π(G̃S) ×WS). The first claim then
follows. For (2), let h ∈ π(L̃(A)). Since S is isotropic for L, we have

π
(

L̃(A)
)

⊂ L(K)π(L̃S)
(

gWSg
−1 ∩ π(L̃(AS))

)

.

Without loss of generality, we may assume that the WS-component of g
is e, i.e. w = e. We can write h = (δ, δ)(hS , gw

′g−1) where δ ∈ L(K),
hS ∈ π(L̃S) and w

′ ∈WS ∩ g−1π(L̃(AS))g. Note that gw′g−1 = γgw
′γ−1

g . So hg =
(δγg, δγg)(γ

−1
g hSγggS , w

′) and hence

Φ[hg] = Γ\Γγ−1
g hSγggS .

This also explains the measurable isomorphism between

G(K)\G(K)π
(

L̃(A)
)

gWS/WS and

Γ\Γ
(

γ−1
g π(L̃S)γg

)

gS ,

and proves the third claim. �
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Proof of Theorem 1.7, assuming Theorem 4.6. Let {Li}, gi and µi be as in the
introduction. Let S be any isotropic subset for G which intersects with ∩iILi non-
trivially and contains all archimedean valuations v such that G(Kv) is non-compact.
Fixing some compact open subgroup WS of G(AS), let Φ be the map defined in
Lemma 4.11 for this choice of S and WS . If the first claim in Theorem 1.7 does
not hold, then Φ∗(giµi) is not relatively compact in Γ\Γπ(G̃S), which contradicts
Theorem 4.6.

To prove the second claim, let WS be a compact open subgroup of G(AS), and
set XWS

= G(K)\GWS
. Letting Φ be the map defined in Lemma 4.11 for this choice

of S and WS, we have that Φ∗(giµi) weakly converges to Φ∗(µ) in the space of Borel
measures of XS := Γ\GS and Γ := G(K) ∩WS ∩ π(G̃S).

Write
gi = (γgi , γgi)(gi,S , wi)

where γgi ∈ Γ, gi,S ∈ π(G̃S) and wi ∈ WS . Then the measure Φ∗(giµi) is precisely
gi,Sνi where νi is the invariant probability measure supported on Γ\Γ(γ−1

gi π(L̃i,S)γgi).
Applying Theorem 4.6 to GS , γ

−1
gi Liγgi and gi,S, we obtain a connected K-group

M ∈ F (with respect to S), g ∈ π(G̃S), γi ∈ Γ and hi ∈ γ−1
gi π(L̃i)γgi , which depend

on a priori S and WS , such that

γiγ
−1
gi Liγgiγ

−1
i ⊂ M

and γihigi,S → g, and that for some finite index subgroup M of MS , Φ∗(µ) is the
invariant probability measure supported on Γ\ΓMg.

We now claim that M can be taken simultaneously for any S as above and for
all WS . We denote (M,g) by i(S,WS). LetWS andWS′ be open compact subgroups
of G(AS) and G(AS′) respectively. Without loss of generality, we may assume that
S ⊂ S′ and WS′ ⊂ WS. Let W0 < WS be a compact open subgroup of π(G̃S′−S)
and set W ′ := WS′W0. Then GWS′

= GW ′ . We set Γ := G(K) ∩ WS ∩ π(G̃S)

and Γ′ := G(K) ∩W ′ ∩ π(G̃S). If Φ denotes the bijection of G(K)\GWS
/WS and

Γ\π(G̃S) and Φ′ similarly for W ′
S , then Φ∗(µ) and Φ′

∗(µ) are invariant measures
supported on Γ\ΓMg and Γ\ΓM ′g′ for some g, g′ ∈ π(G̃S). Here M and M ′ are
finite index subgroups of MS and M′

S respectively where M and M′ denote the
Mumford–Tate subgroups ofM andM ′ respectively. Since both Φ′

∗(µ) and Φ∗(µ) are
the limits of images of giµi, it is clear that the canonical projection from Γ′\π(G̃S)
to Γ\π(G̃S) maps Φ′

∗(µ) to Φ∗(µ). Therefore, g
′ = γmg for some γ ∈ Γ and m ∈M ,

and Φ∗(µ) is invariant under g−1Mg which implies that g−1Mg = g′−1M′g′ (see
Lemma 6.7 below). Hence, m−1γ−1M′γm = M or equivalently γ−1M′γ = M.
Therefore, by replacing M ′ by γ−1M ′γ, Φ′

∗(µ) is the invariant probability measure
supported on Γ′\Γ′M ′g′ where the Mumford–Tate subgroup of M ′ is M. Hence,
M = M′.

Therefore, for a fixed M, we have associated to every S and WS a finite index
subgroup M of MS and g ∈ GS such that i(S,WS) = (M,g), proving the claim.

Now fix one S which is also strongly isotropic for M, and set i(S,WS) = (M,g).
Then M0 := M(K)M(M(AS) ∩WS) is a finite index normal subgroup of M(A) by
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Corollary 4.10. Let dm and dw denote the Haar measures on M and M(AS) ∩WS

respectively such that dm and d(m⊗w) induce probability measures on Γ\ΓM and
Γ\Γ(M × (M(AS) ∩WS)) respectively.

For f ∈ Cc(XWS
)WS ,

µ(f) = Φ∗(µ)(Φ(f)) =

∫

Γ\ΓM
Φ(f)(mg)dm

=

∫

Γ\Γ(M×(M(AS )∩WS))
Φ(f)(mg)dmdw

=

∫

G(K)\G(K)M0

f(m0g)dm0

where dm0 is the invariant probability measure onG(K)\G(K)M0. Since Cc(X,Wf )
and Cc(XWS

)WS can be canonically identified, this finishes the proof.

If the sequence giµi weakly converges to µ ∈ P(X), we say that the orbits Yigi
become equidistributed in X with respect to the measure µ.

Corollary 4.12. Let G be simply connected and {Li} be a sequence of semi-
simple simply connected maximal connected K-subgroups of G such that ∩iILi 6= ∅.
Then for any sequence gi ∈ G(A), either of the following holds:

(1) the sequence x0Li(A)gi is equidistributed in G(K)\G(A) with respect to the
invariant measure as i→ ∞;

(2) there exist i0 ∈ N, {δi ∈ G(K)} and g ∈ G(A) such that for infinitely many i,

δ−1
i Liδi = Li0 ; and hence x0Li(A)gi = x0Li0(A)δigi ,

and liδigi converges to g for some li ∈ Li0(A).

Proof. Since [NG(Li) : Li] < ∞ and Li’s are semisimple, their centralizers are
K-anisotropic. Hence, by Theorem 1.7, {giµi} is weakly compact in the space of
probability measures on G(K)\G(A). Let µ be a weak-limit and let M be as in
Theorem 1.7. If M 6= G, by passing to a subsequence, we have that Li’s are
conjugate with each other by elements of G(K). Hence, we may assume Li =
δ−1
i Li0δi for some δi ∈ G(K) and δihigi → g for some hi = δ−1

i liδi with li ∈ Li0(A).
Hence, (2) happens.

Now suppose that, for every weak-limit µ, we have M = G. Fix a finite subset
S ⊂ R such that R∞ ⊂ S and S ∩ (∩iILi) ∩ IG 6= ∅. Since G is simply connected,
GWS

= G(A) for any compact open subgroup WS of G(AS), and the restriction of
µ to Cc(G(K)\G(A))WS is the Tamagawa measure, since M0 = G(A) for any WS.

Since ∪WS
Cc(X)WS is dense in Cc(X), this implies µ is an invariant measure.

Therefore, giµi converges to the invariant measure and yields the equidistribution (1).

Proof of Theorem 1.8. If we set G0 := G × G and ∆(G) denotes the diagonal
embedding of G into G0, it can be easily seen that the Adelic mixing theorem is
equivalent to the equidistribution of the translates x0∆(G)(A)(e, gi) in the space
G0(K)\G0(A) for any gi → ∞ (see [O3] for details). Since G is almost K-simple,
∆(G) is a maximal connected K-subgroup of G0, we may apply Theorem 1.8. If the
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second case happens, we have δi belongs to the normalizer of ∆(G). Since ∆(G)
has finite index in its normalizer, by passing to a subsequence, we may assume
δi = e. Now since gi → ∞, we cannot have li ∈ ∆(G)(A) such that ligi is conver-
gent. Therefore, (2) of Theorem 1.8 cannot happen, and consequently the claim is
proved. �

Remark 4.13. In the above and the next corollary, the assumption on the maximal-
ity of L appears to be more than we need, which is that L is maximal as a semisimple
K-group and [NG(Li) : Li] < ∞. However, for L semisimple, [NG(L) : L] < ∞ is
same as the centralizer of L being finite, and any connected K-group containing a
semisimple group with a finite centralizer is automatically semisimple (cf. [EMV]).

We now prove an analogue of Corollary 4.12 when G and L are not necessarily
simply connected.

Corollary 4.14. Let L be a semisimple maximal connected K-subgroup of G.
Let W be a compact open subgroup of G(Af ), and let gi ∈ GW be a sequence going
to infinity modulo L(A). Let ν be the invariant probability measure supported on
L(K)\(L(A) ∩ GW ) considered as a measure on XW := G(K)\GW . Then for any
f ∈ Cc(XW )W ,

lim
i→∞

∫

x∈XW

f(xgi)dν(x) =

∫

XW

f dµ

where µ is the probability Haar measure on XW .

Proof. Let S be a strongly isotropic subset for L. Since GW contains
L(K)(π(G̃S) ∩ LS)(WS ∩ L(AS)), by Corollary 4.10, GW contains π(L̃(A)). Also,
by the same corollary, for each gi ∈ GW , L(K)π(L̃(A))(giWg−1

i ∩ L(Af )) is a nor-
mal subgroup of L(A) ∩ GW with finite index. Hence, there exists a finite subset
∆gi ⊂ L(A) ∩GW such that

L(A) ∩GW = ∪x∈∆gi
L(K)π

(

L̃(A)
)

x
(

giWg−1
i ∩ L(Af )

)

where the union is a disjoint union. Therefore, for f ∈ Cc(XW )W , the integral
(giν)(f) is equal to a finite linear combination of integrals of f against invariant
measures on x0π(L̃(A))xgi, x ∈ ∆gi .

Hence, it suffices to show the following: for any xi ∈ ∆gi , and f ∈ Cc(XW )W ,
∫

x0π(L̃(A))xigi

f dµi →

∫

f dµ

where µi is the invariant probability measure supported on x0π(L̃(A))xigi.
We apply Theorem 1.7 for any weak-limit ν of µi. By (1), we have ν ∈ P(XW ).

We claim M = G. Suppose not. Since L is maximal, we have δi ∈ G(K) and
hi ∈ π(L̃(A)), g ∈ GW such that δiLδ

−1
i = δjLδ

−1
j for all large i and δihixigi → g.

Since L has a finite index in the normalizer of L, by passing to a subsequence,
there exist δ0 ∈ G(K), and δi ∈ δ0L(A) such that (δ−1

0 δi)hixigi → δ−1
0 g. Since

δ−1
0 δihi ∈ L(A) and xigi → ∞ modulo L(A), this is a contradiction. Hence, by
Theorem 1.7, ν is an invariant measure supported on x0M0g where M0 contains
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G(K)π(G̃(A))W . Since GW = G(K)π(G̃(A))W , we conclude that ν = µ, proving
the claim. �

5 Counting Rational Points of Bounded Height

The basic strategy is due to Duke, Rudnick, Sarnak [DuRS], which can be summa-
rized as follows. Let L ⊂ G be unimodular locally compact groups and Z := L\G.
Let µG, µL and µ be invariant measures on G, L and Z respectively which are
compatible with each other, that is, if for any f ∈ Cc(G),

∫

f dµG =

∫

L\G

∫

L
f(hg)dµL(h)dµ(Lg) .

Definition 5.1. For a fixed compact subgroup W of G, a family {BT ⊂ Z} of
compact subsets is called W -well-rounded if BTW = BT for all large T and there
exists c > 0 such that, for every small ǫ > 0, there exists a neighborhood Uǫ of e in
G such that, for all sufficiently large T ,

(1− c · ǫ)µ(BTUǫW ) ≤ µ(BT ) ≤ (1 + c · ǫ)µ(∩u∈UǫWBTu) . (5.2)

Note that this is a slight variant of the notion of well-roundedness introduced in
[EM].

Proposition 5.3. Let Γ ⊂ G be a lattice such that Γ ∩ L is a lattice in L. Let
W ⊂ G be a compact subgroup. Suppose that for Y := [e]L ⊂ Γ\G, the translates
Y g become equidistributed in Γ\G as g → ∞ in Z with respect to Cc(Γ\G)

W , that
is, for any f ∈ Cc(Γ\G)

W ,
∫

Y
f(yg)dµL(y) →

∫

Γ\G
f dµ .

Then for any W -well-rounded sequence {BT ⊂ Z} of compact subsets whose
volume tends to infinity, we have

#z0Γ ∩BT ∼
µL(L ∩ Γ\L)

µG(Γ\G)
µ(BT ) .

Proof. Without loss of generality, we may assume that µL(L∩Γ\L) = 1 = µG(Γ\G).
Let Uǫ be as in Definition 5.2. We may assume that Uǫ is symmetric and Uǫ ∩ Γ = {e}.
If we define a function on Γ\G by

FBT
(g) :=

∑

γ∈Γ∩L\Γ

χBT
(z0γg)

where χBT
is the indicator function of BT , then FBT

(e) = #(z0Γ ∩BT ). Let ψǫ be
a non-negative W -invariant continuous function on Γ\G with support in Γ\ΓUǫW
and with integral one. Set F+

T = FBTUǫW and F−
T = F∩u∈UǫWBT u. Observe that, for

any g ∈ UǫW ,
F−
T (g) ≤ FBT

(e) ≤ F+
T (g) ,
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and hence
〈F−

T , ψǫ〉 ≤ FBT
(e) ≤ 〈F+

T , ψǫ〉

where the inner product takes place in L2(Γ\G). One can easily see that

〈F+
T , ψǫ〉 =

∫

g∈BTUǫW

∫

y∈Y
ψǫ(yg)dµL(y)dµ(g) .

By the assumption,
∫

y∈Y
ψǫ(yg)dy → 1

as g → ∞ on Z and hence if the volume of BT goes to infinity as T → ∞, we have

〈F+
T , ψǫ〉 ∼ vol(BTUǫW ) .

Similarly, we have
〈F−

T , ψǫ〉 ∼ vol(∩u∈UǫWBTu) .

Using the W -well-roundedness assumption on BT , it is easy deduce that
FBT

(e) ∼ µ(BT ) (see [BeO2] for details). �

Let G be a connected semisimple algebraic group defined over K, with a given
K-representation ι : G → GLd+1. Let U := u0G ⊂ Pd for u0 ∈ Pd(K), and fix a
height function HO(1) on Pd(K) as in the introduction. That is, HO(1) =

∏

v∈R Hv

where Hv is a norm on Kd+1
v and is a max norm for almost all v.

We set
NT (U) := #

{

x ∈ U(K) : HO(1)(x) < T
}

.

We assume that

(i) L = StabG(u0) is a semisimple maximal proper connected K-subgroup of G.
(ii) There are only finitely many G(A)-orbits on U(A).

We note that (ii) is equivalent to saying that for almost all v ∈ R, G(Kv) acts
transitively on U(Kv) (see Theorem A.1.2). Denote by X ⊂ Pd the Zariski closure
of U and by L the line bundle which is the pull back of OPd(1). We assume that
there is a global section s of L such that U = {s 6= 0}. By Theorem 2.2, s is G-
invariant. Let s0, . . . , sd be the global sections of L which are the pull-backs of the
coordinates xi’s. Using the height function HO(1) =

∏

v∈R Hv, we define the adelic
height function HL =

∏

v HL,v : U(A) → R>0 where

HL,v(x) = Hv

(

s0(x)

s(x)
, . . . ,

sd(x)

s(x)

)

.

Set
BT :=

{

x ∈ U(A) : HL(x) < T
}

.

The assumption (ii) implies that the set U(K) consists of finitely many G(K)-
orbits (Theorem A.1.2). Choose a set u1, . . . , ul ∈ U(K) of representatives of these
orbits, and denote by L1, . . . ,Ll their stabilizers in G. Then

NT (U) =
l

∑

i=1

#
(

BT ∩ uiG(K)
)

.



