
JORDAN AND CARTAN SPECTRA IN HIGHER RANK
WITH APPLICATIONS TO CORRELATIONS

MICHAEL CHOW AND HEE OH

Abstract. For a given d-tuple ρ = (ρ1, . . . , ρd) : Γ → G of faithful
Zariski dense convex cocompact representations of a finitely generated
group Γ, we study the correlations of length spectra {ℓρi(γ)}[γ]∈[Γ] and
correlations of displacement spectra {d(ρi(γ)o, o)}γ∈Γ. We prove that
for any interior vector v = (v1, . . . , vd) in the spectrum cone, there exists
δρ(v) > 0 such that for any ε1, . . . , εd > 0, there exist c1, c2 > 0 such
that

#{[γ] ∈ [Γ] : viT ≤ ℓρi(γ) ≤ viT + εi, 1 ≤ i ≤ d} ∼ c1
eδρ(v)T

T (d+1)/2
;

#{γ ∈ Γ : viT ≤ d(ρi(γ)o, o) ≤ viT + εi, 1 ≤ i ≤ d} ∼ c2
eδρ(v)T

T (d−1)/2
.

Moreover, if d ≥ 2, then δρ(v) < 1
d

∑d
i=1 δρi(Γ)vi where δρi(Γ) is the

critical exponent of ρi(Γ). For G = PSL2(C), our result gives the as-
ymptotic correlation of complex eigenvalues. The special case where Γ is
a surface group, G = PSL2(R), and v = (1, 1) was obtained by Schwarz
and Sharp in 1993.

We deduce this result as a special case of our main theorem on the
distribution of Jordan projections with holonomies and Cartan projec-
tions in tubes of an Anosov subgroup Γ of a semisimple real algebraic
group G. We also show that the growth indicator of Γ remains the same
when we use Jordan projections instead of Cartan projections and tubes
instead of cones, except possibly on the boundary of the limit cone. We
deduce that for any Zariski dense discrete subgroup Γ < G, there are ex-
ponentially many Jordan and Cartan projections in an arbitrarily small
tube around any ray in the interior of the limit cone.

1. Introduction

Let G be a connected simple real algebraic group of rank one and (X, d)
the associated Riemannian symmetric space so that G = Isom+(X). Let Γ
be a non-elementary convex cocompact subgroup of G. Denote by [Γ] the
conjugacy classes of elements of Γ. To each non-trivial element [γ] ∈ [Γ]
corresponds a unique closed geodesic in the locally symmetric manifold Γ\X
whose length we denote by ℓγ . Let δΓ > 0 denote the critical exponent of
Γ. The prime geodesic theorem and orbital counting theorem say that as
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T → ∞,

#{[γ] ∈ [Γ] : ℓγ ≤ T} ∼ eδΓT

δΓT
; (1.1)

and1

#{γ ∈ Γ : d(γo, o) ≤ T} ∼ eδΓT

|mBMS|δΓ
(1.2)

where o ∈ X and mBMS denotes the suitably normalized Bowen-Margulis-
Sullivan measure on the unit tangent bundle of Γ\X. This is due to Margulis
[27] and Roblin [34] in this generality (see also [17], [13]). We identify the unit
tangent bundle of Γ\X with Γ\G/M where M is a compact subgroup of G.
For each non-trivial [γ] ∈ [Γ], there exists a unique conjugacy class [mγ ] ofM ,
called the holonomy of γ. Equidistribution of holonomies was obtained for
lattices by Sarnak-Wakayama [36], and the following joint equidistribution
was proved by Margulis-Mohammadi-Oh [28] for all Zariski dense convex
cocompact Γ: for any conjugation invariant Borel subset Θ ⊂M with smooth
boundary, as T → ∞,

#{[γ] ∈ [Γ] : ℓγ ≤ T,mγ ∈ Θ} ∼ eδΓT

δΓT
VolM (Θ) (1.3)

where VolM denotes the Haar probability measure on M .

Correlations of spectra. For a finitely generated group Γ2 and a d-tuple
of faithful Zariski dense convex cocompact representations

ρ = (ρ1, . . . , ρd) : Γ → G,

we are interested in understanding the correlations among the length spectra
{ℓρi(γ) : [γ] ∈ [Γ]} and holonomies and the correlations among the displace-
ment spectra {d(ρi(γ)o, o) : γ ∈ Γ}, i = 1, · · · , d. These correlations are
restricted by the spectrum cone Lρ, which is the smallest closed cone in Rd
containing all vectors (ℓρ1(γ), · · · , ℓρd(γ)), [γ] ∈ [Γ]. The interior intLρ is
non-empty if and only if ρ1, . . . , ρd are independent from each other in the
sense that no ρi ◦ ρ−1

j : ρj(Γ) → ρi(Γ) extends to a Lie group automorphism
of G for all i ̸= j (cf. proof of Theorem 7.1).

Theorem 1.1. Let Γ be a finitely generated group and d ∈ N. Let ρ =
(ρ1, . . . , ρd) : Γ → G be a d-tuple of faithful Zariski dense convex cocompact
representations. For any vector v = (v1, . . . , vd) ∈ intLρ, there exists δρ(v) >
0 such that for any ε1, . . . , εd > 0 and for any conjugation-invariant Borel
sets Θ1, . . . ,Θd ⊂M with null boundaries, we have as T → ∞,

1For real-valued functions f1, f2 of T , we write f1 ∼ f2 ⇐⇒ lim
T→∞

f1(T )
f2(T )

= 1.

2Throughout the paper, we assume that Γ is torsion-free.
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#{[γ] ∈ [Γ] : viT ≤ ℓρi(γ) ≤ viT + εi, mρi(γ) ∈ Θi, 1 ≤ i ≤ d}

∼ c
eδρ(v)T

T (d+1)/2

d∏
i=1

VolM (Θi)

and

#{γ ∈ Γ : viT ≤ d(ρi(γ)o, o) ≤ viT + εi, 1 ≤ i ≤ d} ∼ c · c′ · eδρ(v)T

T (d−1)/2

for some constants c = c(v, ε1, . . . , εd) > 0 and c′ = c′(v) > 0.
Moreover,

δρ(v) ≤ min
i
δρi(Γ)vi. (1.4)

If d ≥ 2, we also have

δρ(v) <
1

d

d∑
i=1

δρi(Γ)vi. (1.5)

ℓρ2(γ)

ℓρ1(γ)

slope = mρ

slope = Mρ

slope = v2/v1

v2T

v2T + ε2

v1T v1T + ε1

Figure 1. The d = 2 case: note that the size of the box is
independent of T .

Remark 1.2. (1) Let Γ be a cocompact lattice of PSL2(R) = Isom+(H2)
and ρ : Γ → PSL2R a discrete faithful representation (whose image
is necessarily a cocompact lattice). Let

mρ = inf
γ∈Γ−{e}

ℓρ(γ)

ℓγ
and Mρ = sup

γ∈Γ−{e}

ℓρ(γ)

ℓγ

be the minimal and maximal stretch constants of ρ respectively. By
a theorem of Thurston [39, Theorem 3.1], if ρ is not a conjugation by
a Möbius transformation, then mρ < 1 < Mρ. In this case, the first
asymptotic on the correlations of length spectra in Theorem 1.1 for
the pair (id, ρ) was proved by Schwartz-Sharp [37, Theorem 1] for the
specific direction v = (1, 1) together with the bound δ(id,ρ)(1, 1) < 1.
We also mention a related work of Dai-Martone [7] which generalizes
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the result of Schwartz-Sharp to pairs of Hitchin representations and
some specific direction. Their results do not overlap with our results.

(2) If we set ℓρ(γ) = (ℓρ1(γ), . . . , ℓρd(γ)), then the condition viT ≤ ℓρi(γ) ≤
viT + εi, 1 ≤ i ≤ d, can be written as ℓρ(γ) ∈ T v +

∏d
i=1[0, εi]. We

remark that if we replace the box
∏d
i=1[0, εi] with a general compact

set K with null boundary, then we can approximate K with boxes
and we obtain the same asymptotic in Theorem 1.1 with constant
c = c(v,K). Similarly for displacements.

Correlation of complex eigenvalues. WhenG = PSL2(C) = Isom+(H3),
Theorem 1.1 describes the correlations of complex eigenvalues of convex
cocompact representations. Denote by λCg the complex eigenvalue of g ∈
PSL2(C) so that |λCg | ≥ 1. The argument of λCg is well-defined as an element
of [0, π), so that λCg = |λCg |Arg(λCg ). Let Γ < PSL2C be a convex cocompact
subgroup. We have ℓγ = 2 log |λCγ | for each non-trivial γ ∈ Γ. Since δΓ is
equal to the Hausdorff dimension dimH ΛΓ of the limit set of Γ by Patterson
and Sullivan ([31], [38]), the following is a special case of Theorem 1.1:

Corollary 1.3. Let Γ < PSL2(C) be a Zariski dense convex cocompact sub-
group and ρ : Γ → PSL2(C) a faithful Zariski dense convex cocompact repre-
sentation. For any mρ < s < Mρ, there exists

0 < 2δs < dimH ΛΓ + s · dimH Λρ(Γ)

such that for any ε1, ε2 > 0, there exists a constant c = c(s, ε1, ε2) > 0 such
that for any 0 < θ1 < θ2 < π and 0 < θ′1 < θ′2 < π, we have as t→ ∞,

#

{
[γ] ∈ [Γ] :

t ≤ |λCγ | ≤ (1 + ε1)t, Arg(λ
C
γ ) ∈ [θ1, θ2] ,

ts ≤ |λCρ(γ)| ≤ (1 + ε2)t
s, Arg(λCρ(γ)) ∈ [θ′1, θ

′
2]

}
∼ c

t2δs

(log t)3/2
(θ2 − θ1)(θ

′
2 − θ′1);

Using the relation cosh d(go, o) = ∥g∥2 where ∥g∥ denotes the Frobenius
norm of g ∈ PSL2C, we can also obtain correlations for Frobenius norms
from Theorem 1.1.

Jordan and Cartan projections in tubes. In fact, we prove much more
general results for Anosov subgroups on (i) joint equidistribution of Jordan
projections in tubes and their holonomies and (ii) equidistribution of Cartan
projections in tubes, of which Theorem 1.1 is a special case.

Let G be a connected semisimple real algebraic group. Let P < G be
a minimal parabolic subgroup with Langlands decomposition P = MAN
where N is the unipotent radical of P , A is a maximal real split torus and
M is a maximal compact subgroup of P commuting with A. Let g and a
denote the Lie algebras of G and A respectively, and choose a positive Weyl
chamber a+. Let K be a maximal compact subgroup of G such that the
Cartan decomposition G = K(exp a+)K holds. Let µ : G → a+ denote
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the Cartan projection, that is, µ(g) is the unique element of a+ such that
g ∈ K exp(µ(g))K for all g ∈ G.