GAFA RATIONAL POINTS AND ADELIC PERIODS 31

A naive heuristic

#BT ∩ uiG(K) ∼T vol
(

BT ∩ uiG(A)
)

does not hold in general unless G is simply connected. To correct this problem, we
consider the following finite index subgroup of G(A):

Recall from Lemma 2.7 that the following is an open subgroup of G(Af ):

WHL
:=

{

g ∈ G(Af ) : HL(ug) = HL(u) for all u ∈ U(A)
}

.

Recall from Corollary 4.10 that for any compact open subgroup W of G(Af ),

GW :=
{

γxw ∈ G(A) : γ ∈ G(K) , x ∈ π(G̃(A)) , w ∈W
}

is a normal subgroup of G(A) with finite index.
Let µ be the Tamagawa measure on U(A), and choose invariant measures µG

and µLi on the adelic spaces G(A) and Li(A) respectively so that µG = µ × µLi

locally.
The main Theorem 1.1 in the introduction follows from the following:

Theorem 5.4. (1) If the height function HL is regular, then for any compact open
subgroup W of WHL

NT (U) ∼T

l
∑

i=1

µLi(Li(K))\GW ∩ Li(A))

µG(G(K)\GW )
µ(uiGW ∩BT ) .

(2) For a = a(L) and b = b(L) defined as in (2.11),

NT (U) ≍ T a(log T )b−1.

(3) Suppose that G is simply connected, or that G(A) = GW for someW . Then,
for some c > 0,

NT (U) ∼ c · T a(log T )b−1.

Proof. Fixing 1 ≤ i ≤ l, we apply the above proposition to G = GW , L = Li(A)∩GW

and Y = G(K)\G(K)L ⊂ G(K)\G.
By Corollary 4.14, the translates Y g become equidistributed in G(K)\GW with

respect to Cc(G(K)\GW )W .
And by Theorem 2.21, the family {BT ∩ uiGW } is W -well-rounded. Hence, (1)

follows from Proposition 5.3. (2) follows from (1) using Corollary 2.21. For (3), first
note that GW = G(A) forG simply connected. Theorem 2.16 implies BT∩uiG(A) is
W -well-rounded, and hence (1) holds under the hypothesis of (3), without assuming
that HL is regular. It remains to apply the asymptotic given Theorem 2.16 once
more. �

Proof of Corollary 1.5. Since X is smooth, Lk is G-linearized for some k (cf.
[KnKL]). Therefore, by replacing L by Lk if necessary, we are in the setup of
Theorem 5.4. Since aL = a(L) and bL = b(L) (see the proof of Corollary 3.3), the
claim follows from Theorem 5.4.
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Proof of Corollary 1.9. Let ‖ · ‖p denote the max norm on QN
p for each p. Fix

any compact subset Ω ⊂ v0G(R) with boundary of measure zero and vol(Ω) > 0. If
m =

∏

p:prime p
mp (of course, mp = 0 for almost all p), set

Bm :=
{

(xp) ∈ v0G(A) : x∞ ∈ Ω , ‖xp‖p ≤ pmp for each p
}

.

That is, for B′
m := v0G(Af ) ∩

∏

pU(m−1Zp), we have Bm := Ω × B′
m. Since B′

m

is invariant under the subgroup
∏

pG(Zp), the family {Bm} is clearly well-rounded.
Moreover, since G is simply connected, GWS

= G(A) for any strongly isotropic S
for G.

By the computation in [BeO2, Cor. 7.7],

µ(Bm) := µ∞(Ω)
∏

p

µp
(

U(m−1Zp) ∩ v0G(Qp)
)

→ ∞

if m→ ∞, subject to Bm 6= ∅.
Therefore, by Proposition 5.3, we have, as m→ ∞, subject to Bm 6= ∅,

#v0G(Q) ∩Bm ∼ µ(Bm) .

Observe that if x ∈ U(Q) ∩Bm, then x ∈ U(m−1Z) ∩ Ω, and hence

#v0G(Q) ∩Bm ≤ #U(m−1Z) ∩ Ω .

Consequently, for all sufficiently large m, Bm 6= ∅ implies U(m−1Z) 6= ∅.
In the case when L is simply connected, there is exactly one G(Q)-orbit in each

G(R)-orbit and hence for Ω ⊂ v0G(R)

#v0G(Q) ∩Bm = #U(Q) ∩Bm = #U(m−1Z) ∩ Ω .

Hence, the above argument shows (2).

6 Limits of Invariant Measures for Unipotent Flows

6.1 Statements of the main theorem. Let K be a number field, and G be
a connected K-group with no non-trivial K-character. Let S be a finite set of
(normalized) valuations of K including all the archimedean v ∈ R such that G(Kv)
is non-compact. For each valuation v ∈ S, we denote by | · |v the normalized absolute
value on the completion field Kv, and by θv the normalized Haar measure on Kv.

Let G be a finite index subgroup of

GS :=
∏

v∈S

G(Kv) ,

and Γ be an S-arithmetic subgroup of G, that is, Γ ⊂ G(K) is commensurable with
G(OS), where OS denotes the ring of S-integers in K. Then Γ is a lattice in G by
a theorem of Borel [Bor1].

Recall the definition of class F-subgroups of G from Definition 4.4. Equivalently,
a connected K-subgroup P of G is in class F relative to S if for each proper normal
K-subgroup Q of P there exists v ∈ S such that (P/Q)(Kv) contains a non-trivial
unipotent element.
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Note that for every subgroup L of finite index in PS with P ∈ F, the orbit Γ\ΓL
is closed and supports a finite L-invariant measure.

For a closed subgroup L of GS , we denote by Lu the closed subgroup of L
generated by all unipotent one-parameter subgroups of L. We note that since G has
a finite index in GS , every one-parameter unipotent subgroup of GS is contained
in G.

Definition 6.1. We say that a closed subgroup L of G is in class H if there exists
a connected K-subgroup P in class F relative to S such that L has a finite index
in PS and Lu acts ergodically on Γ\ΓL with respect to the L-invariant probability
measure.

Set X = Γ\G. We denote by P(X) the space of probability measures on X
equipped with the weak∗ topology. For µ ∈ P(X) and d ∈ G, the translate dµ
is defined by dµ(E) = µ(Ed−1) for any Borel subset E of X. We also define the
invariance subgroup for µ ∈ P(X) by

Λ(µ) = {d ∈ G : dµ = µ} .

For a unipotent one-parameter subgroup U = {u : Kv → G(Kv)}, x ∈ X and
µ ∈ P(X), the trajectory xU is said to be uniformly distributed relative to µ if, for
every f ∈ Cc(X),

lim
T→∞

1

θv(IT )

∫

t∈IT

f(xu(t)) dθ(t) =

∫

X
f(x) dµ(x)

where IT = {t ∈ Kv : |t|v < T}.
We present a generalization of the theorem of Mozes and Shah in [MoS] in the

S-arithmetic setting, which is the main result of this section:

Theorem 6.2. Let v ∈ S and {Ui} be a sequence of one-parameter unipotent
subgroups of G(Kv). Let {µi : i ∈ N} be a sequence of Ui-invariant ergodic
measures in P(X). Suppose that µi → µ in P(X) and let x = Γ\Γg ∈ supp(µ).
Then the following holds:

(1) There exists a closed subgroup L ∈ H such that µ is an invariant measure
supported on Γ\ΓLg. In particular

supp(µ) = xΛ(µ) .

(2) Let zi → e be a sequence in G such that xzi ∈ supp(µi) and the trajectory
{xziUi} is uniformly distributed with respect to µi. Then there exists i0 such
that, for all i ≥ i0,

supp(µi) ⊂ supp(µ)zi and Λ(µi) ⊂ z−1
i Λ(µ)zi .

(3) Denote by H the closed subgroup generated by the set {ziUizi
−1 : i ≥ i0}.

Then H ⊂ g−1Lg and µ is H-ergodic.

We state some corollaries of Theorem 6.2, as in [MoS]. Let Q(X) denote the set
P(X) of probability measures µ on X such that the group generated by all unipotent
one-parameter subgroups of G contained in Λ(µ) acts ergodically on X with respect
to µ. The following is an immediate consequence of the above theorem:
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Corollary 6.3. (1) Q(X) is a closed subset of P(X).

(2) For x ∈ X, Q(x) := {µ ∈ Q(X) : x ∈ supp(µ)} is a closed subset of P(X).

Let X ∪ {∞} denote the one-point compactification of X. As is well known,
P(X ∪ {∞}) is compact with respect to the weak∗-topology.

Combined with a theorem proved by Kleinbock and Tomanov (see Theorem 7.4),
we can also deduce the following:

Corollary 6.4. (1) Let {µi ∈ Q(X)} be a sequence of measures converging weakly
to a measure µ ∈ P(X ∪ {∞}). Then either µ ∈ Q(X) or µ({∞}) = 1.

(2) For x ∈ X, Q(x) is compact with respect to the weak∗-topology.

6.2 Deduction of Theorem 4.6(2) from Theorem 6.2. We will now deduce
Theorem 4.6(2) from Theorem 6.2.

Lemma 6.5. Let L be a connected semisimple K-subgroup of G. If S is strongly
isotropic for L, then there exists a one-parameter unipotent subgroup U = {u(t)}
of L̃(Kv) for some v ∈ S, which acts ergodically on Γ\Γπ(L̃S).

Proof. Let v ∈ S be strongly isotropic for L. Denote by L(Kv)
+ the subgroup

generated by all unipotent one-parameter subgroups in L(Kv). Then by [BorT],

π(L̃(Kv)) = L(Kv)
+.

First, we show that L(Kv)
+ acts ergodically on Γ\ΓL̃S . Since L̃ satisfies the

strong approximation property with respect to {v} and π−1(Γ)∩L̃S is an S-arithmetic
subgroup of L̃S, it follows that the diagonal embedding of π−1(Γ) ∩ L̃S is dense in
∏

v∈Sr{v} L̃(Kv) by Theorem 4.3. This implies that (Γ ∩ π(L̃S))L(Kv)
+ is dense in

π(L̃S).
Since L̃(Kv) is a normal subgroup of L̃S , this implies that π−1(Γ) ∩ L̃S acts

ergodically on L̃(Kv)\L̃S . By the duality, this implies that L̃(Kv) acts ergodically
on π−1(Γ) ∩ L̃S\L̃S , and hence on Γ\ΓL̃S .

Since every Kv-simple factor of L is Kv-isotropic, there exists a unipotent one-
parameter subgroup U of L̃(Kv) such that L̃(Kv) is the smallest normal subgroup
containing U . Now, by the S-algebraic version of Mautner phenomenon (Proposi-
tion 6.21), any U -invariant function in L2(Γ\ΓL̃S) is L̃(Kv)-invariant, and conse-
quently a constant function. Hence, the ergodicity of the U -action Γ\ΓL̃S follows. �

Proof of Theorem 4.6(2). Fix v ∈ S which is strongly isotropic for all Li. It
follows from Lemma 6.5 that νi is ergodic with respect to one-parameter unipotent
subgroups U ′

i := g−1
i Uigi, where Ui = {ui(t)} ⊂ Li(Kv)

+ is as in Lemma 6.5. Hence,
we may apply Theorem 6.2(1) to conclude that ν is an invariant measure supported
on Γ\ΓMg for some closed subgroup M ∈ H and g ∈ GS . In particular, M is a
finite index subgroup in MS where M is the Mumford–Tate subgroup of M which is
in class F (see Definition 4.7). By the Birkhoff pointwise ergodicity theorem, there
exists a sequence zi = g−1γihigi → e for some γi ∈ Γ and hi ∈ L̃i(Kv) and the tra-
jectory Γ\ΓgziU

′
i is uniformly distributed with respect to giνi. By Theorem 6.2(2),
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we have
g−1
i L̃igi ⊂ z−1

i (g−1Mg)zi

for all large i. This implies that

γiL̃iγ
−1
i ⊂ M

as well as that γihigi converges to g as i tends to infinity. Now for (d), suppose that
the centralizers of Li are K-anisotropic. Since M is reductive by Lemma 4.5 and it
belongs to class F with respect to S, M is semisimple.

6.3 Measures invariant under unipotent flows. The crucial ingredient in
our proof of Theorem 6.2 is a fundamental theorem of Ratner [R] on the classification
of the measures in P(X) which are ergodic with respect to unipotent subgroups of G.
In the S-arithmetic case, also see [MT1].

We will use the following more precise description due to Tomanov:

Theorem 6.6 [To, Th. 2]. Let W be a subgroup of G generated by unipotent
one-parameter subgroups.

(1) For any W -invariant ergodic probability measure µ on X, there exist a sub-
group L ∈ H and g ∈ G such that W ⊂ g−1Lg and µ is the invariant measure
supported on Γ\ΓLg.

(2) For every g ∈ G, there exists a closed subgroup L ∈ H such that W ⊂ g−1Lg
and

Γ\ΓgW = Γ\ΓLg .

Although it is assumed in [To] that S contains all archimedean valuations of K
and G = GS , these assumptions are not used in the proof.

Lemma 6.7. For P,Q ∈ H, we haveMT(P ) ⊂ MT(Q) if and only if Γ\ΓP ⊂ Γ\ΓQ.

Proof. In the proof we shall use the notion of Lie algebra for groups which are
products of real and p-adic Lie groups. This is a natural extension of the classical
notion and has the same basic properties (see, for instance, [MT2]). Suppose that
MT(P ) ⊂ MT(Q). Then P ∩ Q has finite index in P and hence Pu ⊂ Qu. Since
Pu is normal in P and it acts ergodically on Γ\ΓP , it follows that Γ\ΓPu = Γ\ΓP .
Hence,

Γ\ΓP ⊂ Γ\ΓQ .

Conversely, suppose that Γ\ΓP ⊂ Γ\ΓQ. Since P and Q have finite indices
in MT(P )S and MT(Q)S respectively, it follows that the Lie algebra of MT(P )S is
contained in the Lie algebra of MT(Q)S . Hence, MT(Q)S contains an open subgroup
of MT(P )S . Since such groups are Zariski dense in MT(P ), we deduce that MT(P ) <
MT(Q). �

Let W be a closed subgroup of G generated by one-parameter unipotent sub-
groups in it. For each L ∈ H, define

N(L,W ) = {g ∈ G :W ⊂ g−1Lg} ,

S(L,W ) = ∪M∈H,MT(M)(MT(L)N(M,W ) ,
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TL(W ) = π
(

N(L,W )− S(L,W )
)

,

where π : G→ Γ\G denotes the canonical projection.
Note that for L ∈ H, L has finite index in MT(L)S and hence L contains the

closed subgroup of MT(L)S generated by all unipotent elements of MT(L)S . Hence

N(L,W ) =
{

g ∈ G :W ⊂ g−1 ·MT(L)S · g
}

.

Note also that for any P,Q ∈ H with MT(P ) = MT(Q),

N(P,W ) = N(Q,W ) , S(P,W ) = S(Q,W ) and hence TP (W ) = TQ(W ) .

Lemma 6.8. For any g ∈ N(L,W ) r S(L,W ), the closure of Γ\ΓgW is equal to
Γ\ΓLg.

Proof. By Theorem 6.6, there exists M ∈ H such that W ⊂ g−1Mg and Γ\ΓgW =
Γ\ΓMg. Since Γ\ΓgW ⊂ Γ\ΓLg and Γ\ΓLg is closed, we have

Γ\ΓM ⊂ Γ\ΓL .

Hence, by Lemma 6.7, MT(M) ⊂ MT(L) . Since g /∈ S(L,W ), MT(L) = MT(M)
and hence by Lemma 6.7,

Γ\ΓL = Γ\ΓM .

This proves the lemma. �

Note that Lemma 6.8 implies that

TL(W ) = π
(

N(L,W )
)

− π
(

S(L,W )
)

. (6.9)

Lemma 6.10. For P,Q ∈ H, the following are equivalent:

(i) TP (W ) ∩ TQ(W ) 6= ∅;
(ii) MT(P ) = γMT(Q)γ−1 for some γ ∈ Γ;
(iii) TP (W ) = TQ(W ).

Proof. Suppose g ∈ N(P,W ) − S(P,W ) and γg ∈ N(Q,W ) − S(Q,W ) for some
γ ∈ Γ. Then by Lemma 6.8, the closure of Γ\ΓgW is equal to

ΓPg = ΓQγg = Γγ−1Qγg .

Hence, by Lemma 6.7,

MT(P ) = MT(γQγ−1) = γMT(Q)γ−1.

This shows (i) implies (ii). If (ii) holds, then N(P,W ) = γN(Q,W ) and S(P,W ) =
γS(Q,W ). Hence, (iii) follows. The claim that (iii) implies (i) is obvious. �

Let F∗ be the Γ-conjugacy class of Mumford–Tate subgroups of L ∈ H. For
each [L] ∈ F∗, choose one subgroup L ∈ H with MT(L) = L. We collect them in a
set H∗. Note that H∗ is countable and the sets TL(W ), H ∈ H∗, are disjoint from
each other.