A finitely generated subgroup Γ < G is called an Anosov subgroup with
respect to P if there exists C > 0 such that for all γ ∈ Γ,

α(µ(γ)) ≥ C|γ| − C−1

for all simple roots α of (g, a+) where |γ| denotes the word length of γ
with respect to a fixed finite set of generators of Γ. If we only require this
condition for a subset θ of simple roots, then we get a more general definition
of θ-Anosov subgroup, but this will not be considered in this paper. Anosov
subgroups of G were first introduced by Labourie [23] for surface groups who
showed that the image of a Hitchin representation is Anosov. They were
later generalized by Guichard-Wienhard [15] for Gromov hyperbolic groups.
There are several equivalent characterizations of Anosov subgroups due to
Kapovich-Leeb-Porti [18] and to Guéritaud-Guichard-Kassel-Wienhard [14]
one of which is given as above. Anosov subgroups are regarded as the higher
rank generalization of convex-cocompact subgroups. Schottky subgroups
are Anosov and every Zariski dense subgroup of G contains a Schottky, and
hence Anosov subgroup [1]. Another important class of Anosov subgroups
which is particularly relevant to this paper is the class of self-joining groups
defined in (1.9) associated to a d-tuple of convex cocompact representations
ρ1, . . . , ρd : Γ → G of a finitely generated group Γ.

In the rest of the introduction, let Γ < G be a Zariski dense Anosov
subgroup with respect to P . Every nontrivial element γ ∈ Γ is loxodromic
[15, Lemma 3.1] and hence conjugate to an element exp(λ(γ))m(γ) where
λ(γ) ∈ int a+ is the Jordan projection of γ and m(γ) ∈ M . The conjugacy
class [m(γ)] ∈ [M ] is uniquely determined and called the holonomy of γ. We
note that λ(γ) and [m(γ)] depend only on the conjugacy class of γ. The
limit cone L = LΓ ⊂ a+ of Γ is the smallest closed cone containing λ(Γ);
this is a convex cone with non-empty interior [1].

By a tube T in a+, we mean a subset of the form

T = T(v, ε, w) = {u+ w ∈ a+ : ∥u− Rv∥ ≤ ε}

for some unit vector v ∈ a+, ε > 0, and w ∈ a where ∥ · ∥ is a Euclidean
norm on a. The unit vector v will be called the direction of T. We say a
tube T is essential for Γ if its direction v belongs to the interior intL.

The growth indicator ψΓ : a+ → [0,∞)∪{−∞} of Γ is defined by ψΓ(0) = 0
and

ψΓ(w) = ∥w∥ inf
open cones C∋w

τC for all non-zero w ∈ a+

where τC is the abscissa of convergence of the series t 7→
∑

γ∈Γ,µ(γ)∈C e
−t∥µ(γ)∥.

It was first introduced by Quint and it is regarded as the higher rank
generalization of the critical exponent in rank one. Quint showed that
ψΓ|a+−L = −∞, ψΓ|L ≥ 0 and ψΓ|intL > 0 [33, Theorem 4.2.2].
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a+

v

ϵ

T(v, ε, 0)

Figure 2

The holonomy group MΓ of Γ is defined as the smallest closed subgroup
of M containing the holonomies of Γ. This is a finite index normal subgroup
of M [16, Corollary 1.10]. We denote by r = r(G) the real rank of G.

Theorem 1.4 (Jordan spectrum). Let Γ < G be a Zariski dense Anosov sub-
group. For any essential tube T of direction v, there exists κT > 0 such that
for any conjugation-invariant Borel subset Θ ⊂ M with smooth boundary,
we have as T → ∞,

#{[γ] ∈ [Γ] : ∥λ(γ)∥ ≤ T, λ(γ) ∈ T, m(γ) ∈ Θ} ∼ κT
eψΓ(v)T

T (r+1)/2
VolM (Θ∩MΓ).

In particular,

#{[γ] ∈ [Γ] : ∥λ(γ)∥ ≤ T, λ(γ) ∈ T} ∼ κT
[M :MΓ]

· e
ψΓ(v)T

T (r+1)/2
.

We also obtain a similar counting result for the Cartan projections µ(Γ):

Theorem 1.5 (Cartan spectrum). Let Γ < G be a Zariski dense Anosov
subgroup. For any essential tube T of direction v, we have as T → ∞,

#{γ ∈ Γ : ∥µ(γ)∥ ≤ T, µ(γ) ∈ T} ∼ κT
|mXv |

· e
ψΓ(v)T

T (r−1)/2

where κT is as in Theorem 1.4 and mXv is the finite measure defined in (3.1).

Remark 1.6. We refer to (4.8) for a formula for κT. For example, for
tubes T in the maximal growth direction vΓ ∈ intL such that ψΓ(vΓ) =
max∥u∥=1 ψΓ(u), the constant κT is proportional to the volume of the cross
section of T orthogonal to vΓ with the multiplicative constant depending
only on Γ (see Remark 4.6).

As an immediate consequence of Theorems 1.4 and 1.5, we obtain a higher
rank extension of the asymptotic ratio of the number of Cartan projections
to Jordan projections in rank one given by (1.1) and (1.2).
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Corollary 1.7 (Asymptotic ratio of Jordan vs. Cartan). For any essential
tube T of direction v, we have as T → ∞,

#{γ ∈ Γ : ∥µ(γ)∥ ≤ T, µ(γ) ∈ T}
#{[γ] ∈ [Γ] : ∥λ(γ)∥ ≤ T, λ(γ) ∈ T}

∼ [M :MΓ]

|mXv |
T. (1.6)

Note that the multiplicative constant [M :MΓ]
|mXv |

is independent of tubes T,
depending only on Γ and v. We mention a related work [2] where Jordan
and Cartan spectra have the same asymptotic limit for random products.

Remark 1.8. Without the restriction to tubes, the asymptotic #{[γ] ∈ [Γ] :

∥λ(γ)∥ ≤ T, m(γ) ∈ Θ} ∼ c · eδΓTδΓT
VolM (Θ ∩MΓ) for some 0 < c < 1 was

obtained by Chow-Fromm [5, Theorem 7.3] where δΓ = ψΓ(vΓ). Similarly,
the asymptotic #{γ ∈ Γ : ∥µ(γ)∥ ≤ T} ∼ c′eδΓT for some constant c′ > 0
was obtained by Sambarino [35]; see also [10, Corollary 9.21] for a precise
description of the multiplicative constant. By comparing the constants from
these results, we find that as T → ∞,

#{γ ∈ Γ : ∥µ(γ)∥ ≤ T}
#{[γ] ∈ [Γ] : ∥λ(γ)∥ ≤ T}

∼ [M :MΓ]

|mXvΓ
|
T (1.7)

where vΓ is the maximal growth direction as defined in Remark 1.6.

Growth indicators using Jordan projections and tubes. It is natural
to ask whether the growth indicator ψΓ : a+ → R∪{−∞} can also be defined
using the Jordan projections rather than Cartan projections, or using tubes
rather than cones. For a subset S ⊂ a+, denote by τS and TS respectively
the abscissa of convergence of the series

t 7→
∑

γ∈Γ, µ(γ)∈S

e−t∥µ(γ)∥ and t 7→
∑

[γ]∈[Γ], λ(γ)∈S

e−t∥λ(γ)∥.

Define the following degree one homogeneous functions a+ → [0,∞) ∪
{−∞}: for all non-zero w ∈ a+, set

ψcones
Γ (w) = ∥w∥ inf

open cones C∋w
τC ;

ψtubes
Γ (w) = ∥w∥ inf

open tubes T∋w
τT;

hconesΓ (w) = ∥w∥ inf
open cones C∋w

TC ;

htubesΓ (w) = ∥w∥ inf
open tubes T∋w

TT (1.8)

and define ψcones
Γ (0) = ψtubes

Γ (0) = hconesΓ (0) = htubesΓ (0) = 0. Note that by
definition, ψΓ = ψcones

Γ , and that these definitions are independent of the
choice of the norm ∥ ·∥. All of these functions are −∞ outside the limit cone
L. In fact, they coincide with each other on intL as well:
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Corollary 1.9. For any Zariski dense Anosov subgroup Γ < G, we have

ψΓ = ψtubes
Γ = hconesΓ = htubesΓ on intL.

We also have ψΓ = ψtubes
Γ on a+.

This corollary implies that for all unit vector v ∈ intL, we have

ψtubes
Γ (v) = inf

open tubes T ∋ v
lim sup
T→∞

1
T log#{γ ∈ Γ : µ(γ) ∈ T, ∥µ(γ)∥ ≤ T};

hconesΓ (v) = inf
open cones C ∋ v

lim sup
T→∞

1
T log#{[γ] ∈ [Γ] : λ(γ) ∈ C, ∥λ(γ)∥ ≤ T};

htubesΓ (v) = inf
open tubes T ∋ v

lim sup
T→∞

1
T log#{[γ] ∈ [Γ] : λ(γ) ∈ T, ∥λ(γ)∥ ≤ T},

and ψΓ(v) is equal to any of the above.
Recall that vΓ ∈ a+ denotes the unique unit vector of maximal growth for

Cartan projections in cones, i.e., ψΓ(vΓ) = max∥u∥=1 ψΓ(u).

Corollary 1.10. Jordan and Cartan projections of Γ in cones and tubes all
have the same direction of maximal growth: ψtubes

Γ (vΓ) = max∥u∥=1 ψ
tubes
Γ (u);

hconesΓ (vΓ) = max∥u∥=1 h
cones
Γ (u), and htubesΓ (vΓ) = max∥u∥=1 h

tubes
Γ (u).

Corollary 1.9 has the following implication on a general Zariski dense
subgroup which is not necessarily Anosov:

Corollary 1.11. For any Zariski dense discrete subgroup Γ < G, we have

ψtubes
Γ , htubesΓ , hconesΓ > 0 on intL.

In particular, for any v ∈ intL, there are exponentially many Jordan and
Cartan projections in an arbitrarily small tube around R+v.