Theorem 6.11. Let µ ∈ P(X) be a W -invariant measure. For every L ∈ H, let
µL denote the restriction of µ to TL(W ). Then
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(1) µ =
∑

L∈H∗ µL.
(2) Each µL is W -invariant. For any W -ergodic component ν ∈ P(X) of µL,

there exists g ∈ N(L,W ) such that ν is the unique g−1Lg-invariant measure
on Γ\ΓLg.

Proof. We first disintegrate µ into W -ergodic components. By Theorem 6.6, each of
them is of the form νg where L ∈ H, g ∈ N(L,W )−S(L,W ), and ν is the normalized
L-invariant measure on Γ\ΓL. Now the claim follows from Lemma 6.8, (6.9), and
Lemma 6.10. �

6.4 Linearization. Let L ∈ H. Let g denote the Lie algebra of G and l the Lie
subalgebra of MT(L). For d = dim(l), we consider the K-rational representation

∧dAd : G → GL(VL) where VL := ∧dg .

We set VL =
∏

v∈S VL(Kv) and fix pL ∈ (∧dl)(K), pL 6= 0.
Consider the orbit map ηL : G→ VL given by

ηL
(

(gv)v∈S
)

:= (pLgv)v∈S .

Let

ΓL :=
{

γ ∈ Γ : γ−1MT(L)γ = MT(L)
}

,

Γ0
L :=

{

γ ∈ Γ : ηL(γ) = pL
}

=
{

γ ∈ ΓL : det(Ad(γ)|l) = 1
}

.

By Lemma 6.7, we have Γ\ΓL = Γ\ΓLγ for γ ∈ ΓL. This implies that γ ∈ ΓL

preserves the volume and
∏

v∈S

∣

∣det(Ad(γ)|l)
∣

∣

v
= 1 . (6.12)

Hence, ηL(ΓL) ⊂ O×
S · pL where O×

S denotes the group of units in OS .
Following Tomanov [To, 4.6], we define the notion of S(v0)-small subsets of VL.

We fix δ > 0 such that for any w ∈ S, any α ∈ O×
S satisfying maxv∈Sr{w} |1−α|v < δ

is a root of unity in K.

Definition 6.13. Let v0 ∈ S. A subset C =
∏

v∈S Cv ⊂ VL is S(v0)-small if for
any v ∈ S\{v0} and α ∈ K×

v , αCv ∩ Cv 6= ∅ implies that |1− α|v < δ.

Then, for α ∈ O×
S and S(v0)-small subset C of VL,

αC ∩ C 6= ∅ =⇒ α ∈ µK

where µK is the set of roots of unity in K.
We set

V̄L = VL
/{

α ∈ µK : αpL ∈ ηL(ΓL)
}

.

Now η̄L denotes the composition map of ηL with the quotient map VL → V̄L.
Since Γ is an S-arithmetic subgroup of G and pL is rational, it is clear that η̄L(Γ)

is a discrete subset in V̄L, and the map

Γ0
L\G → Γ\G× V̄L : Γ0

Lg 7→
(

Γg, η̄L(g)
)

(6.14)

is proper (see [To, 4.7]).



38 A. GORODNIK AND H. OH GAFA

Denote by AL the Zariski closure of η̄L(N(L,W )) in V̄L. Then (see [To, 4.5])

η̄−1
L (AL) = N(L,W ) . (6.15)

Proposition 6.16. Let D be a compact S(v0)-small subset of AL for some v0 ∈ S.
Define

S(D) =
{

g ∈ η̄−1
L (D) : γg ∈ η̄−1

L (D) for some γ ∈ Γ− ΓL

}

.

Then

(1) S(D) ⊂ S(L,W );
(2) π(S(D)) is closed in X;
(3) for any compact subset B ⊂ X r π(S(D)), there exists a neighborhood Φ of

D in V̄L such that for each y ∈ π(η̄−1
L (Φ))∩B, the set η̄L(π

−1(y))∩Φ consists
of a single element.

Proof. Suppose that g ∈ S(D). Then γg ∈ η̄−1
L (D) for some γ ∈ Γ− ΓL. By (6.15),

both g and γg belong to N(L,W ). Then

Γ\ΓgW ⊂ Γ\ΓLγg .

Suppose g /∈ S(L,W ). Then by Lemma 6.8,

Γ\ΓgW = Γ\ΓLg .

Hence, by Lemma 6.7,
MT(L) ⊂ γ−1 MT(L)γ .

Therefore, γ ∈ ΓL, which gives a contradiction. This shows (1).
If (3) fails, then there exist gi ∈ π−1(B) and γi ∈ Γ with η̄L(gi) 6= η̄L(γigi)

and η̄L(gi), η̄L(γigi) converge to elements of D. Since the map (6.14) is proper, by
passing to a subsequence, there exist δi, δ

′
i ∈ Γ0

L such that δigi → g and δ′iγigi → g′

for some g, g′ ∈ G. Hence, by passing to a subsequence, δ′iγiδ
−1
i = g′g−1 for all

large i. Hence, δ0 := g′g−1 ∈ Γ. Then η̄L(Γ
0
Lg), η̄L(Γ

0
Lδ0g) ∈ D. Since Γ0

Lg /∈ S(D),
δ0 ∈ ΓL. Hence,

η̄L(g) ∈ D ∩ αD

for some α ∈ O
×
S . Since D is S(v0)-small, it follows from (6.12) that α ∈ µK and

hence η̄L(γi) = η̄L(δi). This gives a contradiction.
Claim (2) can be proved similarly. �

By an interval I in Kv centered at x0 ∈ Kv, we mean a subset of the form
{x ∈ Kv : |x− x0|v < T} for some T > 0.

We will need the following property of polynomial maps in the proof of our main
Proposition 6.19.

Proposition 6.17 [To, 4.2]. Let Av be a Zariski closed subset of Km
v , Cv ⊂ Av

a compact subset, and ǫ > 0. Then there exists a compact neighborhood Dv ⊂ Av

of Cv such that for any neighborhood Φv of Dv in Km
v there exists a neighborhood

Ψv ⊂ Φv of Cv such that for any one-parameter unipotent subgroup u(t) of G(Kv),
any bounded interval I in Kv and any w ∈ Km

v such that wu(t0) /∈ Φv for some
t0 ∈ I,

θv
(

{t ∈ I : wu(t) ∈ Ψv}
)

≤ ǫ · θv
(

{t ∈ I : wu(t) ∈ Φv}
)

.
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We will also use the following simple lemma from [To] to relate the behavior of
unipotent one-parameter subgroups over C with those over R.

Lemma 6.18. Let Kv = C, I = {t ∈ C : |t| ≤ 1}, ǫ > 0, and A be a measurable
subset of I such that for any x ∈ I.

ǫθ0{a ∈ R : ax ∈ I} ≥ θ0{a ∈ R : ax ∈ I ∩A} .

Then θv(A) ≤ ǫπ where θ0 is the Lebesgue measure on R.

The following proposition is a main tool in the proof of Theorem 6.2.

Proposition 6.19. Fix v0 ∈ S. Let C ⊂ AL be a compact subset and ǫ > 0 be
given. Then there exists a closed subset R of X contained in π(S(L,W )) such that
for any compact subset B ⊂ X rR, there exists a neighborhood Ψ of C in VL such
that for any one-parameter unipotent subgroup u(t) of G(Kv0) and any x ∈ B, at
least one of the following holds:

(1) There exists w ∈ η̄L(π
−1(x)) ∩Ψ such that

{u(t)} ⊂ {g ∈ G : wg = w} .

(2) For any sufficiently large bounded interval I ⊂ Kv0 centered at zero,

θv0
(

{t ∈ I : xu(t) ∈ B ∩ π(η̄−1
L (Ψ))}

)

≤ ǫ · θv0(I) .

Proof. Since C can be covered by finitely many compact S(v0)-small sets, it suffices
to prove the proposition for a S(v0)-small subset C =

∏

v∈S Cv with Cv compact. For
Cv0 and ǫ > 0, let Dv0 be as in Proposition 6.19 and Dv = Cv for v ∈ S\{v0}. Then
the set D :=

∏

v∈S Dv is also S(v0)-small. For S(D) defined in Proposition 6.16, set
R = π(S(D)). For a given B, let Φ be a neighborhood of D as in Proposition 6.16.
Passing to a smaller neighborhood, we may assume that Φ is of the form

∏

v∈S Φv.
Let Ψv0 ⊂ Φv0 be a neighborhood of Cv0 so that the statement of Proposition 6.17
holds. We set Ψ :=

∏

v Ψv where Ψv = Φv for v 6= v0.
Let Ω := B ∩ π(η̄−1

L (Ψ)) and J = {t ∈ Kv0 : xu(t) ∈ Ω}.
Assume that v0 is non-archimedean. For each t ∈ J , there exists a unique

wt ∈ ηL(π
−1(x)) such that wtu(t) ∈ Φ. By uniqueness, wtu(t) ∈ Ψ. Note that

the map t 7→ wt is a locally constant. For each t ∈ J , let I(t) be the maximal
interval containing t such that wtu(I(t)) ⊂ Φ. By the nonarchimedean property
of Kv0 , the intervals I(t) are either disjoint or equal. Since s 7→ wtu(s), s ∈ I(t),
is a polynomial map, it is either constant or unbounded. Hence, if some I(t) is
unbounded for t ∈ J , wtu(Kv0) = wt and hence the first case happens. Now suppose
that I(t) is bounded for any t ∈ J . Let J(t) be the minimal interval containing I(t)
such that wtu(J(t)) ∩ Φc 6= ∅. Note that θv0(J(t)) ≤ q0 · θv0(I(t)) where q0 is the
cardinality of the residue field of Kv0 . By Proposition 6.17,

θv0
(

{s ∈ I(t) : wtu(s) ∈ Ψ}
)

≤ θv0
(

{s ∈ J(t) : wtu(s) ∈ Ψ}
)

≤ ǫθv0(J(t)) ≤ ǫ · q0 · θv0(I(t)) .

Now for any interval I centered at zero, we have
{

s ∈ I : xu(s) ∈ Ω
}

=
⋃

t∈J

I(t) ∩ I .
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If I is sufficiently large, it follows from the nonarchimedean property of v0 that either
I ∩ I(t) = ∅ or I(t) ⊂ I. Hence

θv0
(

{s ∈ I : xu(s) ∈ Ω}
)

=
∑

I(t)⊂I

θv0
(

{s ∈ I(t) : xu(s) ∈ Ω}
)

≤ ǫ · q0 ·
∑

I(t)⊂I

θv0(I(t)) ≤ ǫ · q0 · θv0(I) .

This proves the claim for v0 non-archimedean. The case when Kv0 = R is proved in
[MoS]. Consider the case of Kv0 = C. By the restriction of scalars, we may consider
G(Kv0) as a real Lie group and hence the statement holds for any restriction ur of
u : C → G(Kv0) to a one-dimensional real subspace r of C. Suppose (1) holds for
some real subspace r, i.e. ur(R) stabilizes a vector w = pL(γg) with π(g) = x. Then

gu(r)g−1 ⊂ γ−1
{

y ∈ N(L) : Ad(y)|l = 1
}

γ .

Since the right-hand side of the above is a K-subgroup, it follows that gu(Kv0)g
−1

is also contained in the same group and hence u satisfies (1). Therefore, if (1) fails
for u, then (2) holds for ur for any one-dimensional real subspace r ⊂ C and for any
interval of r. By (6.18), this implies (2). �

6.5 Proof of Theorem 6.2 Set W := Λ(µ)u and Ui = {ui(t) : t ∈ Kv}. Then
dim(W ) ≥ 1 by [MoS, Lemma 2.2] whose proof works in the same way for Kv. By
Theorem 6.11, there exists L ∈ H such that

µ
(

π(S(L,W ))
)

= 0 and µ
(

π(N(L,W ))
)

> 0 .

Therefore, we can find a compact set C1 ⊂ N(L,W )\S(L,W ) such that µ(π(C1)) >
0. Note that by (6.9), π(C1) ∩ π(S(L,W )) = ∅. Let zi → e ∈ G be a sequence such
that xzi ∈ supp(µi) and the trajectory {xziui(t) : t ∈ Kv} is uniformly distributed
with respect to µi as T → ∞ when the averages are taken over the sets IT :=
{s ∈ Kv : |s|v ≤ T}.

By the pointwise ergodic theorem, such a sequence {zi} always exists.
Pick y ∈ supp(µ) ∩ π(C1). Then there exists a sequence yi ∈ xziUi which

converges to y. Let hi → e be a sequence satisfying yi = yhi for each i. Set

µ′i = µihi and u′i(t) = hiui(t)h
−1
i .

Then µ′i → µ as i → ∞, y ∈ supp(µ′i) and {yu′i(t)} is uniformly distributed with
respect to µ′i.

Let R and Ψ be as in Proposition 6.19 with respect to C := η̄L(C1) and ǫ :=
µ(π(C1))/2. We can choose a compact neighborhoodB of π(C1) such that B∩R = ∅.
Put

Ω := π
(

η̄−1
L (Ψ)

)

∩B .

Since π(C1) ⊂ Ω, we have µ′i(Ω) > ǫ for all sufficiently large i. Hence, for sufficiently
large T and i,

θv0
(

{s ∈ IT : yu′i(t) ∈ Ω}
)

> ǫ · θv0(IT ) .
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By Proposition 6.19, there exists g0 ∈ π−1(y) so that w = pL(g0) ∈ η̄L(π
−1(y)) ∩Ψ

and wu′i(t) = w for all t ∈ Kv. Consider the K-subgroup M := StabG(wg−1
0 ). We

observe that

g0
{

u′i(t)
}

g−1
0 ⊂ MS and supp(µ′i)g

−1
0 ⊂ Γ\ΓMS . (6.20)

We use induction on dim(G) to show that

(a) supp(µ) = yΛ(µ) and (b) Λ(µ′i) ⊂ Λ(µ)

for all sufficiently large i.
If dim(M) < dim(G), since (6.20) and g−1

0 µ′i → g−1
0 µ, we can apply the inductive

hypothesis to the space Γ\ΓMS and the measure g−1
0 µ. This yields (a) and (b).

If dim(M) = dim(G), then MT(L) is a normal subgroup of G.
Since N(L,W ) = G and µ(π(S(L,W ))) = 0, we have µ = µL. By Theorem 6.11,

every W -ergodic component of µ is g−1Lg-invariant for some g ∈ G. Since MT(L) is
a normal subgroup of G, g−1Lg is a subgroup of MT(L)S and [MT(L)S : L] =
[MT(L)S : g−1Lg]. Since MT(L)S has only finitely many closed subgroups of
bounded index, we obtain a finite index subgroup L0 of MT(L)S such that L0 is
normal in G and everyW -ergodic component of µ, and hence µ itself, is L0-invariant.

Denoting by ρ : G→ L0\G the quotient homomorphism, we set X̄ = ρ(Γ)\(L0\G)
and obtain the push-forward map ρ̄∗ : P(X) → P(X̄) of measures.

Since dim(MT(L)) ≥ dimW > 1, we may apply the induction to the measures
ρ̄∗(µ

′
i) and ρ̄∗(µ) and obtain

supp
(

ρ̄∗(µ)
)

= ȳΛ
(

ρ̄∗(µ)
)

and for all large i,
Λ
(

ρ̄∗(µi)
)

⊂ Λ
(

ρ̄∗(µ)
)

.

Since µ is L0-invariant, applying [D] in the same way as in [MoS], this implies

ρ−1
(

Λ(ρ̄∗(µ))
)

= Λ(µ) .

It is easy to deduce (a) and (b) now.
We finally claim that (a) and (b) imply (1)–(3). Since µ′i are {u

′
i(t)}-ergodic mea-

sures and y ∈ supp(µ′), by Theorem 6.6, µ′i is a Λ(µ′i)-invariant measure supported
on yΛ(µ′i). Hence, by (b),

supp(µi) = supp(µ′i)hi = yΛ(µ′i)hi ⊂ yΛ(µ)hi = xΛ(µ)hi .

Since
xzi ∈ supp(µi) ⊂ xΛ(µ)hi ,

and zi, hi → e, it follows that zih
−1
i ∈ Λ(µ). Therefore,

supp(µi) ⊂ xΛ(µ)hi = xΛ(µ)zi and Λ(µi) = h−1
i Λ(µ′i)hi ⊂ z−1

i Λ(µ)zi .