On the proofs. We now give an outline of the proofs of main theorems in
the introduction. We will focus on the correlations of length spectra and
Jordan projections in tubes for Anosov subgroups. We first explain how to
deduce the correlations of length spectra in Theorem 1.1 from Theorem 1.4.
Given ρ = (ρ1, . . . , ρd) as in Theorem 1.1, we consider the self-joining of Γ
via ρ defined by

Γρ = {(ρ1(γ), . . . , ρd(γ)) : γ ∈ Γ}. (1.9)
By the hypothesis that ρ1, . . . , ρd are convex cocompact, Γρ is an Anosov
subgroup and when ρ1, . . . , ρd are independent from each other, Γρ is Zariski
dense in the semisimple real algebraic group

∏d
i=1 Isom

+(X).
Indeed, the novelty of our proof of Theorem 1.1 is to relate it with the prob-

lem on understanding the Jordan spectrum of Γρ. The vector (ℓρ1(γ), . . . , ℓρd(γ))
is the Jordan projection λ(ρ(γ)) of ρ(γ) = (ρ1(γ), · · · , ρd(γ)) and the spec-
trum cone Lρ coincides with the limit cone LΓρ . Hence given v = (v1, . . . , vd) ∈
intLΓρ and ε1, . . . , εd > 0 we are interested in the asymptotic behavior of

#{[γ] ∈ [Γ] : λ(ρ(γ)) ∈ [v1T, v1T + ε1]× · · · × [vdT, vdT + εd]}.
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As T tends to ∞, the box
∏d
i=1[viT, viT + εi] ⊂ Rd sweeps out the following

essential tube for Γρ:

T(v,K) = R+v + K =
⋃
T≥0

d∏
i=1

[viT, viT + εi]

where K ⊂ Rd is a (d− 1)-dimensional compact subset transverse to Rv. In
fact, we count in truncated tubes:

TT,b = TT (v,K, b) = {tv + u : u ∈ K, 0 ≤ t ≤ T + b(u)}
for a continuous function b ∈ C(K). By considering different functions b, we
will be counting in truncated tubes of different shapes. This is crucial since
we can realize the box as a difference of two truncated tubes of different
shapes (see Fig. 4). Hence Theorem 1.1 can be deduced from a more refined
version of Theorems 1.4 and 1.5 with δρ = ψΓρ . The upper bound (1.5) is a
direct consequence of a result of Kim-Minsky-Oh [19, Corollary 1.6] on the
growth indicator ψΓρ .

We now give an outline of the proofs of Theorems 1.4. For a Zariski
dense Anosov subgroup Γ < G, joint equidistribution of nontrivial closed
A-orbits in Γ\G/M and their holonomies were obtained by Chow-Fromm
[5] following the rank one approach of Margulis-Mohammadi-Oh [28]. Their
theorem gives the counting result for Jordan projections in certain types of
cones with respect to an ordering given by a certain linear form of a. We
follow the approach of [5]. For truncated tubes, there is essentially only one
ordering possible since tubes are associated to unique directions. One of the
important features of an Anosov subgroup is that, denoting Γprim the set
of all primitive elements of Γ, each conjugacy class [γ] ∈ [Γprim] bijectively
corresponds to a closed A-orbit C(γ) ⊂ Γ\G/M which is homeomorphic to
a cylinder S1 × Rr−1 [5, Lemma 4.14]. We equip C(γ) with the measure
induced by the Lebesgue measure on a. For each T > 0, we define a Radon
measure ηT on Γ\G/M × [M ] by the following: for f ∈ Cc(Γ\G/M)3 and a
conjugation-invariant Borel subset Θ of M , let

ηT (f ⊗ 1Θ) =
∑

[γ]∈[Γprim], λ(γ)∈TT,b

∫
C(γ)

f · 1Θ(m(γ)). (1.10)

Theorem 1.4 follows once we find an asymptotic for ηT (f ⊗ 1Θ) whose
proof we now outline. For g0 ∈ G and ε > 0, the ε-flow box centered at g0 is
defined as

B(g0, ε) := g0(ŇεN ∩NεŇAM)MεAε

where Ň is the horospherical subgroup opposite to N . Flow boxes form
a basis for the topology on G, so it suffices to understand the asymptotic
behavior of ηT (B̃(g0, ε)⊗Θ) where B̃(g0, ε) is the image of B(g0, ε) under the

3For a topological space X, we denote by C(X) (resp. Cc(X)) the space of (resp.
compactly supported) continuous real-valued functions on X.
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projection G→ Γ\G/M . We describe the main steps to find an asymptotic
for ηT (B̃(g0, ε)⊗Θ). First, we find an asymptotic for #Γ∩ g0ST,bg−1

0 where

ST,b = Ňε exp(TT,b)ΘN−1
ε .

When r = rank(G) = 1, a well-known approach for this ([12], [30], [29],
etc; see also [9]) is to show that the sets S−

T,b,ε =
⋂
g1,g2∈Gε g1ST,bg2 and

S+
T,b,ε =

⋃
g1,g2∈Gε g1ST,bg2 can be well-approximated by product subsets of

Ň exp(a+)MN and to obtain an asymptotic for #Γ∩g0ST,bg−1
0 , using strong

mixing of the A-action on Γ\G for the finite Bowen-Margulis-Sullivan (BMS)
measure. When r ≥ 2, the BMS measure mv associated to v is infinite and
the A-action is not strongly mixing on Γ\G. Instead, we use local mixing
(Theorem 3.3) for the action of one parameter family exp(tv +

√
tu) for

certain u ∈ a, obtained in ([6], [11]). The availability of the local mixing is
one of the main reasons why our theorems are proved for Anosov subgroups.
Let

L∗(TT,b) =
κv

δv|mXv |

∫
K
eδvb(u) du · eδvT

T (r−1)/2

where κv > 0 is as in the local mixing Theorem 3.3. Using local mixing for
exp(tv +

√
tu) along with an accompanying uniformity statement, we prove

that

#Γ ∩ g0ST,bg−1
0 = L∗(TT,b)

(
mv(B̃(g0, ε))

br(ε)
VolM (Θ)(1 +O(ε)) + oT (1)

)
where br(ε) is the volume of the r-dimensional Euclidean ball of radius ε.
We emphasize that the fact that we are using the tubes in the definition of
ST,b is quite crucial in this step of the proof, as L∗(TT,b) is the asymptotic of
a certain integral over TT,b and it is unclear how to compute this for general
subsets of a+ other than tubes. By a wavefront-type argument, the family
of subsets g0ST,bg−1

0 and VT,b are approximately equal to each other where

VT,b := B(g0, ε) exp(TT,b)ΘB(g0, ε)−1.

Moreover, since the direction of T lies in the interior of a+, we can apply
a closing lemma for regular directions to elements of Γ and approximate
#Γ ∩WT,b using #Γ ∩ VT,b where

WT,b := {gamg−1 : g ∈ B(g0, ε), a ∈ exp(TT,b), m ∈ Θ}.
Since

ηT (B̃(g0, ε)⊗Θ) = br(ε) ·#(Γprim ∩WT,b),

we then get the asymptotic for ηT (B̃(g0, ε)⊗Θ), which yields the asymptotic
for (1.10) using a standard partition of unity argument:

ηT (f ⊗ 1Θ) ∼ L∗(TT,b) ·mv(f) ·VolM (Θ ∩MΓ).

This process yields an asymptotic for counting Jordan projections with
weights

∫
C(γ) f . Removing these weights is a difficult problem for a general

discrete subgroup; for instance, this is related to the difficulty of counting
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Jordan projections for lattices (and also a reason for the presence of weight in
a related work of Dang-Li [8]). However for Γ Anosov, there is a convenient
choice of f based on the vector bundle structure of the support of mv (see the
proof of Theorem 4.2) so that the weight

∫
C(γ) f is equal to ψv(λ(γ)) where

ψv : a → R is the unique linear form tangent to ψΓ at v and this weight can
be removed as in the rank one case.

To study the correlations of displacement spectra, we observe that the
vector (d(ρ1(γ)o, o), . . . , d(ρd(γ)o, o)) is the Cartan projection µ(ρ(γ)) of
ρ(γ) ∈ Γρ. Hence we are led to count Cartan projections in tubes for Anosov
subgroups. Counting Cartan projections for cones with respect to certain or-
derings was done by Edwards-Lee-Oh [10]. In proving Theorem 1.5, the main
technical difficulty is again to estimate certain integrals over tubes.

Organization.
• In Section 2, we recall the definition of Γ-conformal measures on the

Furstenberg boundary and generalized BMS measures for general
Zariski dense subgroups Γ of G.

• In Section 3, we recall the local mixing result on Anosov homogeneous
spaces.

• In Section 4, we deduce the Jordan projection counting in tubes
(Theorem 4.2) from Theorem 4.5.

• In Section 5, we prove the joint equidistribution in essential tubes of
nontrivial closed A-orbits and their holonomies (Theorem 4.5).

• In Section 6, we prove equidistribution and counting for Cartan pro-
jections in tubes (Theorem 6.1, Corollary 6.2).

• In Section 7, we give an application of Jordan projection counting
in tubes to deduce the correlations of length spectra (Theorem 7.1).
The correlations of displacements (Theorem 7.2) is a similar appli-
cation of Cartan projection counting in tubes.

• In Section 8, we deduce that the growth indicator for Anosov sub-
groups can be equivalently defined using Jordan projections rather
than Cartan projections or using tubes rather than cones at least in
the interior of the limit cone (Theorem 8.1).

We close the introduction with the following question.

Question 1.12. For a general Zariski dense discrete subgroup Γ < G, can
the growth indicator ψΓ be defined using Jordan projections and tubes, i.e.,
is it true that

ψΓ = hconesΓ = ψtubes
Γ = htubesΓ on intL?

Acknowledgement. We would like to thank Giuseppe Martone for inter-
esting conversations about his paper with Dai [7]. We also thank Dongryul
Kim for useful comments on the preliminary version.
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2. Preliminaries

Throughout the paper, we let G be a connected semisimple real algebraic
group. Fixing a Cartan involution of the Lie algebra g of G, let g = k ⊕ p
be the eigenspace decomposition corresponding to the eigenvalues +1 and
−1 respectively. Let K < G be the maximal compact subgroup whose Lie
algebra is k. Let a ⊂ p be a maximal abelian subalgebra and choose a closed
positive Weyl chamber a+ ⊂ a. We denote by Φ+ the set of positive roots
for (g, a+).

Let A = exp a, A+ = exp a+, and denote aw = exp(w) for all w ∈ a. Let
M = CK(A) be the centralizer of A in K. We set

N =
{
n ∈ G : lim

t→∞
a−twnatw = e for all w ∈ int a+

}
;

Ň =
{
h ∈ G : lim

t→∞
atwha−tw = e for all w ∈ int a+

}
,

and n = logN and ň = log Ň . Let P =MAN and

F := G/P ∼= K/M

denote the Furstenburg boundary of G where the isomorphism G/P ∼= K/M
is given by the Iwasawa decomposition G ∼= K×A×N . Let W = NK(A)/M
denote the Weyl group. Let w0 ∈ K be a representative of the element in
W such that Adw0(a

+) = −a+. The map i : a+ → a+ defined by i(w) =
−Adw0(w) is called the opposition involution.