This proves (2).
There exists i0 such that for all i ≥ i0, ziUiz

−1
i ⊂ Λ(µ). Let H be the subgroup

of G (in fact of G(Kv)) generated by all ziUiz
−1
i , i ≥ i0. By (2), H ⊂ Λ(µ) and

hence by (a)
xH ⊂ xΛ(µ) = supp(µ) .
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On the other hand, by Theorem 6.6,

xH = Γ\ΓLg

for some L ∈ H such that H ⊂ g−1Lg. Since µi → µ, it follows that Γ\ΓLg =
supp(µ).

Since Γ\ΓLg = xΛ(µ), µ is the unique invariant probability measure supported
on Γ\ΓLg, as required in (1). Since L ∈ H and H ⊂ g−1Lug, by the following
Proposition 6.21, µ is ergodic with respect to H. This finishes the proof.

Proposition 6.21. Let L be a closed subgroup of finite index in PS for some
P ∈ F, and let H be a closed subgroup of L generated by unipotent one-parameter
groups such that Γ\ΓH = Γ\ΓL. Then the translation action of H on Γ\ΓL is
ergodic.

Proof. By an S-algebraic version of the Mautner lemma (see below Proposition 6.22)
there exists a closed normal subgroup M ⊂ PS containing H such that the triple
(H,M,PS) has the Mautner property, that is, for any continuous unitary represen-
tation of PS , any H-invariant vector is also M -invariant. Since M ∩ L is normal
in L and Γ\Γ(M ∩ L) = Γ\ΓL, it follows that M ∩ L acts ergodically on Γ\ΓL.
Applying the Mautner property to the unitary representation IndPS

L L2(Γ\ΓL), we
deduce that H acts ergodically on Γ\ΓL. �

We recall an S-arithmetic version of the Mautner lemma:

Proposition 6.22 [MT2, Cor. 2.8]. Let L ⊂ GS be a closed subgroup generated
by unipotent one-parameter subgroups in it. Then there exists a closed normal
subgroup M ⊂ GS containing L such that the triple (L,M,GS) has the Mautner
property, that is, for any continuous unitary representation of GS , any L-invariant
vector is also M -invariant.

7 Non-Divergence of Unipotent Flows

7.1 Statement of the main theorem. Let G be a connected semisimple al-
gebraic K-group, S a finite set of normalized absolute values of K including all the
archimedean v such that G(Kv) is non-compact and Γ ⊂ G an S-arithmetic lattice.
Here we also assume that G is K-isotropic, equivalently, that Γ is a non-uniform
lattice (otherwise, the main theorem of this section holds trivially). Note that this
also implies that G(Kv) is non-compact for every valuation v of R. We generalize
the main theorem of Dani–Margulis in [DM1] to an S-algebraic setting. Some of our
arguments follow closely those in [EMS1].

Let A be a maximal K-split torus of G and choose a system {α1, . . . , αr} of
simple K-roots for (G,A). For each i, let Pi be the standard maximal parabolic
subgroup corresponding to {α1, . . . , αr} − {αi}.

The subgroup P := ∩1≤i≤rPi is a minimal K-parabolic subgroup of G, and there
exists a finite subset F ⊂ G(K) such that

G(K) = ΓFP(K) .
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For T > 1, we set
JT :=

{

x ∈ Kv : |x|v < T
}

.

Theorem 7.1. Let ǫ > 0. Then there exists a compact subset C ⊂ Γ\GS such
that for any unipotent one-parameter subgroup U = {u(t)} ⊂ G(Kv), and g ∈ GS ,
either one of the following holds:

(1) for all large T > 0,

θv{t ∈ JT : Γ\Γgut ∈ C} ≥ (1− ǫ)θv(JT ) ;

(2) there exist i and λ ∈ ΓF such that

gUg−1 ⊂ λPiλ
−1.

7.2 Deduction of Theorem 4.6(1) from Theorem 7.1. Suppose not. Let C
be a compact subset as in Theorem 7.1. Then there exists ǫ > 0 such that

giνi(C) < 1− ǫ for all large i ,

by passing to a subsequence. Fix v ∈ S that is strongly isotropic for all Li. Let Ui =
{ui(t)} ⊂ Li(Kv)

+ be as in Lemma 6.5 and let Ri denote a subset of full measure
in π(L̃i,S) such that for every h ∈ Ri, the orbit Γ\ΓhUi is uniformly distributed on
Γ\ΓL̃i,S. Hence, for each i, there exists Ti such that

θv
{

t ∈ JT : Γ\Γhui(t)gi ∈ C
}

≤ (1− ǫ/2)θv(JT )

for all T > Ti.
Applying Theorem 7.1 for U = g−1

i Uigi and g = hgi, there exist ji and λi ∈ ΓF
such that

hUih
−1 ⊂ λiPjiλ

−1
i

for all h ∈ Ri, where Pji is a proper parabolic K-subgroup of G.
Since the set {h ∈ π(L̃i,S) : hUih

−1 ⊂ λiPjiλ
−1
i } is a product of analytic mani-

folds over local fields which contains a subset of full measure in π(L̃i,S), it follows
that this set is π(L̃i,S) itself. Since Ui is not contained in any proper normal subgroup
of Li(Kv)

+, we have
Li ⊂ λiPjiλ

−1
i .

This is a contradiction to the assumption by Lemma 4.5.

7.3 For each i, let Ui denote the unipotent radical of Pi. Denote by ui the Lie
algebra of Ui and by g the Lie algebra of G. For each v ∈ S, we fix a norm ‖ · ‖v on
the Kv-vector space ∧dimuig(Kv) and choose a non-zero vector wi of ∧

dimuiui(K)
with ‖wi‖v = 1 for all v ∈ S. Define ∆i : GS → R∗ by

∆i((gv)) :=
∏

v∈S

‖wigv‖v .

Fix v ∈ S. Let Pd denote the family of all polynomial maps Kv → G(Kv) (resp.
R → G(C)) of degree at most d if Kv 6= C (resp. Kv = C).

For T > 1 we set if Kv 6= C

IT :=
{

x ∈ Kv : |x|v < T
}

,
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and if Kv = C,
IT :=

{

x ∈ R : |x| < T
}

where | · | is the usual absolute value of R. We keep this definition of IT for the rest
of this section. We will deduce Theorem 7.1 from the following:

Theorem 7.2. Fix α, ǫ > 0 and v ∈ S. Then there exists a compact subset
C ⊂ Γ\GS such that for any u ∈ Pd and any T > 0, either one of the following
holds:

(1) θv({s ∈ IT : Γ\Γu(s) ∈ C}) ≥ (1− ǫ)θv(IT );
(2) there exist i ∈ {1, . . . , r} and λ ∈ ΓF such that

∆i

(

λ−1u(s)
)

≤ α for all s ∈ IT .

Deduction of Theorem 7.1 from Theorem 7.2. First consider the case of Kv 6= C.
There is d > 0 such that for any g ∈ GS and for any u one-parameter unipotent
subgroup of G(Kv), the map t 7→ gu(t) belongs to Pd. Hence, if the first case of
Theorem 7.1 fails, then there exist 1 ≤ i ≤ r, Tm → ∞, 0 < αm < 1, αm → 0,
λm ∈ ΓF such that

∆i

(

λ−1
m gu(s)

)

< αm

for all s ∈ ITm .
Since this implies ∆i(λ

−1
m g) < 1 and for a given θ > 0, the number of the elements

λ ∈ ΓF , modulo the stabilizer of wi, such that ∆i(λ
−1g) < θ is finite, we can assume,

by passing to a subsequence, that there exists λ ∈ ΓF such that for each m,

∆i

(

λ−1gu(s)
)

< αm

for all s ∈ ITm .
Since any orbit of a unipotent one-parameter subgroup is unbounded except for

a fixed point, it follows that λ−1gu(s)g−1λ fixes wi for all s ∈ Kv. Therefore

λ−1gUg−1λ ⊂ Pi .

Now consider the case when Kv = C. Suppose (1) fails for some g ∈ GS and
for some unipotent one-parameter subgroup u : C → G(C). By (6.18), we have a
one-dimensional real subspace r = Rx ⊂ C, x ∈ C, such that

∣

∣{s ∈ [−Tm, Tm] : Γ\Γgu(sx) ∈ C}
∣

∣ < 2(1 − ǫ)Tm

for some Tm → ∞. By Theorem 7.2, for any α > 0, there are i and λ ∈ ΓF such
that for all s ∈ ITm ,

∆i

(

λ−1ur(s)
)

≤ α

where ur(s) = u(sx).
By the same argument as in the above case, we deduce that for some 1 ≤ i ≤ r

and λ ∈ ΓF , we have
gu(r)g−1 ⊂ λPiλ

−1.

Since Pi is an algebraic K-subgroup, it follows that

gUg−1 ⊂ λPiλ
−1.

This finishes the proof.
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In order to prove Theorem 7.2, we use the following:

Theorem 7.3. Let α > 0 be given. There exists a compact subset C ⊂ Γ\GS

such that for any u ∈ Pd and T > 0, one of the following holds:

(1) there exist i ∈ {1, . . . , r} and λ ∈ ΓF such that

∆i

(

λ−1u(s)
)

≤ α for all s ∈ IT ;

(2) Γ\Γu(IT ) ∩ C 6= ∅.

Theorem 7.3 implies Theorem 7.2 in view of the following theorem, proved by
Kleinbock and Tomanov [KT, Th. 9.1]:

Theorem 7.4. For a given compact subset C ⊂ Γ\GS and ǫ > 0 there exists a
compact subset C ′ ⊂ Γ\GS such that for any u ∈ Pd, any y ∈ Γ\GS and T > 0
such that yu(IT ) ∩ C 6= ∅,

θv
(

{s ∈ IT : yu(s) ∈ C ′}
)

≥ (1− ǫ)θv(IT ) .

The rest of this section is devoted to a proof of Theorem 7.3. We start by
constructing certain compact subsets in X which will serve as C in Theorem 7.3.

We denote by S∞ the set of all archimedean absolute values and Sf := S − S∞.
For a K-subgroup M of G, and S0 ⊂ S, we use the notation MS0

=
∏

v∈S0
M(Kv),

M∞ = MS∞
, and Mv = M(Kv). For simplicity, we write M for MS in this section.

We often write an element of g ∈M as (g∞, gf ) where g∞ ∈ M∞ and gf ∈ MSf
.

7.4 Description of compact subsets in X. For each i = 1, . . . , r, we set

Qi =
{

x ∈ Pi : αi(x) = 1
}

and
Ai :=

{

x ∈ A : αj(x) = 1 ∀j 6= i
}

.

For a subset I ⊂ {1, . . . , r}, we define

PI := ∩i∈IPi , QI := ∩i∈IQi , AI :=
∏

i∈I

Ai .

Let UI be the unipotent radical of PI and HI the centralizer of AI in QI . We have
the Langlands decomposition:

PI = AIQI = AIHIUI .

There is mi ∈ N such that for x ∈ Pi,

det(Adx)|ui = αmi
i (x) .

For each non-archimedean v ∈ S, we set

A0
v =

{

x ∈ Av : αi(x) ∈ qZv ∀i = 1, . . . , r
}

where qv is the cardinality of the residue field of Kv. Since A is K-split, A0
v ⊂ A(K).

For archimedean v, we set

A0
v =

{

x ∈ Av : αi(x) > 0 ∀i = 1, . . . , r
}

.
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For v ∈ S, let Wv be a maximal compact subgroup of Gv such that Gv =WvQv for
any parabolic K-subgroup Q containing P and Av ⊂WvA

0
v.

We set W =
∏

v∈SWv, Wf =
∏

v∈Sf
Wv and W∞ =

∏

v∈S∞
Wv. Without loss of

generality, we may assume that each norm ‖ · ‖v is Wv-invariant.
For a subset I ⊂ {1, . . . , r}, we set

A0
I,v := AI,v ∩A

0
v and A0

I,∞ =
∏

v∈S∞

A0
I,v .

Lemma 7.5. There exists a finite subset Y ⊂ AI(K) such that
∏

v∈Sf

A0
I,v ⊂ (AI ∩ Γ)Y .

Proof. Since Γ is commensurable with G(OS), Γ contains a finite index subgroup of
AI(OS). Now the claim follows easily from the fact that the map f : AI → Gl

m,
l = |I|, given by x 7→ (α1(x), . . . , αl(x)), is a K-rational isomorphism, where Gm

denotes the one-dimensional multiplicative group. �

Lemma 7.6. Given I ⊂ {1, . . . , r}, j ∈ {1, . . . , r} − I, and 0 < a ≤ b, there exists
a compact subset M0 of QI such that

{

g ∈ QI : ∆j(g) ∈ [a, b]
}

⊂ (Aj ∩ Γ)QI∪{j}M0 .

Proof. Since AI,v ⊂ WvA
0
I,v for each v ∈ S, we can show in a similar way as in the

proof of [DM1, Lem. 1.5] that for any j /∈ I,

QI =
(

∏

v∈S

A0
j,v

)

QI∪{j}(W ∩HI) .

Hence, any (gv) ∈ QI is of the form gv = avqvwv with av ∈ A0
j,v, qv ∈ QI∪{j},v, and

wv ∈Wv, and
‖wjgv‖v =

∣

∣αj(av)
∣

∣

mj

v
.

Suppose g = (gv) ∈ QI satisfies a < ∆j(g) < b, i.e.

∆j(g) =
∏

v∈S

∣

∣αj(av)
∣

∣

mj

v
∈ [a, b] .

It follows from Lemma 7.5 that d0 :=
∏

v∈Sf
av ∈ (Aj ∩ Γ)Y where Y is a finite

subset of Aj(K). If we set dv = avd
−1
0 for v ∈ S∞ and dv =

∏

w∈Sf\{v}
a−1
w for

v ∈ Sf , then d0dv = av and dv ∈Wv for v ∈ Sf , and
∏

v∈S∞

∣

∣αj(dv)
∣

∣

mj

v
=

∏

v∈S

∣

∣αj(av)
∣

∣

mj

v
∈ [a, b] .

This implies that there exists a compact set M∞ ⊂ Aj,∞, depending only on [a, b],
such that

(dv)v∈S ∈M∞ ×
(

∏

v∈Sf

Mv

)

where Mv := {a ∈ Aj,v : ‖a‖v = 1}.
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Therefore, for M :=M∞ ×
∏

v∈Sf
Mv,

QI ⊂ (Aj ∩ Γ)Y MQI∪{j}(W ∩HI) .

Since Aj normalizes QI∪{j}, it follows that

QI ⊂ (Aj ∩ Γ)QI∪{j}M0

for some compact subset M0 of QI . �

For I ⊂ {1, . . . , r}, we define a finite subset FI ⊂ QI(K) such that

QI(K) = (Γ ∩QI)FI(P ∩QI)(K) .

Since AI normalizes QI , there exists a finite subset F̃I ⊂ QI(K) such that

F−1
I (QI ∩ Γ)(AI ∩ Γ) ⊂ F−1

I (AI ∩ Γ)(QI ∩ Γ) ⊂ (AI ∩ Γ)F̃−1
I (QI ∩ Γ) . (7.7)

We put
Λ(I) := F̃−1

I (QI ∩ Γ) ⊂ QI(K) .

Note that P∅ = Q∅ = G, A∅ = A, F∅ = F = F̃∅, and Λ(∅) = F−1Γ.

Lemma 7.8. For j ∈ {1, . . . , r} and I ⊂ {1, . . . , r} − {j}, there is a finite subset
E ⊂ P(K) such that Λ(I ∪ {j})Λ(I) ⊂ EΛ(I).

Proof. Same as Lemma 3.6 in [EMS1]. �

Denote by T the set of all l-ordered tuples of integers 1 ≤ i1, . . . , il ≤ r for
1 ≤ l ≤ r. For I = (i1, . . . , il) ∈ T, there exists a finite subset L(I) ⊂ G(K) such
that

Λ
(

{i1, . . . , il}
)

· · ·Λ
(

{i1}
)

Λ(∅) = L(I)Γ .

We set L(∅) = {e}.
An l-tuple ((i1, λ1), . . . , (il, λl)) is called an admissible sequence of length l

if i1, . . . , il ⊂ {1, . . . , r} are distinct and λ1, . . . , λl ∈ G(K) satisfy λjλ
−1
j−1 ∈

Λ({i1, . . . , ij−1}) for all j = 1, . . . , l (here we set λ0 = e). For an admissible se-
quence ξ of length l, we denote by C(ξ) the set of all pairs (i, λ) where 1 ≤ i ≤ r and
λ ∈ G(K) for which there exists an admissible sequence η of length l+ 1 extending
ξ and containing (i, λ) as the last term. The support of ξ, denoted by supp(ξ), is
defined to be the emptyset if l = 0; and otherwise the set {(i1, λ1), . . . , (il, λl)} if
ξ = ((i1, λ1), . . . , (il, λl)).

For any 0 < a < b, α > 0 and any admissible sequence ξ, we define

Wα,a,b(ξ) =
{

g ∈ G : ∆j(λg) ≥ α,∀(j, λ) ∈ C(ξ)

and a ≤ ∆i(λg) ≤ b,∀(i, λ) ∈ supp(ξ)
}

. (7.9)

The same proof of [DM1, Prop. 1.8] shows

Lemma 7.10. For any admissible sequence ξ = {(i1, λ1), . . . , (il, λl)} of length
l ≥ 1, we have

Wα,a,b(ξ) = Wα,a,b(I, λl)

where I = {i1, . . . , il} and
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Wα,a,b(I, λ) :=
{

g ∈ G : ∆j(θλg) ≥ α , ∀j /∈ I , ∀θ ∈ Λ(I)

and a ≤ ∆i(λg) ≤ b , ∀i ∈ I
}

. (7.11)

Note that λl arises in the above way if and only if λl ∈ L(I)Γ.
For any subset I ⊂ {1, . . . , r}, note that W∞ ∩ HI,∞ is a maximal compact

subgroup of HI,∞. Set J := {1, . . . , r} r I. By the reduction theory, there exist a
compact subset CI ⊂ UJ,∞ ∩ HI,∞, a finite subset EI ⊂ HI(K), and tI > 0 such
that

HI = (Γ ∩HI)EI

(

CIΩI(W∞ ∩HI,∞)× (Wf ∩HI,Sf
)
)

where

ΩI =
{

(sv)v∈S∞
: sv ∈ A0

J,v , 0 < αj(sv) ≤ tI , ∀j ∈ J , ∀v ∈ S∞
}

.

We enlarge the finite subset FI , chosen above, so that

(Γ ∩HI)EI(Γ ∩UI) ⊂ (Γ ∩QI)FI .

We have UI = (Γ ∩ UI)D
′
I for some D′

I = DI × (UI,Sf
∩Wf ) with DI ⊂ UI,∞.

Then for C ′
I = CIΩI(W∞ ∩HI,∞)× (Wf ∩HI,Sf

),

QI = UIHI = UI(Γ ∩HI)EI

= (Γ ∩HI)EIUIC
′ = (Γ ∩HI)EI(Γ ∩ UI)D

′
IC

′
I

= (Γ ∩QI)FI

(

ΨIΩI(W∞ ∩QI,∞)× (Wf ∩QI,Sf
)
)

(7.12)

where ΨI is a compact subset of (QI ∩QJ)∞.
In the proof of the next proposition, we use the following lemma, which follows

from the continuity of the norms:

Lemma 7.13. Let 1 ≤ i ≤ r and C be a compact subset of G. Then for some
c > 0,

∆i(gx) ≥ c ·∆i(g) for all x ∈ C and g ∈ G .

For g = (gv)v∈S∞
∈ G∞, set

di(g) :=
∏

v∈S∞

‖wigv‖v .

Proposition 7.14. For any admissible sequence ξ of length 0 ≤ l ≤ r and positive
a < b and α > 0, the set Γ\ΓWα,a,b(ξ) is relatively compact.

Proof. For simplicity, write W = Wα,a,b(ξ).
Let ξ be the empty sequence. Then

W =
{

g ∈ G : ∆j(λg) ≥ α , ∀j , ∀λ ∈ Λ(∅)
}

.

Every g ∈ W has a decomposition g = (λ, λ)(ψωk∞, kf ), ψ ∈ Ψ∅, w ∈ Ω∅, k∞ ∈W∞

and kf ∈Wf as in (7.12) where λ ∈ ΓF̃∅ = Λ(∅)−1. Hence,

∆j(ψωk∞, kf ) = dj(ψωk∞) = dj(ω) ≥ cα

where c > 0 is a constant depending on Ψ∅. Since dj(ω) =
∏

v∈S∞
|αj(ω)|

mj
v , we

have
W ⊂ ΓF̃∅(Ψ∅Ω̃∅W∞ ×Wf )
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where
Ω̃∅ =

{

(ωv) ∈ A0
∅,∞ : (cα)1/mj ≤

∏

v∈S∞

|αj(ωv)|v ≤ t∅, ∀j
}

.

This shows that Γ\ΓW is relatively compact in this case.
Now let ξ = ((i1, λ1), . . . , (il, λl)) be an admissible sequence of length l ≥ 1 and

I(j) = {i1, . . . , ij}. We claim that there exist compact subsets M1, . . . ,Ml such that
for any j = 1, . . . , l and g ∈ W,

λjW ⊂ (Sij ∩ Γ)QI(j)M
−1
j .

We prove the claim by induction. For j = 1, we can take M1 = M−1
0 where M0

is as in Lemma 7.6 with I = ∅ and j = i1. Suppose that the sets M1, . . . ,Mj have
been found. By Lemma 7.13, there is c ∈ (0, 1) such that

∆ij+1
(hx) ≥ c ·∆ij+1

(h)

for all x ∈ Mj ∪M
−1
j and h ∈ G. By Lemma 7.6, there exists a compact set M0

such that
{

g ∈ QI(j) : ∆ij+1
(g) ∈ [ca, c−1b]

}

⊂ (Aij+1
∩ Γ)QI(j+1)M0 . (7.15)

Let Mj+1 = MjM
−1
0 . For g ∈ W, there exists mj ∈ Mj such that λjgmj ∈

(Aij ∩ Γ)QI(j). Since λj+1λ
−1
j ∈ QI(j) and Aij ∩ Γ normalizes QI(j), we have

λj+1gmj ∈ (Aij ∩ Γ)QI(j) .

Hence, for some γj ∈ Aij ∩ Γ, γjλj+1gmj ∈ QI(j). Since αij+1
(γj) = 1,

∆ij+1
(γjλj+1gmj) = ∆ij+1

(λj+1gmj) ,

and
ca ≤ c∆ij+1

(λj+1g) ≤ ∆ij+1
(λj+1gmj) ≤ c−1∆ij+1

(λj+1g) ≤ c−1b .

By (7.15), there exists m0 ∈M0 such that

γjλj+1gmj ∈ (Aij+1
∩ Γ)QI(j+1)m0 .

So for mj+1 = mjm
−1
0 , we have

λj+1gmj+1 ∈ (Aij+1
∩ Γ)QIj+1

proving the claim.
By the above claim,

λlW ⊂ (Ail ∩ Γ)QIM
−1
l (7.16)

where I := {i1, . . . , il}. If I = {1, . . . , r}, then Γ ∩ QI\QI is compact. Hence
Γ\Γλ−1

r (Air ∩ Γ)QIMr is compact, which implies that Γ\ΓW is relatively compact.
Now suppose I is a proper subset. Then by (7.12) and (7.16), for g ∈ W,

δγλlgm = (ψωk∞, kf ) ∈ ΨIΩIW∞ ×Wf

for some δ ∈ F−1
I (QI ∩ Γ), γ ∈ Ail ∩ Γ, and m ∈Ml. Hence, for every j /∈ I,

∣

∣αj(ω)
∣

∣

mj

∞
= dj(ψωk∞) = ∆j(δγλlgm) .
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By (7.7), δγ = γ′θ where γ′ ∈ AI ∩ Γ and θ ∈ Λ(I). Since AI acts trivially on the
vectors wj, j /∈ I, we have

∆j(δγλlgm) = ∆j(θλlgm) .

By Lemma 7.10, we have ∆j(θλlg) ≥ α. Hence, by Lemma 7.13, there exists
β > 0, depending only on α and Ml, such that ∆j(θλlgm) ≥ β. This shows that
∏

v∈S∞
|αj(ω)|

mj
v ≥ β for j /∈ I. Therefore, if we set

Ω̃I =
{

ω ∈ AJ : β1/mj ≤
∏

v∈S∞

∣

∣αj(ω)
∣

∣

v
≤ tI , j ∈ J

}

where J is the complement of I, then

W ⊂ λ−1
l ΓFI(ΨIΩ̃IW∞ ×Wf )M

−1
l ,

and the later set is compact modulo Γ. �

7.5 Proof of Theorem 7.3. Fix v ∈ S and a vector space KN
v . We define P∗

d

to be the set of polynomial maps Kv → KN
v (resp. R → CN ) of degree less than d

if Kv 6= C (resp. Kv = C). We write f ∈ P∗
d as (f1, . . . , fN ). We set

‖f(x)‖v = max
i

∣

∣fi(x)
∣

∣

v
.

Recall that by an interval of a non-archimedean local field, we mean a subset of
Kv of the form I = {t ∈ Kv : |t − t0|v < δ}. There exists the unique k such that
qkv < δ ≤ qk+1

v . Then 2qkv is called the diameter of I. In the case when Kv = C, as
P∗
d consists of polynomial maps defined in R, the intervals are understood as subsets

of R and the meaning of diameter is then clear.

Lemma 7.17. Given M > 1, there exists η ∈ (0, 1) such that, for any f ∈ P∗
d

and any interval I, there exists a subinterval I0 ⊂ I with diam(I0) ≥ η · diam(I)
satisfying

sup
I

‖f‖v ≤M · inf
I0

‖f‖v .

Proof. For the archimedean version of this lemma, see [EMS1, Cor. 2.18]. Let v
be non-archimedean. Since I can be expressed as a disjoint union ∪J of intervals
so that on each interval J , there is i such that ‖f(x)‖v = |fi(x)|v for all x ∈ J .
Therefore, it suffices to prove the above claim for N = 1.

There exists t0 ∈ I such that supI |f |v = |f(t0)|v. It follows from the Lagrange
interpolation formula that there exists Mi > 0, depending on I, such that

sup
I

∣

∣f (i)
∣

∣

v
≤Mi · sup

I
|f |v for all f ∈ P∗

d

where f (i) is the i-th derivative of f . Let δ denote the diameter of I. Let n ∈ N be
big enough so that

M−1 < 1−
d

∑

i=1

q−ni
v δi

Mi

i!
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and I0 := {t : |t − t0|v ≤ q−n
v δ} is contained in I. Then using the Taylor formula,

we deduce that for every t ∈ I0,

|f(t)|v ≥
∣

∣f(t0)
∣

∣

v
−

( d
∑

i=1

(q−n
v δ)i

Mi

i!

)

sup
I

|f |v =M−1 sup
I

|f |v .

Hence, supI |f |v ≤ M infI0 |f |v and the diameter of I0 is 2q−n
v δ. Hence, this

proves the claim. �

Lemma 7.18. Given η ∈ (0, 1), there exists M > 1 such that for any interval I and
any subinterval I0 ⊂ I with diam(I0) ≥ η · diam(I),

sup
I

‖f‖v ≤M · sup
I0

‖f‖v for all f ∈ P∗
d . (7.19)

Proof. For the archimedean case, this is proved in [EMS1, Cor. 2.17]. We give a
proof in the non-archimedean case. By Lemmas 2.1 and 2.4 in [KT], there exist
C,α > 0 such that for any ǫ > 0 and any interval I

θv
{

x ∈ I : ‖f(x)‖v < ǫ
}

≤ C

(

ǫ

supI ‖f‖v

)α

θv(I) . (7.20)

Choose n ∈ N and M > 1 satisfying η > q−n
v and Mα > Cqnv . Then for any

subinterval I0 ⊂ I with diam(I0) ≥ η · diam(I), θv(I0) > q−n
v θv(I). Applying (7.20)

with ǫ =M−1 · supI ‖f‖v, we deduce that

θv

{

x ∈ I :M · ‖f(x)‖v < sup
I

‖f‖v
}

≤ q−n
v θv(I) .

Therefore, there exists x ∈ I0 such that

M · ‖f(x)‖v ≥ sup
I

‖f‖v .

This proves the lemma. �

Proposition 7.21. There exists M > 1 such that for any α > 0, any interval I,
and a subfamily F ⊂ P∗

d satisfying:

(i) For any t0 ∈ I, #{φf (t) := ‖f(t)‖v : f ∈ F, ‖f(t0)‖v < α} <∞;
(ii) For any f ∈ F, supt∈I φf (t) ≥ α,

one of the followings holds:

(a) There is t0 ∈ I such that

φf (t0) ≥ α for all f ∈ F ;

(b) There exist an interval I0 ⊂ B and f0 ∈ F such that

φf0(I0) ⊂ [α/M,αM ] and sup
I0

φf ≥ α/M for all f ∈ F .

Proof. Pick t0 ∈ I and suppose that (a) fails, that is,

F1 =
{

φf : f ∈ F , ‖f(t0)‖v < α
}

6= ∅ .
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By (i), the set F1 is finite. By Lemma 7.18, there exists M1 > 1 such that for every
φf ∈ F1 and k ∈ Z,

sup
|t−t0|v≤qk+1

v

‖f(t)‖v ≤M1 · sup
|t−t0|v≤qkv

‖f(t)‖v .

We set E = {t : |t−t0|v ≤ qkv}, where k is the smallest integer such that supE ‖f‖v ≥α
for all t 7→ ‖f(t)‖v ∈ F1. Such k exists by (ii). Then there is φf0 ∈ F1 such that
supE ‖f0‖v ≤ αM1. By Lemma 7.17, there exists a subinterval I0 ⊂ E such that
diam(I0) ≥ η · diam(I) and

inf
I0

‖f0‖v ≥ α/M1 .

By Lemma 7.18, there exists M2 > 1 such that

sup
I0

‖f‖v ≥ α/M2 for all f ∈ F .

This proves the proposition. �

Proof of Theorem 7.3. Suppose that condition (1) in the theorem fails. We will
show that for some I ∈ T, λ ∈ L(I)Γ, αI > 0, and 0 < aI < bI depending only on α,

xu(IT ) ∩ Γ\ΓWαI ,aI ,bI (I, λ) 6= ∅ . (7.22)

By Proposition 7.14, this implies the theorem.
We construct inductively increasing sequence of tuples J ∈T, elements λ∈L(I)Γ,

constants 0 < aI < bI , αI > 0, and intervals B ⊂ IT satisfying the following
properties:

(A) ∆i(λu(B)) ⊂ [aI , bI ] for all i ∈ I.
(B) supB φ ≥ αI for all φ ∈ F(I, λ) where F(I, λ) is the family of functions

Kv → R+ of the form
φ(t) = ∆j

(

θλu(t)
)

where θ ∈ Λ(I), j /∈ I and u ∈ Pd.

Note that for some fixed constant dj > 0,

φ(t) =
(

∏

w∈Srv

‖wjθλ‖w
)

· ‖f(t)‖v

and f(t) := wjθλu(t) ∈ P∗
dj

where P∗
dj

are polynomial maps into the vector space

∧dimuig(Kv) of degree at most dj .
We start with I = ∅, λ = e, α∅ = α, B = IT which satisfy (A) and (B) because

of our assumption that condition (1) fails.
Property (B) implies that F(I, λ) satisfies condition (ii) of Proposition 7.21. We

claim that F(I, λ) satisfies condition (i) as well, that is, there are only finitely many
φ ∈ F(I, λ) such that φ(t) < α for some fixed α and t. Fix β > 0 and any rational
vector w with co-prime entries in O. For any γ ∈ Γ, γw = αw′ where α ∈ O∗

S (here
O∗
S denotes the unit group) and the entries of w′ are relatively prime to each other

in O. Since
∏

v∈S |α|v = 1 for α ∈ O∗
S , the claim follows from the fact that F̃I is
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finite and that there are only finitely many vectors w′ with coefficients in O whose
entries are relative prime to each other and

∏

v∈S ‖w′‖v < β.
By Proposition 7.21, one of the following holds:

(a) For some t0 ∈ B,
∆j

(

θλu(t0)
)

≥ αI

for all θ ∈ Λ(I), j /∈ I, and u ∈ Pd. In this case, using (A), we have
Γu(t0) ∈WαI ,aI ,bI (I) and hence we stop the process.

(b) There exist j0 /∈ I, θ0 ∈ Λ(I) and an interval B0 ⊂ B such that

∆j0

(

θ0λu(B0)
)

⊂ [αI/M,αIM ]

and for all θ ∈ Λ(I) and j /∈ I,

sup
t∈B0

∆j

(

θλu(t)
)

≥ αI/M .