For all g ∈ G, let

g+ = gP ∈ F and g− = gw0P ∈ F . (2.1)

Fix a left G-invariant and right K-invariant Riemannian metric dG on G
and denote the corresponding inner product and norm on g by ⟨·, ·⟩ and ∥ · ∥
respectively. Using the inner product on a, we identify a with Rr and equip
it with the Lebesgue measure which induces a Haar measure on A. For ε > 0
and a subset S ⊂ G, we set Sε = S ∩Gε where Gε = {g ∈ G : dG(e, g) < ε}.
For all w ∈ a+, we have

∥Ada−w x∥ ≤ ∥x∥e−minα∈Φ+ α(w) for all x ∈ n;

∥Adaw x∥ ≤ ∥x∥e−minα∈Φ+ α(w) for all x ∈ ň. (2.2)

ŇAMN-coordinates. The product map Ň × A ×M × N → G is a dif-
feomorphism onto a Zariski open neighborhood of e. The same is true if we
permute Ň , A,M,N . This fact is used to prove the next two lemmas.

Lemma 2.1. (1) For all sufficiently small ε > 0, if 0 < ε1, ε2 < ε,
h ∈ Ňε1 and n ∈ Nε2 , then4

hn = n1h1a1m1 ∈ NO(ε2)ŇO(ε1)AO(ε)MO(ε).

4We write O(ε) for a function which is in absolute value at most Cε for some constant
C > 0 independent of ε.
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(2) Fix a bounded subset Ǔ ⊂ Ň . For sufficiently small ε > 0 we have
for all h0 ∈ Ǔ ,

h0NO(ε) ⊂MO(ε)AO(ε)NO(ε)h0ŇO(ε).

(1) and (2) still hold if the roles of N and Ň are swapped.

Proof. Let ε > 0 be sufficiently small so that the image of the diffeomorphism
given by the product map N × Ň × A ×M → G contains ŇεNε. Then by
the implicit function theorem, there are smooth functions x, y, a,m defined
on Ňε ×Nε such that

hn = x(h, n)y(h, n)a(h, n)m(h, n) ∈ NO(ε)ŇO(ε)AO(ε)MO(ε).

Note that y(e, n) = e and if h ∈ Ňε1 , then y(h, n) ∈ y(e, n)NO(ε1) = ŇO(ε1).
Similarly, if n ∈ Nε2 , then x(h, n) ∈ NO(ε2). This proves (1).

For (2), since Ǔ is bounded, for ε > 0 sufficiently small the image of the
product map M ×A×N × Ň → G contains ǓNO(ε). A similar application
of the implicit function theorem finishes the proof. □

Lemma 2.2. Fix bounded subsets Ǔ ⊂ Ň and U ⊂ N . For all sufficiently
small ε > 0, the following holds.

(1) If g1 ∈ Gε and g = manh ∈MANǓ , then

gg1 ∈ mMO(ε)aAO(ε)nNO(ε)hŇO(ε).

(2) If g2 ∈ Gε and g = ahmn ∈ AŇMU , then

gg2 ∈ aAO(ε)hŇO(ε)mMO(ε)nNO(ε).

(3) If g1, g2 ∈ Gε and g = hamn ∈ ǓAMU , then

g1gg2 ∈ ŇO(ε)hAO(ε)aMO(ε)mnNO(ε).

Proof. Let ε > 0, g1 ∈ Gε and g = manh ∈ MANǓ . For ε sufficiently
small, we may write g1 = m1a1n1h1 ∈ MO(ε)AO(ε)NO(ε)ŇO(ε) since the
product map M × A × N × Ň → G is a diffeomorphism onto an open
neighborhood of e. Let m′ = mm1 ∈ mMO(ε), a′ = aa1 ∈ aAO(ε), n′ =
(m1a1)

−1n(m1a1) ∈ nNO(ε) and h′ = (m1a1)
−1h(m1a1) ∈ hŇO(ε) so that

gg1 = m′a′n′h′n1h1. Note that h′n1 ∈ ǓŇO(ε)NO(ε) and ǓŇO(ε) ⊂ Ň is
bounded. Then by Lemma 2.1(2), if ε is sufficiently small, then we can write
h′n1 = m2a2n2h

′′ where m2a2n2 ∈MO(ε)AO(ε)NO(ε) and h′′ ∈ hŇO(ε). Then

gg1 = m′a′n′h′n1h1 = m′a′n′m2a2n2h
′′h1 = m′′a′′n′′n2h

′′h1

wherem′′ = m′m2 ∈ mMO(ε), a′′ = a′a2 ∈ aAO(ε) and n′′ = (m2a2)
−1n′(m2a2) ∈

nNO(ε). This completes the proof of (1).
The proof of (2) is similar and (3) can be deduced from (1) and (2) in a

similar manner. □

Henceforth, let Γ < G be a Zariski dense discrete subgroup.
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Limit set, limit cone and holonomy group. Let mF denote the unique
K-invariant probability measure on F . The limit set Λ ⊂ F of Γ is defined
by

Λ = {ξ ∈ F : ∃{γn}n∈N ⊂ Γ such that (γn)∗mF
n→∞−−−→ Dξ}

where Dξ denotes the Dirac measure at ξ. It is the unique Γ-minimal subset
of F [1].

Any g ∈ G can be written as the commuting product g = ghgegu where gh
is hyperbolic, ge is elliptic and gu is unipotent. The hyperbolic component gh
is conjugate to a unique element expλ(g) ∈ A+ and λ(g) is called the Jordan
projection of g. When λ(g) ∈ int a+, g ∈ G is called loxodromic in which case
gu is necessarily trivial and ge is conjugate to an element m(g) ∈ M which
is unique up to conjugation in M . We call its conjugacy class [m(g)] ∈ [M ]
the holonomy of g.

The limit cone L = LΓ of Γ is the smallest closed cone containing the
Jordan projection λ(Γ). It is convex and with non-empty interior [1] which
we denote by intL. We note that λ(g−1) = i(λ(g)) for all g ∈ G and hence
L = i(L).

The holonomy group of Γ is the closed subgroup MΓ < M generated by
all of the holonomies in Γ. By [16, Corollary 1.10], MΓ is a normal subgroup
of M of finite index. In particular if M is connected, then MΓ =M . If G is
of rank one, we always have M = MΓ for any Zariski dense Γ, since either
M is connected or G = SL2R and MΓ = M = {±

(
1 0
0 1

)
} [4, Lemma 2]. In

general, there are examples of Zariski dense subgroups with MΓ ̸= M (e.g.,
Hitchin representations [23, Theorem 1.5]).

For g ∈ G, let µ(g) denote the Cartan projection of g, that is, µ(g) ∈ a+

is the unique element in a+ such that

g ∈ K exp(µ(g))K.

We note that µ(g−1) = i(µ(g)) for all g ∈ G.

Conformal measures. The Iwasawa cocycle σ : G × F → a is the map
which assigns to each (g, kM) ∈ G×F the unique element σ(g, kM) ∈ a such
that gk ∈ Kaσ(g,ξ)N . The a-valued Busemann function β : F ×G×G → a
is defined by

βξ(g1, g2) = σ(g−1
1 , ξ)− σ(g−1

2 , ξ)

for all g1, g2 ∈ G and ξ ∈ F .

Definition 2.3 (Growth indicator). The growth indicator ψΓ : a+ → R ∪
{−∞} of Γ is defined by

ψΓ(w) = ∥w∥ inf
open cones C∋w

τC for all non-zero w ∈ a+

where τC is the abscissa of convergence of the series t 7→
∑

γ∈Γ,µ(γ)∈C e
−t∥µ(γ)∥.

We set ψΓ(0) = 0.
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It is concave, upper semicontinuous, and satisfies ψΓ|intL > 0 [33, Theorem
4.2.2]. By [33, Lemma 3.1.1], when ψΓ(w) > 0 (i.e., w ∈ intL), we have

ψΓ(w) = ∥w∥ inf
open cones C∋w

lim sup
T→∞

1
T log#{γ ∈ Γ : µ(γ) ∈ C, ∥µ(γ)∥ ≤ T}.

Given a closed subgroup ∆ < G, a Borel probability measure ν on F is
called a ∆-conformal measure if there exists ψ ∈ a∗ such that for any γ ∈ ∆
and ξ ∈ F ,

dγ∗ν

dν
(ξ) = eψ(βξ(e,γ))

where γ∗ν(Q) = ν(γ−1Q) for any Borel subset Q ⊂ F . In that case, we call
ν a (∆, ψ)-conformal measure.

Generalized BMS measures. We recall the definitions of generalized
Bowen-Margulis-Sullivan measures using the Hopf parametrization of G/M .
There is a unique open G-orbit in F × F given by

F (2) = G.(e+, e−) ⊂ F × F . (2.3)

If (x, y) ∈ F (2), then we say that x and y are in general position. The Hopf
parametrization is a diffeomorphism G/M → F (2) × a defined by

gM 7→ (g+, g−, βg+(e, g)) for all g ∈ G.

For a pair (νψ1 , νψ2) of (Γ, ψ1)- and (Γ, ψ2)-conformal measures on F , the
generalized Bowen-Margulis-Sullivan measure m = mνψ1 ,νψ2

is defined on
G/M ∼= F (2) × a by

mνψ1 ,νψ2
(gM) = eψ1(βg+ (e,g))+ψ2(βg− (e,g)) dνψ1(g

+) dνψ2(g
−) dw. (2.4)

The measure m is left Γ-invariant and right A-quasi-invariant. It is A-
invariant if and only if ψ2 = ψ1 ◦ i. The measure m descends to a mea-
sure on Γ\G/M and by lifting it using the Haar probability measure on M ,
we also obtain a measure on Γ\G. Abusing notation, we also denote it by
m = mνψ1 ,νψ2

as well.

3. Local mixing for Anosov subgroups

There are several equivalent characterizations of Anosov subgroups. We
use the following definition [18]: a finitely generated subgroup Γ < G is
called an Anosov subgroup (with respect to P ) if there exists C > 0 such
that for all γ ∈ Γ,

α(µ(γ)) ≥ C|γ| − C−1

for all simple root α of (g, a+) where |γ| denotes the word length of γ with
respect to a fixed finite set of generators of Γ.

In this section, let Γ < G be a Zariski dense Anosov subgroup. The
next theorem summarizes some facts about conformal measures for Anosov
subgroups. We say that a linear form ψ : a → R is tangent to ψΓ at v ∈ a+

if
ψΓ ≤ ψ and ψΓ(v) = ψ(v).
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Theorem 3.1. Let v ∈ intL be a unit vector. Then there exists a unique lin-
ear form ψv tangent to ψΓ at v. There also exists a unique (Γ, ψv)-conformal
measure νv on F . Moreover, νv is supported on Λ.