In case (b), we set I1 = I ∪ {j0} and λ1 = θ0λ. Since ∆i(θ0g) = ∆i(g) for all
i ∈ I and g ∈ GS , condition (A) is satisfied for suitable 0 < aI1 < bI1 and B0. By
Lemma 7.8, there is a finite subset E ⊂ P(K) such that for any θ ∈ Λ(I ∪ {j0}),
there exists θ′ ∈ Λ(I) and x ∈ E such that θθ0 = xθ′. Hence, this implies for any
j /∈ I1,

sup
t∈B0

∆j

(

θλ1u(t)
)

= sup
t∈B0

∆j

(

xθ′λu(t)
)

= sup
t∈B0

∆j(x)∆j(θ
′λu(t)) ≥ βαI/M

where β = minE ∆j > 0 depends only on I and j0. Hence, condition (B) is satisfied
for the family F(I1, λ1), αI1 = βαI/M and B0. This completes the description of
the inductive step. Since the cardinality of I increases, this process must stop after
finitely many steps, and we deduce that (7.22) holds. �

Appendix

A Symmetric Homogeneous Spaces over Number Fields with

Finitely Many Orbits

by Mikhail Borovoi

Let G be a connected linear algebraic group over a field K of characteristic 0. Let
H ⊂ G be a connected closed K-subgroup. Let X = H\G be the corresponding
homogeneous space. The group G(K) acts on X(K) on the right. We consider the
set of orbits X(K)/G(K).

We fix an algebraic closure K of K and write G = G×K K, H = H ×K K. We
say that (G,H) is a symmetric pair if G is semisimple and H is the subgroup of

invariants G
θ
of some involutive automorphism θ of G. In this case we say also that

H is a symmetric subgroup of G and that X is a symmetric space of G.
Let K be a number field. In this Appendix we give a list of all symmetric pairs

(G,H) over K with adjoint absolutely simple G and semisimple H, such that the set
of orbits X(K)/G(K) is finite (Theorem A.5.2). We show that the assumption that
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X(K)/G(K) is finite is equivalent to the assumption that G(Kv) acts on X(Kv)
transitively for almost all places v of K.

The plan of the Appendix is as follows. In section A.1 we consider a connected
K-group G and a connected closed K-subgroup H ⊂ G over a number field K.
We prove that the set of K-orbits X(K)/G(K) is finite if and only if the set of
adelic orbits X(A)/G(A) is finite (here A is the adèle ring of K). We show that
the set X(A)/G(A) is finite if and only if #X(Kv)/G(Kv) = 1 for almost all v.
We give a criterion when #X(Kv)/G(Kv) = 1 for almost all v in terms of the
induced homomorphism π1(H) → π1(G), where π1 is the algebraic fundamental
group introduced in [Boro1, §1]. These results constitute Theorem A.1.2.

In section A.2 we give corollaries of Theorem A.1.2. We show that the finiteness of
X(K)/G(K) is related to the following condition: the homomorphism π1(H)→π1(G)
is injective.

In section A.3 we assume that K is algebraically closed and that both G and
H are semisimple. We write Gsc and Hsc for the universal coverings. We show
that the homomorphism π1(H) → π1(G) is injective if and only if the subgroup
H ′ := im[Hsc → Gsc] ⊂ Gsc is simply connected.

In section A.4 we again assume that K is algebraically closed. We give a list of
all symmetric pairs (G,H) over K with simply connected absolutely almost simple
G and semisimple H such that H is simply connected (Theorem A.4.1).

In section A.5 K is a number field and (G,H) is a symmetric pair over K, such
that G is an absolutely almost simple K-group and H is semisimple K-subgroup.
We consider two cases: either G is simply connected or G is adjoint. We give a list
of all such symmetric pairs (G,H) with finite X(K)/G(K) (Theorems A.5.1 and
A.5.2). We show that for such (G,H) with finite set of K-orbits X(K)/G(K), this
set of K-orbits is related to the set of “real” orbits (Theorem A.5.3). In particular,
if K = Q, then any G(R)-orbit in X(R) contains exactly one orbit of G(Q) in X(Q).

In section A.6 (Addendum) we give examples of homogeneous spaces X = H\G
(symmetric or not, with G absolutely almost simple or not), satisfying assumptions
(i)–(iii) of Theorem 1.1 but not covered by Theorems A.5.1 and A.5.2.

The author is very grateful to È.B. Vinberg and A.G. Elashvili for their invaluable
help in proving Theorem A.4.1.

A.1 Orbits over a number field and over adeles.

A.1.1 Let K be a number field, and let K be a fixed algebraic closure of K.
Let G be a connected linear K-group. LetH ⊂ G be a connected closedK-subgroup.
Set X = H\G, it is a right homogeneous space of G. We would like to understand
necessary and sufficient conditions for the set of orbits X(K)/G(K) of G(K) in
X(K) to be finite.

We write i : H →֒ G for the inclusion map. We consider the induced morphism
of Gal(K/K)-modules

i∗ : π1(H) → π1(G) ,

where π1 is the algebraic fundamental group introduced in [Boro1, §1], see also
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[Co, §6]. Note that if we choose an embedding K →֒ C and an isomorphism
πtop1 (C∗)

∼
→ Z, then we obtain a canonical isomorphism of abelian groups π1(G) ≃

πtop1 (G(C)), cf. [Boro1, Prop. 1.11], where πtop1 denotes the usual topological funda-
mental group. In particular, G is simply connected if and only if π1(G) = 0.

Let g denote the image of Gal(K/K) in Aut π1(H) × Aut π1(G); it is a finite
group. Let L ⊂ K be the field corresponding to the subgroup ker[Gal(K/K) → g] of
Gal(K/K), so L/K is a finite Galois extension with Galois group g. For any place
v of K, let gv ⊂ g denote a decomposition group of v (defined up to conjugacy). For
almost all v the group gv is cyclic.

Let h ⊂ g be a subgroup. We shall consider the group of coinvariants π1(H)h and
the subgroup of torsion elements (π1(H)h)tors. We shall also consider the induced
map

i∗ :
(

π1(H)h
)

tors →
(

π1(G)h
)

tors .

We write R for the set of all places of K. We write Rf (resp. R∞) for the set of
all finite (resp. infinite) places of K. We write Kv for the completion of K at v ∈ R,
and A for the adèle ring of K.

Theorem A.1.2. Let G be a connected linear algebraic group over a number
field K. Let H ⊂ G be a connected closed K-subgroup. Set X = H\G. Then the
following four conditions are equivalent:

(i) The set of K-orbits X(K)/G(K) is finite.
(ii) The set of adelic orbits X(A)/G(A) is finite.
(iii) We have #X(Kv)/G(Kv) = 1 for almost all places v of K.
(iv) For any cyclic subgroup h ⊂ g the map

(

π1(H)h
)

tors →
(

π1(G)h
)

tors

is injective.

Proof. Write

ker(K,H → G) = ker
[

H1(K,H) → H1(K,G)
]

,

ker(Kv,H → G) = ker
[

H1(Kv,H) → H1(Kv, G)
]

.

We have canonical bijections

X(K)/G(K)
∼
→ ker(K,H → G) ,

X(Kv)/G(Kv)
∼
→ ker(Kv,H → G) ,

see [Se, Ch. I §5.4, Cor. 1 of Prop. 36].
In [Boro1, §2& §3] we defined, for any connected linear group H over a field K of

characteristic 0, an abelian group H1
ab(K,H) and an abelianization map of pointed

sets
ab1 : H1(K,H) → H1

ab(K,H)

(see also [Co, Prop. 8.3] in any characteristic). Both H1
ab(K,H) and ab1 are func-

torial in H.
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Now let K be a number field. Set Γ = Gal(K/K), Γv = Gal(Kv/Kv). We regard
Γv as a subgroup of Γ.

For v ∈ Rf , we defined in [Boro1, Prop. 4.1(i)] a canonical isomorphism λv :

H1
ab(Kv ,H)

∼
→ (π1(H)Γv)tors. Here we set

λ′v = λv : H1
ab(Kv ,H)

∼
→

(

π1(H)Γv

)

tors .

For v ∈ R∞, we defined in [Boro1, Prop. 4.2] a canonical isomorphism,

λv : H1
ab(Kv,H)

∼
→ H−1

(

Γv, π1(H)
)

,

where H−1 denotes the Tate cohomology (note that Γv is finite for v ∈ R∞). Here
we define a homomorphism λ′v as the composition

λ′v : H1
ab(Kv,H)

λv−−→ H−1
(

Γv, π1(H)
)

→֒
(

π1(H)Γv

)

tors .

For any v ∈ R, we define the Kottwitz map βv as the composition

βv : H1(Kv,H)
ab1

−−→ H1
ab(Kv,H)

λ′
v−−→

(

π1(H)Γv

)

tors .

This map βv is functorial in H. Note that for v ∈ Rf the maps βv and ab1 :
H1(Kv ,H) → H1

ab(Kv ,H) are bijections, cf. [Boro1, Cor. 5.4.1]. Thus for v ∈ Rf we

have a canonical and functorial in H bijection H1(Kv,H)
∼
→ (π1(H)Γv )tors.

For any v ∈ R, we define a map µv as the composition

µv : H1
ab(Kv,H)

λ′
v−−→

(

π1(H)Γv

)

tors
corv−−→

(

π1(H)Γ
)

tors , (A.1)

where corv is the obvious map.
We prove that (ii)⇔(iii). Since H is connected, using Lang’s theorem and

Hensel’s lemma, we can easily prove that

X(A)/G(A) =
⊕

v

X(Kv)/G(Kv) . (A.2)

Here
⊕

means that we take the families of local orbits (ov ∈ X(Kv)/G(Kv))v∈R
with ov = x0 ·G(Kv) for almost all v, where x0 ∈ X(K) is the image of the neutral
element e ∈ G(K). For any place v of K, the set X(Kv)/G(Kv) is finite (because
H1(Kv ,H) is finite, see [Se, Ch. III §4.4, Th. 5&Ch. III §4.5, Th. 6]). It follows that
X(A)/G(A) is finite if and only if #X(Kv)/G(Kv) = 1 for almost all v. Thus
(ii)⇔(iii).

We prove that (iv)⇒(iii). For almost all v, the group gv is cyclic, hence by
assumption (iv) we have for such v

ker
[

(π1(H)gv)tors → (π1(G)gv)tors
]

= 0 .

But for v ∈ Rf we have canonical bijections

X(Kv)/G(Kv)
∼
→ ker

[

H1(Kv,H) → H1(Kv, G)
]

∼
→ ker

[

(π1(H)gv )tors → (π1(G)gv)tors
]

.

Thus for almost all v we have #(X(Kv)/G(Kv)) = 1. This proves that (iv)⇒(iii).
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We prove that (iii)⇒(iv). Indeed, assume that (iv) does not hold, i.e. there exists
a cyclic subgroup h ⊂ g such that

ker
[

(π1(H)h)tors → (π1(G)h)tors
]

6= 0 .

Then by Chebotarev’s density theorem there exist infinitely many finite places v of
K such that gv is conjugate to h. For all these places v we have

ker
[

(π1(H)gv)tors → (π1(G)gv)tors
]

6= 0 ,

hence #(X(Kv)/G(Kv)) > 1, which contradicts to (iii). Thus (iii)⇒(iv).

We prove that (ii)⇒(i). Indeed, by Borel’s theorem [Bor1, Th. 6.8] the kernel

ker
[

H1(K,H) →
∏

v

H1(Kv ,H)
]

is finite. It follows that all the fibers of the localization map

X(K)/G(K) → X(A)/G(A)

are finite, Hence, if the set X(A)/G(A) is finite, then X(K)/G(K) is finite as well.
Thus (ii)⇒(i).

All that is left to prove is that (i)⇒(ii), i.e. that if the set ofK-orbitsX(K)/G(K)
is finite, then the set of adelic orbits X(A)/G(A) is finite. To this end, we consider
the group

kerab(K,H → G) := ker
[

H1
ab(K,H) → H1

ab(K,G)
]

.

Consider the following condition:

(v) The group kerab(K,H → G) is finite.

We shall prove that (i)⇒(v) and (v)⇒(ii). This will show that (i)⇒(ii).

We prove that (i)⇒(v). Write

H1(K∞,H) =
∏

v∈R∞

H1(Kv,H) ,

H1
ab(K∞,H) =

∏

v∈R∞

H1
ab(Kv,H) .

Similarly we define

ker(K∞,H → G) = ker
[

H1(K∞,H) → H1(K∞, G)
]

=
∏

v∈R∞

ker(Kv ,H → G) ,

kerab(K∞,H → G) = ker
[

H1
ab(K∞,H) → H1

ab(K∞, G)
]

=
∏

v∈R∞

kerab(Kv ,H → G) .

Set
kfab = ker

[

loc∞ : kerab(K,H → G) → kerab(K∞,H → G)
]

.

Since for v ∈ R∞ we have H1
ab(Kv,H) ≃ H−1(Γv, π1(H)) ⊂ (π1(H)Γv )tors , we see

that H1
ab(Kv,H) is finite for every v ∈ R∞, and therefore kerab(K∞,H → G) is a

finite group. It follows that kfab is a subgroup of finite index in kerab(K,H → G).
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Consider the maps

ab1 :H1(K,H) → H1
ab(K,H) ,

loc∞ :H1(K,H) → H1(K∞,H) .

By [Boro1, Th. 5.12] these maps induce a canonical bijection

H1(K,H)
∼
→ H1

ab(K,H) ×
H1

ab
(K∞,H)

H1(K∞,H)

(with a fiber product in the right-hand side). This bijection is functorial in H, hence
we obtain a bijection

ker(K,H → G)
∼
→ kerab(K,H → G) ×

kerab(K∞,H→G)
ker(K∞,H → G) . (A.3)

We define a map

kfab → kerab(K,H → G)× ker(K∞,H → G)

by x 7→ (x, 1). Since loc∞(x) = 1 for x ∈ kfab ⊂ kerab(K,H → G), we obtain from

(A.3) an induced map kfab → ker(K,H → G), which is a section of the map

ab : ker(K,H → G) → kerab(K,H → G)

over kfab. Thus the group kfab embeds as a subset into the set ker(K,H → G).
By assumption (i) X(K)/G(K) is a finite set. Since we have a canonical bijection

X(K)/G(K) ≃ ker(K,H → G) ,

we see that ker(K,H → G) is finite. Since kfab embeds into ker(K,H → G), we see

that kfab is finite. Since kfab is a subgroup of finite index of kerab(K,H → G), we
conclude that kerab(K,H → G) is finite. Thus (i)⇒(v).

We prove that (v)⇒(ii). Here we use the abelian group structure in
kerab(K,H → G). We write

⊕

v for
⊕

v∈R.
We define a map µ :

⊕

vH
1
ab(Kv ,H) → (π1(H)Γ)tors as the sum of the local

maps µv defined in (A.1). Namely, if ξA = (ξv) ∈
⊕

vH
1
ab(Kv ,H), we set µ(ξA) =

∑

v µv(ξv). The sequence

H1
ab(k,H)

loc
−−→

⊕

v

H1
ab(Kv,H)

µ
−−→

(

π1(H)Γ
)

tors (A.4)

is exact, see [Boro1, Proof of Th. 5.16].
Exact sequence (A.4) is functorial in H, hence the embedding H →֒ G gives rise

to a commutative diagram with exact rows

H1
ab(K,H)

��

loc
//
⊕

vH
1
ab(Kv,H)

��

µ
//
(

π1(H)g
)

tors

��

H1
ab(K,G)

loc
//
⊕

vH
1
ab(Kv, G)

µ
//
(

π1(G)g
)

tors

(A.5)

This diagram induces a homomorphism

κ :
⊕

v

kerab(Kv ,H → G) → ker
[

(π1(H)g)tors → (π1(G)g)tors
]

.

The group ker[(π1(H)g)tors → (π1(G)g)tors] is clearly finite. Set k0 = ker κ.
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We define

X
1
ab(K,H) := ker

[

H1
ab(K,H) →

∏

v

H1
ab(Kv,H)

]

.

We construct a homomorphism

ψ : k0 → X
1
ab(K,G)

/

i∗
(

X
1
ab(K,H)

)

as follows. Let

ξA ∈ k0 ⊂
⊕

v

kerab(Kv ,H → G) ⊂
⊕

v

H1
ab(Kv ,H) .