The three claims in Theorem 3.1 can be found in [32, Proposition 4.11],
[24, Theorem 1.3] and [10, Theorem 7.9], respectively. In the following, fix
a unit vector

v ∈ intL.
Noting that mF is a (Γ, 2ρ)-conformal measure where

2ρ =
∑
α∈Φ+

α

is the sum of all positive roots with multiplicity, we set

mv = mνv,νi(v) , mBR
v = mmF ,νi(v) and mBR∗

v = mνv,mF .

The measures mBR
v and mBR⋆

v are respectively Ň and N -invariant and called
Burger-Roblin measures.

The Anosov property of Γ implies that any two distinct points in Λ are in
general position ([15], [18]). Let Λ(2) = (Λ × Λ) ∩ F (2) = {(x, y) ∈ Λ × Λ :

x ̸= y}. The map πv : Λ(2) × a → Λ(2) × R defined by

πv(x, y, w) = (x, y, ψv(w)) for all (x, y, w) ∈ Λ(2) × a

is a vector bundle with typical fiber kerψv. Note that Γ acts on Λ(2)×a and
on Λ(2) × R on the left respectively by

γ·(x, y, w) = (γx, γy, w+βx(γ
−1, e)), γ·(x, y, t) = (γx, γy, t+ψv(βx(γ

−1, e)))

for all γ ∈ Γ, (x, y) ∈ Λ(2), w ∈ a and t ∈ R.

Theorem 3.2 ([3, Proposition A.1], see also [6, Theorem 4.15]). The left
Γ-action on Λ(2) × R is properly discontinuous and cocompact.

By Theorem 3.2, the space

Xv = Γ\(Λ(2) × R)

is a compact Hausdorff topological space. Define the locally finite Borel
measure m̃Xv on Λ(2) × R by

dm̃Xv(ξ, η, t) = eψv(βξ(e,g))+ψv(i(βη(e,g))) dνv(ξ) dνi(v)(η) dt

where g ∈ G is any element with g+ = ξ and g− = η and dt denotes the
Lebesgue measure on R [25, Definition 3.8]. Note that m̃Xv is left Γ-invariant,
so m̃Xv descends to a finite measure mXv on Xv.

Set
Ω = Γ\Λ(2) × a ⊂ Γ\G/M

which is the support of mv. The map πv is Γ-equivariant and descends
to a map πv : Ω → Xv which is in fact a trivial kerψv-vector bundle ([35,
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Proposition 3.5], [25, Corollary 4.9]). Hence Ω is homeomorphic to Xv×kerψv

and
dmv

∣∣
Ω
= dmXv du (3.1)

where du denotes the appropriately normalized Lebesgue measure on kerψv.

Local mixing. We recall the local mixing theorem for the Haar measure
on Γ\G which will be used in Section 4. Let dx denote the right G-invariant
measure on Γ\G induced by the Haar measure on G. Given an inner product
⟨·, ·⟩∗ on a, let I : kerψv → R be defined by

I(u) = ⟨u, u⟩∗ −
⟨u, v⟩2∗
⟨v, v⟩∗

for all u ∈ kerψv. (3.2)

Theorem 3.3 ([6, Theorem 1.3], [11, Theorem 3.4]). There exist κv > 0
and an inner product ⟨·, ·⟩∗ on a such that for any u ∈ kerψv and ϕ1, ϕ2 ∈
Cc(Γ\G), we have

lim
t→+∞

t
r−1
2 e(2ρ−ψv)(tv+

√
tu)

∫
Γ\G

ϕ1(xatv+
√
tu)ϕ2(x) dx

=
κve

−I(u)

|mXv |
∑
Z

mBR
v

∣∣
ZŇ

(ϕ1) ·mBR⋆
v

∣∣
ZN

(ϕ2)

where the sum is taken over all A-ergodic components Z of mv.
Moreover, there exist ηv > 0 and sv > 0 such that for all ϕ1, ϕ2 ∈ Cc(Γ\G),

there exists Dv > 0 depending continuously on ϕ1 and ϕ2 such that for all
(t, u) ∈ (sv,∞)× kerψv such that tv +

√
tu ∈ a+, we have∣∣∣∣∣t r−1

2 e(2ρ−ψv)(tv+
√
tu)

∫
Γ\G

ϕ1(xatv+
√
tu)ϕ2(x) dx

∣∣∣∣∣ ≤ Dve
−ηvI(u).

4. Joint equidistribution of cylinders and holonomies

Let Γ < G be a Zariski dense Anosov subgroup. We give a definition
of essential tube that is slightly more general than the one given in the
introduction.

Definition 4.1. An essential tube T for Γ is given by

T = T(v,K) = (Rv + K) ∩ a+

where v ∈ intL is a unit vector and and K ⊂ kerψv is a compact subset with
non-empty interior and Lebesgue null boundary. We call v the direction and
K the cross-section of T.

For this entire section, fix

an essential tube T = T(v,K) and b ∈ C(K).

For T > 0, set

TT,b = TT (v,K, b) = {tv + u ∈ a+ : t ≤ T + b(u), u ∈ K}.
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A subset of a+ of this form will be called a truncated tube. Note that for
b ≡ 0, we have

TT,0 = {tv + u ∈ a+ : t ≤ T, u ∈ K}.

a+

v
kerψv

T(v,K)

K

TT,0

a+

v
kerψv

T(v,K)

K

b

TT,b

Figure 3

Let
δv = ψΓ(v).

The main goal of this section is to prove the following equidistribution of
Jordan projections in tubes and their holonomies:

Theorem 4.2. For any φ ∈ Cl(M), we have as T → ∞,∑
[γ]∈[Γ], λ(γ)∈TT,b

φ(m(γ)) ∼ κv
δv

∫
K
eδvb(u) du ·

∫
MΓ

φdm · eδvT

T (r+1)/2
(4.1)

where κv is as in Theorem 3.3. In particular, we have

#{[γ] ∈ [Γ] : λ(γ) ∈ TT,b} ∼ κv
δv[M :MΓ]

∫
K
eδvb(u) du · eδvT

T (r+1)/2
as T → ∞.

When b ≡ 0 and φ ≡ 1, we get the following:

Corollary 4.3. We have

#{[γ] ∈ [Γ] : λ(γ) ∈ [0, T ]v + K} ∼
κv Volkerψv(K)

δv[M :MΓ]
· eδvT

T (r+1)/2
as T → ∞

where Volkerψv(K) =
∫
K du.

In the rank one case, the prime geodesic theorem is deduced from equidis-
tribution of closed geodesics in the unit tangent bundle ([27], [34], [28]). In
the same spirit, we first prove joint equidistribution theorems (Theorems 4.4,
4.5) of closed A-orbits C(γ) and their holonomies m(γ) with λ(γ) in tubes.

By the Anosov hypothesis on Γ, every non-trivial element of Γ is loxo-
dromic ([23, Proposition 3.4], [15, Corollary 3.2]). Let Γprim denote the set
of primitive elements in Γ, that is, it consists of all elements γ ∈ Γ such that
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γ ̸= γk0 for any γ0 ∈ Γ and k ≥ 2. For each conjugacy class [γ] ∈ [Γprim] with
γ ∈ g(intA+)Mg−1 for some g ∈ G, consider the closed A-orbit

C(γ) = ΓgAM ⊂ Ω

which is homeomorphic to a cylinder S1 × Rr−1 [5, Lemma 4.14]. For f ∈
Cc(Ω), the integral

∫
C(γ) f is computed with respect to the measure on C(γ)

induced by the Lebesgue measure on a. Set

c(v, b) =
κv

δv|mXv |

∫
K
eδvb(u) du (4.2)

with κv and mXv as in Theorem 3.3 and (3.1) respectively.

Theorem 4.4 (Joint Equidistribution I). For any f ∈ Cc(Ω) and φ ∈
Cl(M), we have as T → ∞,∑
[γ]∈[Γprim], λ(γ)∈TT,b

∫
Cγ

f · φ(m(γ)) ∼ c(v, b) ·mv(f) ·
∫
MΓ

φdm · eδvT

T (r−1)/2
.

Theorem 4.5 (Joint equidistribution II). For any f ∈ Cc(Ω) and φ ∈
Cl(M), we have as T → ∞,∑
[γ]∈[Γprim], λ(γ)∈TT,b

1

ψv(λ(γ))

∫
C(γ)

f ·φ(m(γ)) ∼ c(v, b)·mv(f)·
∫
MΓ

φdm· eδvT

T (r+1)/2
.

We will prove these two theorems in the next section. In the rest of this
section, we will explain how to deduce Theorem 4.2 from Theorem 4.5 using
the following structure of Ω:

Ω = suppmv
∼= Xv × kerψv and dmv

∣∣
Ω
= dmXv du (4.3)

from (3.1). We emphasize that this fact we are relying on is a special feature
of an Anosov subgroup which is not available for a general discrete subgroup
such as a higher rank lattice.

Proof of Theorem 4.2 assuming Theorem 4.5. Choose f1 ∈ Cc(kerψv)
with

∫
f1(u) du = 1. In view of (4.3), the function

f = 1Xv ⊗ f1

can be considered as a function in Cc(Ω) and

mv(f) = |mXv |
∫
f1(u) du = |mXv |.

Therefore for every [γ] ∈ [Γprim],∫
C(γ)

f = ψv(λ(γ))

∫
f1(u) du = ψv(λ(γ)).
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By applying Theorem 4.5 to this function f , we obtain (4.1) with [Γ] replaced
with [Γprim]:∑

[γ]∈[Γprim], λ(γ)∈TT,b

φ(m(γ)) ∼ κv
δv

∫
K
eδvb(u) du ·

∫
MΓ

φdm · eδvT

T (r+1)/2
. (4.4)

We claim that this asymptotic remains true when [Γprim] is replaced with
[Γ]. To see that, we first take φ ≡ 1 and b ≡ 0 and obtain

#{[γ] ∈ [Γprim] : λ(γ) ∈ TT } ∼ κv
δv[M :MΓ]

∫
K
eδvb(u) du · eδvT

T (r+1)/2
. (4.5)

Suppose that K is a convex set containing 0. Observe that if λ(γj0) ∈
TT (v,K, b), then λ(γ0) = 1

jλ(γ
j
0) ∈ TT/j(v, 1jK, b) ⊂ T(v,K, b) by the con-

vexity of K. Therefore

#{[γ] ∈ [Γ] : λ(γ) ∈ TT } −#{[γ] ∈ [Γprim] : λ(γ) ∈ TT }
≪ 5T#{[γ] ∈ [Γprim] : λ(γ) ∈ TT/2} ≪ eδvT/2.