Since the top row of diagram (A.5) is exact, we see that ξA comes from some
ξ ∈ H1

ab(K,H), and this ξ is defined up to addition of ξ′ ∈ X
1
ab(K,H). It is clear

from the diagram that the image of ξ in H1
ab(K,G) is contained in X

1
ab(K,G). Thus

we obtain a map ψ : k0 → X
1
ab(K,G)/i∗(X

1
ab(K,H)). It is easy to see that ψ is

a homomorphism. By Lemma A.1.3 below, the group X
1
ab(K,G) is finite. Hence,

the group X
1
ab(K,G)/i∗(X

1
ab(K,H)) is finite. Set k00 = ker ψ. Using diagram

chasing, we easily see that k00 is the image of kerab(K,H → G) in k0.
By assumption (v) the group kerab(K,H → G) is finite, hence its image k00 is

finite. Since we have a homomorphism of abelian groups ψ from k0 to the finite
group X

1
ab(K,G)/i∗(X

1
ab(K,H)) with finite kernel k00, we see that k0 is finite.

Since we have a homomorphism of abelian groups κ from
⊕

v kerab(Kv,H → G) to
the finite group ker[(π1(H)g)tors → (π1(G)g)tors] with finite kernel k0, we see that
⊕

v kerab(Kv ,H → G) is finite. Since for all v ∈ Rf we have bijections

ab : ker(Kv,H → G)
∼
→ kerab(Kv,H → G) ,

we see that the set
⊕

v ker(Kv,H → G) is finite. This means that the setX(A)/G(A)
is finite. Thus (v)⇒(ii).

This completes the proof of Theorem A.1.2 modulo Lemma A.1.3. �

Lemma A.1.3. Let G be a connected linear algebraic group over a number field K.
Then the abelian group X

1
ab(K,G) is finite.

Proof. We give two proofs.

First proof: by [Boro1, Th. 5.12] we have a canonical bijection X
1(K,G) →

X
1
ab(K,G), and by Borel’s theorem, see [Bor1, Th. 6.8], X1(K,G) is finite. Thus

X
1
ab(K,G) is finite.

Second proof: We may and shall assume that G is reductive. Let

1 → S → G′ → G→ 1

be a flasque resolution of G, see [Co, §3]. Here G′ is a quasi-trivial reductive group
and S is a torus. Let P = (G′)tor, the biggest quotient torus of G′. Since G′ is
a quasi-trivial group, P is a quasi-trivial torus. For any field F ⊃ K we have a
canonical isomorphism

H1
ab(F,G)

∼
→ ker

[

H2(F, S) → H2(F,P )
]

,
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see [Co, App.A]. Since P is quasi-trivial, we have X
2(K,P ) = 0, and therefore

X
1
ab(K,G) ≃ X

2(K,S) .

It is known that the group X
2(K,S) is finite for any K-group of multiplicative

type S, see [Mil, Ch. I, Th. 4.20(a)]. Thus X1
ab(K,G) is finite. �

A.2 Corollaries of Theorem A.1.2.

Corollary A.2.1. Let K, G, H, and X be as in A.1.1. If π1(H) = 0, then the
set of orbits X(K)/G(K) is finite.

Proof. Indeed, then (π1(H)h)tors = 0, hence the map (π1(H)h)tors → (π1(G)h)tors is
injective (for any h). By Theorem A.1.2 the set X(K)/G(K) is finite. �

Corollary A.2.2. LetK, G, H, andX be as in A.1.1. If the map π1(H) → π1(G)
is an isomorphism, then the set of orbits X(K)/G(K) is finite.

Proof. Indeed, then the map (π1(H)h)tors → (π1(G)h)tors is an isomorphism, hence
injective (for any h). By Theorem A.1.2 the set X(K)/G(K) is finite. �

Corollary A.2.3. Let K, G, H, X be as in A.1.1. Assume the set X(K)/G(K)
is finite. Then the induced homomorphism i∗ : π1(H)tors → π1(G)tors is injective.

Proof. Since the set X(K)/G(K) is finite, by Theorem A.1.2 the map

i∗ :
(

π1(H)h
)

tors →
(

π1(G)h
)

tors

is injective for any cyclic subgroup h ⊂ g, in particular for h = {1}. Thus the map
π1(H)tors → π1(G)tors is injective. �

Corollary A.2.4. Let K, G, H, X be as in A.1.1. Assume the set X(K)/G(K)
is finite. If H has no nontrivial K-characters (e.g. semisimple), then the homo-
morphism i∗ : π1(H) → π1(G) is injective.

Proof. Indeed, since H has no nontrivial K-characters, we see that π1(H) is finite,
hence π1(H)tors = π1(H), and we apply Corollary A.2.3. �

Corollary A.2.5. Let K, G, H, X be as in A.1.1. Assume that both G and
H have no nontrivial K-characters (e.g. they are both semisimple) and assume that
π1(G) = 0. Then X(K)/G(K) is finite if and only if π1(H) = 0.

Proof. If π(H) = 0, then by Corollary A.2.1 X(K)/G(K) is finite. Conversely,
assume that X(K)/G(K) is finite. By Corollary A.2.4 the homomorphism π1(H) →
π1(G) is injective, but π1(G) = 0, hence π1(H) = 0. �
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A.2.6 Let G be a connected semisimple K-group. We say that G is an
inner form if G is an inner form of a K-split group. If G is an inner form, then
the Galois group Gal(K/K) acts on π1(G) trivially. Indeed, for a K-split group G
this follows from the definition of π1(G), and an inner twisting does not change the
Galois module π1(G).

Corollary A.2.7. Let K, G, H and X be as in A.1.1. Assume that the Galois
group Gal(K/K) acts on π1(G) trivially. If the homomorphism i∗ : π1(H) → π1(G)
is injective, then the set X(K)/G(K) is finite.

Proof. Since π1(H) injects into π1(G), we see that Gal(K/K) acts also on π1(H)
trivially. Thus g = {1}, hence the only cyclic subgroup h ⊂ g is h = {1}. We see
that the homomorphism

i∗ : π1(H)h → π1(G)h

is injective, hence the homomorphism

i∗ :
(

π1(H)h
)

tors →
(

π1(G)h
)

tors

is injective, and the corollary follows from Theorem A.1.2. �

A.3 Semisimple groups. In this section K is an algebraically closed field of
characteristic 0. We consider pairs (G,H), where H is a connected semisimple K-
subgroup of a connected semisimple K-group G. We find conditions under which
the map π1(H) → π1(G) is injective.

A.3.1 Let H ⊂ G be connected semisimple K-groups. In this case the
both π1(H) and π1(G) are finite. Let i : H → G be the inclusion homomor-
phism. Consider the map isc : Hsc → Gsc, where Gsc is the universal covering
of G. Set H ′ = isc(Hsc) ⊂ Gsc. Let TH ⊂ H be a maximal torus, and let
TG ⊂ G be a maximal torus containing TH . Let THsc ⊂ Hsc, TH′ ⊂ H ′, and
TGsc ⊂ Gsc be the maximal tori corresponding to TH and TG. For a K-torus T let
X∗(T ) denote the cocharacter group of T , i.e. X∗(T ) = Hom(Gm,K , T ). We have
canonical homomorphisms THsc → TH′ → TGsc and the induced homomorphisms
X∗(THsc) → X∗(TH′) → X∗(TGsc).

Lemma A.3.2. Let H ⊂ G be connected semisimple K-groups. With the notation
of subsection A.3.1 we have canonical isomorphisms

π1(H
′) ≃ ker

[

π1(H) → π1(G)
]

≃ coker
[

X∗(THsc) → X∗(TGsc)
]

tors .

where tors denotes the torsion subgroup (of the cokernel).
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Proof. Consider the following commutative diagram with exact rows:

0

��

0

��

k

��

0 // X∗(THsc)

��

// X∗(TH)

��

// π1(H)

��

// 0

0 // X∗(TGsc)

��

// X∗(TG)

��

// π1(G) // 0

Csc C

where k is the kernel and Csc and C are the cokernels of the corresponding homo-
morphisms. By the snake lemma we have an exact sequence

0 → k → Csc → C . (A.6)

Since π1(H) is finite, clearly k is finite. Since TH embeds into TG, the group C has no
nonzero torsion. From exact sequence (A.6) we obtain an isomorphism k

∼
→ (Csc)tors,

i.e. an isomorphism

ker
[

π1(H) → π1(G)
]

≃ coker
[

X∗(THsc) → X∗(TGsc)
]

tors ,

Since the injective homomorphism X∗(THsc) → X∗(TGsc) factorizes as a compo-
sition of injective homomorphisms X∗(THsc) → X∗(TH′) → X∗(TGsc), we obtain a
short exact sequence

0 → coker
[

X∗(THsc) → X∗(TH′)
]

→ coker
[

X∗(THsc) → X∗(TGsc)
]

→ coker
[

X∗(TH′) → X∗(TGsc)
]

→ 0 .

Since TH′ embeds into TGsc , we have coker[X∗(TH′) → X∗(TGsc)]tors = 0, and there-
fore we obtain an isomorphism

coker
[

X∗(THsc) → X∗(TH′)
]

tors ≃ coker
[

X∗(THsc) → X∗(TGsc)
]

tors .

But coker[X∗(THsc) → X∗(TH′)]tors = coker[X∗(THsc) → X∗(TH′)] = π1(H
′). Thus

we obtain an isomorphism

π1(H
′) ≃ coker

[

X∗(THsc) → X∗(TGsc)
]

tors .

This completes the proof of Lemma A.3.2. �

Corollary A.3.3. With the assumptions and notation of Lemma A.3.2, the
following assertions are equivalent:

(i) H ′ is simply connected;
(ii) The homomorphism π1(H) → π1(G) is injective;
(iii) The group coker[X∗(THsc) → X∗(TGsc)] has no torsion.
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A.4 Symmetric pairs over an algebraically closed field. In this section
we assume that K is an algebraically closed field of characteristic 0. We consider
symmetric pairs (G,H) over K, where G is a connected, simply connected, almost
simple K-group, and H ⊂ G is a connected, semisimple, closed subgroup. Recall
that “symmetric pair” means that H is the group of invariants Gθ for some invo-
lutive automorphism θ of G. Symmetric pairs (G,H) (or (G, θ)) were classified by
E. Cartan. We shall use the unified description of symmetric pairs due to V. Kac,
see [H] and [OnV1]. A symmetric pair (G,H) with semisimple H corresponds to
an affine Dynkin diagram D and a vertex s of D, see [OnV1, Tab. 7]. We give a
list of all symmetric pairs (G,H) from [OnV1, Tab. 7] with simply connected almost
simple G for which H is simply connected. We give only the isomorphism classes of
G and H. For a description of the embedding H →֒ G see [H, X.2.3] for G classical,
or [OnV1, Tab. 7] for all cases (in terms of affine Dynkin diagrams).

Theorem A.4.1. Let (G,H) be a symmetric pair over an algebraically closed field
K of characteristic 0, where G be a connected, simply connected, almost simple K-
group, and H ⊂ G a connected, semisimple, closed subgroup. Then H is simply
connected for the symmetric pairs (G,H) in the list below, and π1(H) = Z/2Z for
the symmetric pairs (G,H) not in the list.

(A II) G = SL2n, H = Spn (n ≥ 3).
(C II) G = Spp+q, H = Spp× Spq (1 ≤ p ≤ q).
(BD I(2l, 1)) G = Spin2l+1, H = Spin2l (l ≥ 3).
(BD I(2l − 1, 1)) G = Spin2l, H = Spin2l−1 (l ≥ 3).
(E IV) G = E6, H = F4.
(F II) G = F4, H = Spin9.

Proof. We consider two cases.

(i) θ is an inner automorphism.
In this case the affine Dynkin diagram D which is used in the description of the

symmetric pair (G,H), cf. [OnV1, Tab. 7], is the extended Dynkin diagram of G. Let
TH be a maximal torus of H, and let TG be a maximal torus of G containing TH .
Let THsc be the corresponding maximal torus of the universal covering Hsc of H.
Let X∗(TG) := Hom(TG,Gm) be the character group of TG. Set V = X

∗(TG)⊗Z R.
Let R = R(G,TG) ⊂ X

∗(TG) ⊂ V be the root system of G. Let α0, α1, . . . , αl ∈ R
be the roots corresponding to the vertices of D, where α0 is the lowest root. Then

l
∑

i=0

aiαi = 0 , (A.7)

where ai ∈ Z, a0 = 1. The distinguished vertex s of D corresponds to some root αk,
and ak = 2 (see [H, Ch.X §5], [OnV1, Ch. 5 §1.5, Prob. 38]).

Let R∨ ⊂ X∗(TG) denote the dual root system. For every α ∈ R let α∨ ∈ R∨

be the corresponding coroot. The coroots α∨
1 , . . . , α

∨
l constitute a basis of X∗(TG),

hence α∨
0 , α

∨
1 , . . . , α

∨
l generate X∗(TG). The diagram D−{s} is the Dynkin diagram

of H, and the coroots α∨
i , (i 6= k) constitute a basis of X∗(THsc).
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Let W = W (R) denote the Weyl group. Choose a W -invariant scalar product
( , ) in V . We can embed R∨ into V by

α∨ =
2α

(α,α)
.

We consider 4 subcases:

(a) Suppose that D has no multiple edges. Then all the roots β ∈ R are of the
same length, and we can normalize the scalar product such that (β, β) = 2,
hence β∨ = β, for all β ∈ R. Now it follows from (A.7) that

l
∑

i=0

aiα
∨
i = 0 .

Recall that ai ∈ Z, a0 = 1, and ak = 2. We see that α∨
k ∈ 1

2X∗(THsc), but
α∨
k /∈ X∗(THsc). Thus coker[X∗(THsc) → X∗(TG)] = Z/2Z, and by Lemma A.3.2
π1(H) = Z/2Z.

(b) Suppose that D has double edges and αk is a short root. We can normalize
the scalar product such that for any long root β we have (β, β) = 2, hence
β∨ = β. Then for any short root γ we have (γ, γ) = 1, hence γ∨ = 2γ. Now it
follows from (A.7) that

l
∑

i=0

a′iα
∨
i = 0 , (A.8)

where a′i = ai when αi is long, and a
′
i = ai/2 when αi is short.

Since α0 is the lowest root, it is long. Since a0 = 1, we obtain that a′0 = 1.
Thus (A.8) gives

α∨
0 =

l
∑

i=1

−a′iα
∨
i .

Since α∨
0 ∈ R∨ and (α∨

i )i=1,...,l is a basis ofR
∨, we see that a′i ∈ Z for all i. Since

ak = 2 and αk is short, we see that a′k = 1. Thus α∨
k is a linear combination

of α∨
i (i 6= k) with coefficients in Z. We see that the map X∗(THsc) → X∗(TG)

is surjective, and by Corollary A.3.3 the group H is simply connected.

(c) Suppose that D has double edges and αk is a long root. As in (b), from (A.7)
we obtain the relation (A.8) with a′i = ai when αi is long, and a

′
i = ai/2 when

αi is short. Again a
′
0 = 1 and a′i ∈ Z for all i. Since ak = 2 and now αk is long,

we see that a′k = 2. As in (a), we see that α∨
k ∈ 1

2X∗(THsc), but α∨
k /∈ X∗(THsc).

Thus coker[X∗(THsc) → X∗(TG)] = Z/2Z, and by Lemma A.3.2 π1(H) = Z/2Z.

(d) Suppose that D has a triple edge (type G2). We have k = 1,

α0 + 2α1 + 3α2 = 0 , (A.9)

(see [OnV1, Tab. 7.I]), where

(α0, α0) = 3 , (α1, α1) = 3 and (α2, α2) = 1 .
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Then
α∨
0 = 2

3α0 , α∨
1 = 2

3α1 , α∨
2 = 2α2 .

From (A.9) we obtain
α∨
0 + 2α∨

1 + α∨
2 = 0 .

Similarly to (a), we see that α∨
1 ∈ 1

2X∗(THsc), but α∨
1 /∈ X∗(THsc). It follows

that coker[X∗(THsc) → X∗(TG)] = Z/2Z, and therefore π1(H) = Z/2Z.

We obtain the following list of pairs (G,H) with simply connected H in the case
when θ is inner:

(C II) G = Spp+q, H = Spp× Spq (1 ≤ p ≤ q).
(BD I(2l, 1)) G = Spin2l+1, H = Spin2l (l ≥ 3).
(F II) G = F4, H = Spin9.

(ii) θ is an outer automorphism. We use case-by-case consideration.
When G is a classical group and θ is outer, we see from [OnV1, Tab. 7.III] that

H is simply connected only in the following cases:

(A II) G = SL2n, H = Spn (n ≥ 3).
(BD I(2l − 1, 1)) G = Spin2l, H = Spin2l−1 (l ≥ 3).

These are exactly the cases when D has a double edge and αk is a short root.

We list all the other classical cases with θ outer:

(A I) G = SLn, H = SOn (n ≥ 3, n 6= 4).
(BD I(2p+ 1, 2q + 1)) G=Spin2p+2q+2, H =(Spin2p+1× Spin2q+1)/µ2 (1≤ p≤ q).

In these cases π1(H) = Z/2Z.

We must treat the case D = E
(2)
6 , see [OnV1, Tab. 7.III] (this diagram has a

double edge). Then either H = F4 or H = C4.
When H = F4, clearly H is simply connected. In this case αk is a short root.
When H is of the type C4, the restriction of the adjoint representation of G to

H is the direct sum Lie(G) = Lie(H) ⊕ p of two irreducible representations. Here
the representation of H = C4 in p is a subrepresentation of the representation of C4

in
∧4R, where R is the standard 8-dimensional representation of C4. We see that

the central element −1 ∈ Hsc(K) = Sp4(K) acts trivially on Lie(H) and on p, hence
the image of −1 in the adjoint group Gad is 1. Since ker[G→ Gad] is of order 3, we
see that the image of this element in G is 1. Thus π1(H) = Z/2Z. In this case αk

is a long root.
We obtain the following list of symmetric pairs (G,H) with simply connected H

in the case E6:

(E IV) G = E6, H = F4.

This completes the proof of Theorem A.4.1. �

Corollary A.4.2. Let G be a connected, simply connected, almost simple K-
group over an algebraically closed field K of characteristic 0, and let H ⊂ G be
a connected, symmetric, semisimple K-subgroup. Assume that the symmetric pair
(G,H) corresponds to (D, s) as above. If D has a double edge and s corresponds to
a short root, then H is simply connected; otherwise π1(H) = Z/2Z.
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A.5 Symmetric pairs over a number field. Clearly (G,H) is a symmetric
pair if and only if (G,H) is a symmetric pair.

First we consider symmetric homogeneous spaces X = H\G with G simply
connected. It turns out that the answer to the question whether X(K) has finitely
many G(K)-orbits depends only on the isomorphism class of the pair (G,H)).

Theorem A.5.1. Let K be a number field, and (G,H) a symmetric pair over
K with connected, simply connected, absolutely almost simple G and connected
semisimple H. The symmetric homogeneous space X = H\G over K has finitely
many G(K)-orbits if and only if the pair (G,H) is in the list of Theorem A.4.1, or,
which is the same, if and only if the symmetric pair (G,H) is in the list below:

(A II) G is a K-form of SL2n, H is a K-form of Spn (n ≥ 3).
(C II) G is a K-form of Spp+q, H is a K-form of Spp× Spq (1 ≤ p ≤ q).
(BD I(2l, 1)) G is a K-form of Spin2l+1, H is a K-form of Spin2l (l ≥ 3).
(BD I(2l − 1, 1)) G is a K-form of Spin2l, H is a K-form of Spin2l−1 (l ≥ 3).
(E IV) G is a K-form of the simply connected group of type E6, H is a K-form

of F4.
(F II) G is a K-form of F4, H is a K-form of Spin9.

Proof. We have π1(G) = 0. By Corollary A.2.5 the set of orbits X(K)/G(K) is
finite if and only if π1(H) = 0, i.e. H is simply connected. The symmetric pairs
(G,H) over K with simply connected H were listed in Theorem A.4.1. The list of
Theorem A.5.1 is exactly the list of Theorem A.4.1. �

Now we consider symmetric homogeneous spaces X = H\G with G adjoint. In
this case the answer to the question whether X(K) has finitely many G(K)-orbits
depends on the isomorphism class of the pair (G,H)) and may also depend on
whether G is an inner or outer form of a K-split group.

Theorem A.5.2. Let K be a number field. Let (G,H) be a symmetric pair over
K with connected, adjoint, absolutely simple G and connected semisimple H. The
symmetric homogeneous space X = H\G over K has finitely many G(K)-orbits if
and only if the symmetric pair (G,H) is in the following list:

(A II) G is a K-form of PSL2n, H is a K-form of PSpn (n ≥ 3), where either n is
odd or G is an inner form of a K-split group.

(C II) G is a K-form of PSpp+q, H is a K-form of (Spp× Spq)/µ2 (1 ≤ p ≤ q).
(BD I(2l, 1)) G is a K-form of SO2l+1, H is a K-form of SO2l (l ≥ 3).
(BD I(2l − 1, 1)) G is aK-form of PSO2l which is an inner form of aK-split group,

H is a K-form of SO2l−1 (l ≥ 3).
(E IV) G is a K-form of the adjoint group of type E6, H is a K-form of F4.
(F II) G is a K-form of F4, H is a K-form of Spin9.

Proof. First assume that X(K)/G(K) is finite. Since H is semisimple, by Corol-
lary A.2.4 the homomorphism π1(H) → π1(G) is injective. Let H ′ denote the image

of isc : Hsc → Gsc. By Corollary A.3.3 H ′ is simply connected. Thus (G
sc
,H

′
)

is a symmetric pair with simply connected groups G
sc

and H
′
. Such pairs were
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listed in Theorem A.4.1. Thus we obtain that the pair (G,H
′
) is from the list of

Theorem A.4.1, hence (G,H) is from the following list:

(A II) G is a K-form of PSL2n, H is a K-form of PSpn (n ≥ 3).
(C II) G is a K-form of PSpp+q, H is a K-form of (Spp× Spq)/µ2 (1 ≤ p ≤ q).
(BD I(2l, 1)) G is a K-form of SO2l+1, H is a K-form of SO2l (l ≥ 3).
(BD I(2l − 1, 1)) G is a K-form of PSO2l, H is a K-form of SO2l−1 (l ≥ 3).
(E IV) G is a K-form of the adjoint group of type E6, H is a K-form of F4.
(F II) G is a K-form of F4, H is a K-form of Spin9.

Conversely, let us check, for which (G,H) from this list the set of orbits
X(K)/G(K) is finite.

IfG is an inner form, then Gal(K/K) acts on π1(G) trivially, see subsectionA.2.6,
and by Corollary A.2.7 the set of orbits X(K)/G(K) is finite. Thus in the cases
(C II), (BD I(2l, 1)), and (F II) the set X(K)/G(K) is finite, because any form of
G is inner in these cases.

In the case (E IV) we have π1(H) = 0, and by Corollary A.2.1 the set
X(K)/G(K) is finite (when G is an inner form or an outer form).

What is left is to consider the cases (A II) and (BD I(2l − 1, 1)) with outer
forms of G.

We consider the case (A II). Then G = PSL2n, π1(G) = Z/2nZ, H = PSpn,
π1(H) = Z/2Z. The embedding π1(H) →֒ π1(G) is given by

1 7→ n , where 1 = 1 + 2Z ∈ Z/2Z , n = n+ 2nZ ∈ Z/2nZ .

Since G is an outer form, we have g = {1, σ}, where the nontrivial element σ of g
is of order 2 and acts on π1(G) = Z/2nZ by σx = −x. We see that σx − x = −2x.
Thus the kernel of the canonical map π1(G) → π1(G)g is the subset

{

2k ⊂ Z/2nZ | k ∈ Z} .

We see that the element n lies in this kernel if and only if n is even.
If n is even, then the map π1(H)g → π1(G)g is the zero map. In other words,

for h = g the map π1(H)h → π1(G)h is not injective. By Theorem A.1.2 the set
X(K)/G(K) is infinite.

If n is odd, then the map π1(H)g → π1(G)g is injective. In other words, for h = g

the map π1(H)h → π1(G)h is injective. On the other hand, the map π1(H) → π1(G)
is injective (for any n). In other words, for h = {1} the map π1(H)h → π1(G)h is
injective as well. By Theorem A.1.2 the set X(K)/G(K) is finite.

We consider the case (BD I(2l − 1, 1)) when G is an outer form. We show that
X(K)/G(K) is infinite in this case.

In this case G is a form of Dl and H is a form of Bl−1. We have π1(H) = Z/2Z,
and π1(G) is Z/4Z when l is odd and Z/2Z×Z/2Z when l is even. The group π1(H)
embeds into π1(G), and the image is a Gal(K/K)-invariant subgroup of order 2.

We observe that in the case l = 4, G does not come from triality. Indeed,
if G comes from triality, then Gal(K/K) acts transitively on the set of nonzero
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elements of π1(G), and therefore π1(G) cannot have a Gal(K/K)-invariant subgroup
of order 2.

We see that for any l, the group g is of order 2. We write g = {1, σ}.
Assume that l is odd. Then π1(G) = Z/4Z, and σ acts on π1(G) by σx = −x.

Arguing as in the case (A II) with even n, we see that X(K)/G(K) is infinite.
Assume that l is even. Denote the elements of π1(G) = Z/2Z×Z/2Z by 0, a, b, c.

We may assume that σ permutes a and b and fixes c. Then clearly the image of
π1(H) is {0, c}. Since a−σa = a+b = c, we see that the map π1(H)g → π1(G)g is the
zero map, hence it is not injective. By Theorem A.1.2 the set of orbits X(K)/G(K)
is infinite.

This completes the proof of Theorem A.5.2. �

Theorem A.5.3. Let X = H\G, where (G,H) is a symmetric pair as in
Theorem A.5.1 or as in Theorem A.5.2. Then,

(i) For any finite place v of K, the group G(Kv) acts on X(Kv) transitively.
(ii) Write K∞ =

∏

v∈R∞
Kv (so that X(K∞) =

∏

v∈R∞
X(Kv)). Then every

obit of G(K∞) in X(K∞) contains exactly one orbit of G(K) in X(K). In
particular, any two K-points in the same connected component of X(K∞) are
G(K)-conjugate.

Proof. (i) Let g denote the image of Gal(K/K) in Aut π1(H) × Aut π1(G). Since
π1(H) embeds into π1(G), we can say that g is the image of Gal(K/K) in Aut π1(G).
We have seen in the proof of Theorem A.5.2 that G does not come from triality.
Thus either g = 1 or g = Z/2Z. We see that g is cyclic. It follows that all the
decomposition groups gv are cyclic. Condition (iv) of Theorem A.1.2 shows now
that ker[π1(H)gv → π1(G)gv ] = 0 for any v (because gv is cyclic for any v). It
follows that ker[H1(Kv ,H) → H1(Kv , G)] = 1 for v ∈ Rf , hence there is only one
orbit of G(Kv) in X(Kv) for such v, which proves (i).

(ii) G is an absolutely almost simple K-group. By [S, Cor. 5.4] G satisfies the
Hasse principle and has the weak approximation property. Since H is a connected
K-subgroup of G, by [Boro2, Cor. 1.7] X has the real approximation property, i.e.
any orbit of G(K∞) in X(K∞) contains a K-point.

Now let x, y ∈ X(K) lie in the same G(K∞)-orbit. We wish to prove that they
lie in the same G(K)-orbit. Our homogeneous space X = H\G has a distinguished
K-point x0, the image of the unit element e ∈ G(K). The stabilizer of x0 in G is H.
Let Hy denote the stabilizer of y in G. Clearly the pair (G,Hy) is a symmetric pair
satisfying the hypotheses of Theorem A.5.2 (or Theorem A.5.1). We may and shall
assume that y = x0.

So let x ∈ X(K) lie in the G(K∞)-orbit of x0. We wish to prove that x lies
in the G(K)-orbit of x0. Let c(x) denote the class of the G(K)-orbit of x in
ker(K,H → G) := ker[H1(K,H) → H1(K,G)] (we use the notation of the proof
of Theorem A.1.2). For any place v of K let

locv : ker(K,H → G) → ker(Kv,H → G)
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be the localization map. By (i) for any finite place v of K we have ker(Kv,H → G)
= 1, hence locv(c(x)) = 1. Since x lies in the G(K∞)-orbit of x0, we have locv(c(x))
= 1 for all infinite places v of K.

Set B = ker[Hsc → H]. By [S, Cor. 4.4] there is a canonical bijection
X

1(K,H)
∼
→ X

2(K,B). From the lists of Theorems A.5.1 and A.5.2 we see that in
our case either B = 0 or B = Z/2Z. Since in both cases X2(K,B) = 0, we conclude
that X

1(K,H) = 1. This means that ker
[

loc : H1(K,H) →
∏

vH
1(kv ,H)

]

= 1.
We have seen that loc(c(x)) = 1. Hence, c(x) = 1. This means that x lies in the
G(K)-orbit of x0. This completes the proof of Theorem A.5.3. �

A.6 Addendum: Further examples. In this addendum we give examples of
homogeneous spaces satisfying assumptions (i)–(iii) of Theorem 1.1 but not covered
by Theorems A.5.1 and A.5.2.

A.6.1 Example with G not absolutely simple. Let K be a number field,
K ′/K a quadratic extension, D/K ′ a central simple algebra of dimension r2 with
an involution of second kind σ (i.e. σ induces the nontrivial automorphism σ0 of K ′

over K). Let m be a natural number and let Φ be a σ-Hermitian form on Dm. Set

G = PSLD(D
m) , H = PSU(Dm,Φ) ,

where we regard G and H as K-groups. Then G is adjoint and H is a symmet-
ric subgroup of G. An easy calculation shows that π1(G) = Z/nZ ⊕ Z/nZ and
π1(H) = Z/nZ, where n = mr. The group Gal(K/K ′) acts trivially on π1(G) and
π1(H). The non-identity element σ0 ∈ Gal(K ′/K) acts on π1(H) by multiplication
by −1. Thus g = Gal(K ′/K) and π1(H)g = (Z/nZ)/2(Z/nZ).

Now assume that n is odd (i.e. both r andm are odd). Then (Z/nZ)/2(Z/nZ)= 0,
hence π1(H)g = 0 and the homomorphism

π1(H)g → π1(G)g

is injective. Since Hsc embeds into Gsc, by Corollary A.3.3 the homomorphism
π1(H) → π1(G) is also injective. By Theorem A.1.2 the set X(K)/G(K) is finite
and for almost all v the group G(Kv) acts transitively on X(Kv).

Similar examples can be constructed for G and H of type E6 (then π1(H) =
Z/3Z) and for G and H of types E8, F4 and G2.

A.6.2 Examples with spherical non-symmetric H. We are interested
in examples of pairs (G,H) over a number field K such that (G,H) is a non-
symmetric spherical pair, the group G is connected, adjoint, and absolutely simple,
the subgroup H is a connected semisimple subgroup of G, and H is a maximal con-
nected subgroup of G. Spherical pairs (G,H) are listed in [Kr, Tab. 1]. See [Vin,
Ch. I, §3, Tab. 1] for a list of non-symmetric spherical pairs. From the latter table we
see that there are only two non-symmetric spherical pair (G,H) over K such that G
is connected, adjoint, and simple, H is a connected semisimple subgroup of G, and
H is a maximal connected subgroup of G: they are (SO7, G2) and (G2,SL3). For
the embeddings H →֒ G in these examples we refer to the cited tables. Thus over
K we obtain pairs (G,H) where (G,H) is a spherical non-symmetric pair and
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(a) G is a form of SO7, H is a form of G2; or
(b) G is a form of G2, H is a form of SL3.

In both cases π1(H) = 0. By Corollary A.2.1 the set X(K)/G(K) is finite and
for almost all v the group G(Kv) acts transitively on X(Kv).

A.6.3 Examples with non-spherical H. There are lots of pairs (G,H)
satisfying assumptions (i)–(iii) of Theorem 1.1. Indeed, let H be a connected, simply
connected, absolutely almost simple K-group. Let ρ : H → GL(V ) be an absolutely
irreducible faithful representation of H in a vector space V defined over K (if H
is split, then any irreducible representation of H defined over K can be defined
over K). If ρ does not admit a nondegenerate invariant bilinear form, we set G =
GL(V ). If ρ admits a nondegenerate symmetric invariant bilinear form Fs, we set
G = SO(V, Fs). If ρ admits a nondegenerate alternating invariant bilinear form Fa,
we set G = Sp(V, Fa).

Since ρ is faithful, we may regard H as a subgroup of G. For almost all ρ
the subgroup H is a maximal connected K-subgroup of G, with a small number
of exceptions, see [Dy, Th. 1.5] (see also [OnV2, Th. 6.3.3]). Note that if H is
a maximal connected subgroup of G, then clearly H is a maximal connected K-
subgroup of G. Set X = H\G. Since H is simply connected, by Corollary A.2.1
the set X(K)\G(K) is finite and G(Kv) acts transitively on X(Kv) for almost all v.
Thus for all faithful absolutely irreducible representations ρ such thatH is a maximal
connected subgroup of G, we get pairs (G,H) satisfying assumptions (i)–(iii) of
Theorem 1.1.
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[Lu1] D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), 231–238.
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