Identifying kerψv with Rr−1, we next consider the case when K is a box∏r−1
i=1 [ai, bi]. Set Bj = [0, b1]× · · · × [0, aj ]× · · · × [0, br−1] and note that for

any f ∈ C(kerψv), we have∫
∏r−1
i=1 [ai,bi]

f =

∫
∏r−1
i=1 [0,bi]

f −
r−1∑
j=1

∫
Bj

f + (r − 2)

∫
∏r−1
i=1 [0,ai]

f. (4.6)

Theorem 4.2 now follows for K =
∏r−1
i=1 [ai, bi] by applying Theorem 4.2 to

each box containing 0 on the right hand side of (4.6).
For general K, using the hypothesis that the boundary of K has zero

Lebesgue measure, we can approximate K above and below by boxes and
apply Theorem 4.2 to the boxes.

Proof of Theorem 1.4. We now deduce Theorem 1.4 from Theorem 4.2.
Fix ε > 0, w ∈ a and conjugation invariant Borel subset Θ ⊂M with smooth
boundary. Recall that T = T(v, ε, w) = {u+ w ∈ a+ : ∥u− Rv∥ ≤ ε}. Let

BT = {v ∈ T : ∥v∥ ≤ T}.

Then we want an asymptotic for

#{[γ] ∈ [Γ] : λ(γ) ∈ BT , m(γ) ∈ Θ}.

Decomposing w as an element in the direct sum a = kerψv ⊕ Rv, we may
assume without loss of generality that w ∈ kerψv. Note that the set BT is
not a truncated tube as defined at the beginning of Section 4. Let

K = {u ∈ kerψv : ∥u− w − Rv∥ ≤ ε}

so that
T = T(v,K) = {tv + u ∈ a+ : t ∈ R, u ∈ K}.
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For u ∈ K, define b(u) ∈ R as the unique number such that u + b(u)v is
orthogonal to v with respect to the inner product inducing the norm ∥ · ∥.
We claim that for fixed ε′ > 0, when T is sufficiently large, we have

TT,b−ε′ ⊂ BT ⊂ TT,b. (4.7)

Suppose that v ∈ TT,b−ε′ . Then v = tv + u for some u ∈ K and t ≤
T + b(u)− ε′. We have

∥tv + u∥ = ∥(t− b(u))v + (u+ b(u)v)∥

=
√

(t− b(u))2 + ∥u+ b(u)v∥2 ≤
√
(T − ε′)2 + ∥u+ b(u)v∥2 ≤ T

where the last inequality holds when T is sufficiently large since u+ b(u)v is
bounded. This shows that v ∈ BT .

Now suppose that v ∈ BT . Then v = tv + u for some u ∈ K and t ∈ R
with ∥tv + u∥ ≤ T . We have

t− b(u) ≤ ∥tv + u∥ =
√

(t− b(u))2 + ∥u+ b(u)v∥2 ≤ T

and hence t ≤ T + b(u) and v ∈ TT,b. This proves (4.7).
It follows from (4.7) that

#{[γ] ∈ [Γ] : λ(γ) ∈ TT,b} ≤ #{[γ] ∈ [Γ] : λ(γ) ∈ BT , m(γ) ∈ Θ}
≤ #{[γ] ∈ [Γ] : λ(γ) ∈ TT,b}.

Applying Theorem 4.2 to TT,b−ε′ and TT,b and then taking ε′ → 0, we
conclude that

lim
T→∞

T (r−1)/2

eδvT
#{[γ] ∈ [Γ] : λ(γ) ∈ BT , m(γ) ∈ Θ} = κT ·VolM (Θ∩MΓ).

where
κT =

κv
δv

∫
K
eδvb(u) du. (4.8)

Remark 4.6. There is a unique maximal growth direction vΓ at which ψΓ

attains its maximum on {w ∈ a+ : ∥w∥ = 1}. When Γ is Anosov, vΓ ∈ intL
[32, Proposition 4.11] and kerψvΓ is orthogonal to v. The function b ∈ C(K)
in the proof of Theorem 1.4 was defined by the condition that u + b(u)v is
orthogonal to v for every u ∈ kerψv. Hence for essential tubes T(v,K) of
direction v = vΓ, we have b ≡ 0 and κT =

κvΓ
δvΓ

Vol(K).

5. Proofs of joint equidistribution theorems

This section is devoted to proving Theorems 4.4 and 4.5. We keep the
notations for T = T(v,K), b etc from Section 4. To simplify notation, we
write the proof for the case that M = MΓ (e.g., M is connected). The
case when M ̸= MΓ is complicated by the fact that the BMS measure mv

on Γ\G/M has more than one A-ergodic components, more precisely, the
number of its ergodic components is equal to [M :MΓ] [26], but this can be
handled in exactly the same way as in [5, Section 5].
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Counting in ŇAMN-coordinates. Let ν and νi denote the unique (Γ, ψv)-
and (Γ, ψi(v))-conformal measures on F respectively. Let VolM denote the
Haar probability measure on M . Fix bounded Borel sets

Ξ̌ ⊂ Ň , Ξ ⊂ N, Θ ⊂M

with non-empty relative interiors and null boundaries:

ν(∂Ξ̌e+) = νi(∂Ξ
−1e−) = VolM (∂Θ) = 0.

For T > 0, consider the following subset of ŇA+MN :

ST,b = ST,b(Ξ̌,Ξ,T,Θ) = Ξ̌ exp(TT,b)ΘΞ. (5.1)

Define the measures ν̃ on Ň and ν̃i on N by

dν̃(h) = eψv(βh+ (e,h)) dν(h+); dν̃i(n) = e(ψv◦i)(βn− (e,n)) dνi(n
−).

In this subsection, we prove an asymptotic for #Γ ∩ ST,b.

Proposition 5.1. We have, as T → ∞,

#(Γ ∩ ST,b) ∼ c(v, b)ν̃(Ξ̌)ν̃i(Ξ
−1)VolM (Θ)

eδvT

T (r−1)/2
. (5.2)

For a sufficiently small ε > 0, consider the following ε-approximations of
ST,b:

S−
T,b,ε =

⋂
g1,g2∈Gε

g1ST,bg2; S+
T,b,ε =

⋃
g1,g2∈Gε

g1ST,bg2.

In the next lemma, we state a property of the ŇAMN -coordinates that
we will use to prove Lemma 5.2 which bounds the sets S±

T,b,ε by product
subsets of ŇA+MN that approximate ST,b.

Lemma 5.2. For all sufficiently small ε > 0, there exist truncated tubes
T−
T,ε ⊂ TT,b ⊂ T+

T,ε and Borel subsets Ξ̌−
ε ⊂ Ξ̌ ⊂ Ξ̌+

ε of Ň , Ξ−
ε ⊂ Ξ ⊂ Ξ+

ε of
N and Θ−

ε ⊂ Θ ⊂ Θ+
ε of M satisfying the following:

(1) for all T > 0,

ŇO(ε)Ξ̌
−
ε exp(T−

T,ε)MO(ε)Θ
−
ε Ξ

−
ε NO(ε) ⊂ S−

T,b,ε

⊂ S+
T,b,ε ⊂ ŇO(ε)Ξ̌

+
ε exp(T+

T,ε)MO(ε)Θ
+
ε Ξ

+
ε NO(ε) (5.3)

(2) an O(ε)-neighborhood of T−
T,ε (resp. TT,b) contains TT,b (resp. T+

T,ε);
(3) ν((Ξ̌+

ε −Ξ̌−
ε )e

+) → 0, νi((Ξ+
ε −Ξ−

ε )e
−) → 0 and VolM (Θ+

ε −Θ−
ε ) → 0

as ε→ 0.

Proof. We prove the half of the lemma involving − signs; the second half
involving the + signs is similar.

For T > 0, let T−
T,ε (resp. Ξ̌−

ε ,Ξ
−
ε ,Θ

−
ε ) be the intersection of TT,b (resp.

Ξ̌ε,Ξε,Θε) and the complement of an O(ε)-neighborhood of its exterior, or
more explicitly,

T−
T,ε = TT,b − (∂TT,b + aO(ε)).
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To check (1), let g ∈ ŇO(ε)Ξ̌
−
ε exp(T−

T,ε)MO(ε)Θ
−
ε Ξ

−
ε NO(ε). By Lemma 2.2(3),

it follows that for all g1, g2 ∈ Gε,

g−1
1 gg−1

2 ∈ ŇO(ε)Ξ̌
−
ε AO(ε) exp(T−

T,ε)MO(ε)Θ
−
ε Ξ

−
ε NO(ε) ⊂ ST,b.

This implies that g ∈ S−
T,b,ε, which establishes (1). It is clear that (2) is

satisfied. Moreover, since ν(∂Ξ̌e+) = 0, we have

|ν(Ξ̌e+)− ν(Ξ̌−
ε e

+)| ≤ ν(ŇO(ε)∂Ξ̌e
+)

ε→0−−−→ 0.

Similarly for Ξ−
ε and Θ−

ε and hence (3) is satisfied. □

An integral over tubes. It is possible to generalize Lemma 5.2 by replac-
ing the truncated tubes TT,b with a sequence of sufficiently nice compact
subsets of a and then attempt to obtain the counting as in Proposition 5.1
following the well-known approaches of ([12], [30], [29], etc). However, in
carrying out this in this higher rank and infinite volume setting, putting

L(T0) =
κv

|mXv |

∫
tv+

√
tu∈T0

eδvte−I(u) dt du (5.4)

where κv and I(u) are as in Theorem 3.3, we need to control the asymptotic
of L(TT,b) and L(T±

T,ε) as T → ∞ as in Lemma 5.4 where the shape of
the tubes plays an important role. We will need the the following technical
lemma in the proof of Lemma 5.4.

Lemma 5.3. Define fT : kerψv → R by

fT (u) =
1

eδvT
e−I(u)/T

∫
RT (u/

√
T )
eδvt dt for u ∈ kerψv

where RT (u) = {t ≥ 0 : t ≤ T + b(
√
tu),

√
tu ∈ K}. We have

lim
T→∞

fT (u) =

{
1
δv
eδvb(u) if u ∈ intK

0 if u ∈ kerψv − K.
(5.5)

Proof. To compute the desired limit, we will first describe the values in
RT (u). For convenience, let

Mb = max b; mb = min b;

Ju = {s ≥ 0 : su ∈ K} and J2
u = {s2 : s ∈ Ju} for u ∈ kerψv.

Then
RT (u/

√
T ) = {t ≥ 0 : t ≤ T + b(

√
t
T u),

√
t
T u ∈ K}

= {t ≥ 0 : t ≤ T + b(
√

t
T u), t ∈ TJ2

u}

⊂
[
0,min

{
T +Mb,

(
sup J2

u

)
T
}]

First, fix u ∈ intK. Then

su := sup{0 ≤ s ≤ 1 : su /∈ K} < 1.
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Assume that T is sufficiently large so that

suT < T +mb < T +Mb <
(
sup J2

u

)
T.

Observe that [suT, T +mb] ⊂ RT (u/
√
T ) and RT (u/

√
T )∩ (T +Mb,∞) = ∅.

Note that since su < 1, we have

1

eδvT
e−I(u)/T

∫ suT

0
eδvt dt ≤ 1

eδvT
e−I(u)/T eδvsuT (5.6)

and hence the quantity on the left hand-side goes to 0 as T → ∞.
Next we investigate which values in [T +mb, T +Mb] are in RT (u/

√
T ).

Fix ε > 0. Using continuity of b, we note that for all T sufficiently large and
for all η ∈ (ε, b(u)−mb), we have

T + b(u)− η < T + b

(√
T+b(u)−η

T u

)
and hence6

[suT, T + b(u)− oT (1)] ⊂ RT (u/
√
T ). (5.7)

Similarly, we note that for all T sufficiently large and for all η ∈ (ε,Mb−b(u)),
we have

T + b(u) + η > T + b

(√
T+b(u)+η

T u

)
and hence

RT (u/
√
T ) ∩ [T + b(u) + oT (1),∞) = ∅. (5.8)

Also note that

e−I(u)/T

eδvT

∫ T+b(u)+oT (1)

T+b(u)−oT (1)
eδvt dt =

1

eδvT
e−I(u)/T eδvb(u)(eoT (1) − e−oT (1)) (5.9)

goes to 0 as T → ∞. Summarizing (5.6)-(5.9), we have shown that to
compute limT→∞ fT (u), we can replace RT (u/

√
T ) with [sT , T+b(u)−oT (1)]

to get

lim
T→∞

fT (u) = lim
T→∞

1

eδvT
e−I(u)/T

∫
RT (u/

√
T )
eδvt dt

= lim
T→∞

1

δveδvT
e−I(u)/T (eδv(T+b(u)−oT (1)) − oT (e

δvT ))

=
1

δv
eδvb(u).

Next, fix u /∈ K. Since K is closed, there exists η > 0 such that (1− η, 1+
η) ∩ Ju = ∅. Then for all sufficiently large T , we have

RT (u/
√
T ) = {t ≥ 0 : t ≤ T + b(

√
t
T u), t ∈ TJ2

u} ⊂ [0, (1− η)2T ].

6We write oT (1) for a function of T that converges to 0 as T tends to ∞.
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Then

fT (u) ≤
1

eδvT
e−I(u)/T

∫ (1−η)2T

0
eδvt dt ≤ 1

eδvT
e−I(u)/T eδv(1−η)

2T

and hence limT→∞ fT (u) = 0. □

Lemma 5.4. We have

lim
T→∞

1

eδvTT (1−r)/2

∫
tv+

√
tu∈TT,b

eδvte−I(u) dt du =
1

δv

∫
K
eδvb(u) du. (5.10)

Proof. We may assume TT,b = {tv+u : 0 ≤ t ≤ T+b(u), u ∈ K} as TT,b−a+

is contained in a fixed compact set independent of T . Then

RT (u) = {t ≥ 0 : t ≤ T + b(
√
tu),

√
tu ∈ K}.

By changing the variable
√
Tu to u, we have

1

eδvTT (1−r)/2

∫
tv+

√
tu∈TT,b

eδvte−I(u) dt du

=
1

eδvTT (1−r)/2

∫
kerψv

e−I(u)
∫
RT (u)

eδvt dt du

=

∫
kerψv

1

eδvT
e−I(u)/T

∫
RT (u/

√
T )
eδvt dt du

=

∫
kerψv

fT .

Set

AT =

∫
u∈intK

fT , BT =

∫
u∈hull(K∪{0})−K

fT and CT =

∫
u/∈hull(K∪{0})

fT

where hullK∪ {0} means the convex hull of K∪ {0}. By hypothesis that ∂K
has measure zero, we have

∫
kerψv

fT = AT + BT + CT .
Asymptotic of AT . Since

RT (u/
√
T ) = {t ≥ 0 : t ≤ T + b(

√
t
T u),

√
t
T u ∈ K}

= {t ≥ 0 : t ≤ T + b(
√

t
T u), t ∈ TJ2

u}

⊂
[
0,min

{
T +Mb,

(
sup J2

u

)
T
}]

where Ju = {s ≥ 0 : su ∈ K}, we have for all u ∈ kerψv,

fT (u) ≤
1

eδvT

∫ T+Mb

0
eδvt dt ≤ 1

δv
eδvMb .

Since K is bounded and the integral in (5) is uniformly bounded for all T
we can apply the Lebesgue dominated convergence theorem for the sequence
fT |intK to compute the asymptotic of AT using Lemma 5.3:

lim
T→∞

AT =

∫
u∈intK

lim
T→∞

fT (u)du =
1

δv

∫
u∈intK

eδvb(u) du.



26 MICHAEL CHOW AND HEE OH

Hence it suffices to show that BT + CT converges to 0 as T → ∞.
Asymptotic of BT . For u ∈ hull(K∪{0}), we still have the constant upper
bound in (5). Hence we can also apply the Lebesgue dominated convergence
theorem and Lemma 5.3 to compute

lim
T→∞

BT =

∫
u∈hull(K∪{0})−K

lim
T→∞

fT (u) du =

∫
u∈hull(K∪{0})−K

0 du = 0

Asymptotic of CT . Fix u /∈ hull(K ∪ {0}). Then for all t ≥ 1, tu /∈ K
otherwise u would lie on the segment with endpoints 0 and tu and be in
hull(K ∪ {0}). In particular, we have

ju := sup(Ju) = sup{0 ≤ s ≤ 1 : su ∈ K} < 1.

Define
g(u) := 2

√
δvI(u)(1− j2u).

Using RT (u/
√
T ) ⊂ TJ2

u ⊂ T [0, j2u], we get for all T > 0,

fT (u) =
1

eδvT
e−I(u)/T

∫
RT (u/

√
T )
eδvt dt ≤ 1

δv
e−I(u)/T e−δvT (1−j

2
u) ≤ 1

δv
e−g(u)

where the last inequality uses the fact that a + b ≥ 2
√
ab for all a, b ≥ 0.

Note that the function g(u) is radially increasing with at least a linear rate:
for all r > 1, we have

g(ru) = 2
√
δvI(ru)(1− j2ru) = 2r

√
δvI(u)(1− j2u/r

2) ≥ rg(u),

so the function u 7→ e−g(u) is L1-integrable on kerψv − hull(K∪ {0}). Hence
we apply the Lebesgue dominated convergence theorem to compute the as-
ymptotic of CT using Lemma 5.3:

lim
T→∞

CT =

∫
u/∈hull(K∪{0})

lim
T→∞

fT (u) du =

∫
u/∈hull(K∪{0})

0 du = 0

This finishes the proof of Lemma 5.4. □

We are now ready to give the proof of Proposition 5.1.

Proof of Proposition 5.1. We first introduce some notation. Given a
bounded Borel subset B of G, define the counting function FB : G×G→ N
by

FB(g, h) =
∑
γ∈Γ

1B(g
−1γh).

Note that FST,b(e, e) = #Γ ∩ ST,b. The function FB is Γ-invariant in both
arguments so it descends to a function on Γ\G× Γ\G which we still denote
by FB. For F1, F2 : Γ\G× Γ\G→ R, let

⟨F1, F2⟩ =
∫
Γ\G×Γ\G

F1(x1, x2)F2(x1, x2) dx1 dx2

when the integral makes sense where dx1, dx2 are both the Haar measure
on Γ\G. For ε > 0 smaller than the injectivity radius of Γ at e, we fix a
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nonnegative function ψε ∈ C∞(G) with suppψε ⊂ Gε and
∫
G ψε dg = 1. Let

Ψε ∈ C∞(Γ\G) be defined by Ψε(Γg) =
∑

γ∈Γ ψε(γg) for all g ∈ G.
Observe that we have

⟨FS−
T,b,ε

,Ψε ⊗Ψε⟩ ≤ FST,b(e, e) ≤ ⟨FS+
T,b,ε

,Ψε ⊗Ψε⟩. (5.11)

Given a bounded Borel subset B ⊂ G, we define fB : Ň ×MN → R by

fB(h,mn) =
κv

|mXv |

∫
h−1atv+

√
tumn∈B

eδvte−I(u) dt du.

Continuing the notation (5.4), set

L(TT,b) = κv
|mXv |

∫
tv+

√
tu∈TT,b

eδvte−I(u) dt du

which is the value of fST,b(h,mn) when it is nonzero.
We denote by

I1 :MANŇ → a, J1 :MANŇ → Ň ,

I2 : AŇMN → a, J2 : AŇMN →MN

the natural projection maps. For a bounded subset B ⊂ G, define

f̃B(g1, g2) = fB(J1(g
−1
1 ), J2(g

−1
2 ))eψv(I1(g

−1
1 )−I2(g−1

2 ))

for any gi ∈ G such that J(g−1
i ) and I(g−1

i ) are defined for i = 1, 2.
The first step is to rewrite ⟨FS±

T,b,ε
,Ψε ⊗ Ψε⟩ by decomposing the Haar

measure on G using ŇAMN coordinates and separating the expected main
term from local mixing from the error term. Set QS±

T,b,ε
to be∫

K/M×K

∫
Gε×Gε

f̃S±
T,b,ε

(g−1
1 k1, g

−1
2 k2)·ψε(g1)ψε(g2) dg1 dg2 dν(k+1 ) dνi(k

+
2 ).

(5.12)

Then as in [5, Lemmas 5.4-5.8], we have

⟨FS±
T,b,ε

,Ψε ⊗Ψε⟩

= QS±
T,b,ε

+

∫
h−1atv+

√
tumn∈S

±
T,b,ε

eδvtEε(t, u, h,mn) dt du dh dmdn

where

Eε(t, u, h,mn) = t(r−1)/2e2ρ(tv+
√
tu)−δvt

∫
Γ\G

Ψε(xh)Ψε(xatv+
√
tumn) dx

− κve−I(u)

|mXv |
mBR⋆

v

(
h−1.Ψε)m

BR
v

(
(mn)−1.Ψε).
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In view of (5.12) and Lemma 5.2, we only need to consider k1 ∈ K such
that J1(k−1

1 g1) is in a bounded set. Similarly for k2. Then by Lemma 2.2(1)-
(2), we get

ψv(I1(k
−1
1 g1)) = ψv(I1(k

−1
1 )) +O(ε); ψv(I2(k

−1
2 g2)) = ψv(I2(k

−1
2 )) +O(ε)

and

J1(k
−1
1 g1)

−1 ∈ ŇO(ε)J1(k
−1
1 )−1; J2(k

−1
2 g2) ∈MO(ε)J2(k

−1
2 )NO(ε). (5.13)

Let T−
T,ε = T(v,K−

ε , T, b
−
ε ) ⊂ TT,b, Ξ̌−

ε ⊂ Ξ̌, Ξ−
ε ⊂ Ξ and Θ−

ε ⊂ Θ be as in
Lemma 5.2. For convenience, let

ST,b−ε := Ξ̌−
ε exp(T−

T,ε)Θ
−
ε Ξ

−
ε .

By Lemma 5.2(1) and (5.13), for all g1, g2 ∈ Gε we have

fS−
T,b,ε

(J1(k
−1
1 g1), J2(k

−1
2 g2)) ≥ fS

T,b−ε
(J1(k

−1
1 ), J2(k

−1
2 )).

It now follows that

QS−
T,b,ε

≥
∫
K/M×K

(1 +O(ε))f̃S
T,b−ε

(k1, k2) dν(k
+
1 ) dνi(k

+
2 ). (5.14)

Using Lemma 5.2(2)-(3), we observe that7∫
K/M×K

(fST,b − fS
T,b−ε

)(J1(k
−1
1 ), J2(k

−1
2 )) dν(k+1 ) dνi(k

+
2 )

= L(TT,b)O
(
ν
(
(Ξ̌− Ξ̌−

ε )e
+
)
+ νi

(
(Ξ−1 − (Ξ−

ε )
−1)e−

)
+VolM

(
Θ−Θ−

ε

))
+ (L(TT,b)− L(T−

T,ε))ν(Ξ̌
−
ε )ν((Ξ

−
ε )

−1)VolM (Θ−)

= L(TT,b)oε(1) +O(L(TT,b)− L(T−
T,ε))

= L(TT,b)oε(1)
(5.15)

where we note that L(TT,b)− L(T−
T,ε) = L(TT,b)oε(1) by Lemma 5.4.8

Combining (5.14) and (5.15) yields

QS−
T,b,ε

≥
∫
K/M×K

(1 +O(ε))f̃ST,b(k1, k2)dν(k
+
1 ) dνi(k

+
2 ) + L(TT,b)oε(1).

(5.16)
A similar argument shows that

QS+
T,b,ε

≤
∫
K/M×K

(1 +O(ε))f̃ST,b(k1, k2)dν(k
+
1 ) dνi(k

+
2 ) + L(TT,b)oε(1)

(5.17)
and we conclude that

QS±
T,b,ε

=

∫
K/M×K

(1 +O(ε))f̃ST,b dν(k
+
1 ) dνi(k

+
2 ) + L(TT,b)oε(1). (5.18)

7For a function f of T, ε, we write O(f) for a function which is in absolute value at
most Cf for some constant C > 0 independent of T, ε.

8For a real-valued function f of ε, we write f = oε(1) ⇐⇒ limε→0 f(ε) = 0
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Considering k1 ∈ K such that k−1
1 = mawnh

−1 ∈ MANŇ, we have
J1(k

−1
1 ) = h−1, h+ = k1M , I1(k−1

1 ) = w = βh+(e, h) and hence∫
k+1 ∈K/M, (J1(k

−1
1 ))−1∈Ξ̌

eψv(I1(k
−1
1 )) dν(k+1 ) =

∫
h∈Ξ̌

eψv(βh+ (e,h)) dν(h+) = ν̃(Ξ̌).

Similarly, considering k2 ∈ K such that k−1
2 = awhm

−1n−1 ∈ AŇMN,

we have J2(k−1
2 ) = m−1n−1 ∈ MN , k−2 = n−, I2(k−1

2 ) = w = −i(βn−(e, n))
and hence∫
k2∈K, J2(k−1

2 )∈ΘΞ
e−ψv(I2(k

−1
2 ))dνi(k

+
2 ) =

∫
nm∈Ξ−1Θ−1

e(ψv◦i)(βn− (e,n)) dνi(n
−) dm

= ν̃i(Ξ
−1)VolM (Θ).

Thus, we obtain

⟨FS±
T,b,ε

,Ψε ⊗Ψε⟩

= (1 +O(ε))L(TT,b)ν̃(Ξ̌)ν̃i(Ξ−1)VolM (Θ)

+

∫
h−1atv+

√
tumn∈S

±
T,b,ε

eδvtEε(t, u, h,mn) dt du dh dmdn+ L(TT,b)oε(1).

For the error term Eε(t, u, h,mn), we claim that

lim
T→∞

1

eδvTT (1−r)/2

∫
h−1atv+

√
tumn∈S

±
T,b,ε

eδvtEε(t, u, h,mn) dt du dh dmdn = 0.

(5.19)
To prove (5.19), note that since Ξ̌ ⊂ Ň and Ξ ⊂ N are bounded, by

Theorem 3.3, there exist positive constants ηv, Dv and sv such that

|Eε(t, u, h,mn)| ≤ Dve
−ηvI(u)

for all (t, u) ∈ (sv,∞)× kerψv and h,mn such that h−1atv+
√
tumn ∈ S±

T,b,ε.
Then (5.19) follows by using similar reasoning as in Lemma 5.4 and the fact
that for fixed u ∈ kerψv, lim

t→∞
Eε(t, u, h,mn) = 0.

Now using Lemma 5.4 and (5.11), taking T → ∞ and then ε → 0, we
conclude that

#(Γ ∩ ST ) ∼
κv

δv|mXv |

∫
K
eδvb(u) du · ν̃(Ξ̌)ν̃i(Ξ−1)VolM (Θ).

This finishes the proof of Proposition 5.1.

Counting via flow boxes. We use flow boxes as in [27] and [28].

Definition 5.5 (ε-flow box at g0). Given g0 ∈ G and ε > 0, the ε-flow box
at g0 is defined by

B(g0, ε) = g0(ŇεN ∩NεŇAM)MεAε.

We denote the projection of B(g0, ε) into Γ\G/M by B̃(g0, ε).
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For g0 ∈ G and T, ε > 0, we denote

VT,b(g0, ε,T,Θ) = B(g0, ε)TT,bΘB(g0, ε)−1. (5.20)

Our next goal is to obtain an asymptotic for #Γ ∩ VT,b(g0, ε,T,Θ).

Proposition 5.6. Let g0 ∈ G. For all sufficiently small ε > 0, we have

#(Γ ∩ VT,b(g0, ε,T,Θ))

= c(v, b)

(
mv(B̃(g0, ε))

br(ε)
VolM (Θ)(1 +O(ε)) + oT (1)

)
eδvT

T (r−1)/2

where c(v, b) is as in (4.2) and br(ε) denotes the volume of the Euclidean
r-ball of radius ε.

The asymptotic in Proposition 5.6 will be deduced from Proposition 5.1.
Using another wavefront-type lemma argument, we show the sets ST,b and
VT,b(e, ε,T,Θ) are approximately the same in the following precise sense:

Lemma 5.7. There exists C > 0 such that for all sufficiently small ε > 0
and for all sufficiently large T, T ′ with T > T ′, we have

VT,b(e, ε,T,Θ)− VT ′,b(e, ε,T,Θ)

⊂ ST,b+ε (Ňε+O(εe−CT ′ ), (Nε+O(εe−CT ′ ))
−1,T+

ε ,Θ
+
ε )

− ST ′−O(ε),b+ε
(Ňε+O(εe−CT ′ ), (Nε+O(εe−CT ′ ))

−1,T+
ε ,Θ

+
ε )

where K+
ε and b+ε are defined by the equation TT,b + aO(ε) = TT (v,K+

ε , b
+
ε ),

T+
ε := T(v,K+

ε ), and Θ+
ε =

⋃
m1,m2∈MO(ε)

m1Θm2.

Proof. Since v ∈ int a+, there exists T0 > 0 sufficiently large such that the
linear forms ψv and α ∈ Φ+ are all positive on T − TT0,b. Therefore there
exists a constant C > 0 such that

C · ψv(w) ≤ min
α∈Φ+

α(w) (5.21)

for all w ∈ a+ in the O(ε)-neighborhood of T − TT0,b. By (2.2) and (5.21),
for all w ∈ a+ in the O(ε)-neighborhood of T− TT0,b, we have

a−wNεaw ⊂ Nεe−Cψv(w) . (5.22)

Similarly, we have
awŇεa−w ⊂ Ňεe−Cψv(w) . (5.23)

Let T > T ′ > T0 and T+
T,ε = TT (v,K+

ε , b
+
ε ). Let

g ∈ VT,b(e, ε,T,Θ)− VT ′,b(e, ε,T,Θ).

Write g = g1amg
−1
2 where g1, g2 ∈ B(e, ε), a ∈ exp(TT,b−TT ′,b) and m ∈ Θ.

Since g1, g2 ∈ B(e, ε), by Lemma 2.1(1) we can write g1 = h1n1m1a1 ∈
ŇεNO(ε)MεAε and g2 = n2h2m2a2 ∈ NεŇO(ε)MO(ε)AO(ε). Then

g = h1n1m1a1ma(m2a2)
−1h−1

2 n−1
2 .
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Let a′ = aa1a
−1
2 , m′ = m1mm

−1
2 and n3 = (m′a′)−1n1m

′a′. Then a′ ∈
T+
T,ε−T+

T ′−O(ε),ε, m
′ ∈ Θ+

ε and n3 ∈ NO(εe−CT ′ ) by (5.22). By Lemma 2.1(1),
we can write n3h−1

2 = m3a3h4n4 ∈MO(ε)AO(ε)ŇO(ε)NO(εe−CT ′ ). Then

g = h1m
′a′n3h

−1
2 n−1

2 = h1m
′a′m3a3h4n4n

−1
2

= h5m
′′a′′n5 ∈ Ňε+O(εe−CT ′ )Θ

+
ε exp(T+

T,ε − T+
T ′−O(ε),ε)Nε+O(εe−CT ′ ).

where a′′ = a′a3, m′′ = m′m3, n5 = n4n
−1
2 ∈ Nε+O(εe−CT ′ ) and h5 =

h1(m
′′a′′)h4(m

′′a′′)−1 ∈ Ňε+O(εe−CT ′ ). This completes the proof. □

Proof of Proposition 5.6. It suffices to consider the case g0 = e. Note
that the boundaries ∂Nε and ∂Ňε are proper real algebraic subvarieties of
F and hence ν(∂Ňε) = νi(∂Nε) = 0 by [20, Theorem 1.1]. We have a trivial
inclusion ST,b(Ňε, N

−1
ε ,T,Θ) ⊂ VT,b(e, ε,T,Θ). By Proposition 5.1, we have

#(Γ∩VT,b(e, ε,T,Θ)) ≥ c(v, b)
(
ν̃(Ňε)ν̃i(Nε)VolM (Θ) + oT (1)

) eδvT

T (r−1)/2
.

(5.24)

By [5, Lemma 5.20], we have

mv(B̃(e, ε)) = (1 +O(ε))br(ε)ν̃(Ňε)ν̃i(Nε). (5.25)

Then using (5.24) and (5.25), we get

#(Γ ∩ VT,b(e, ε,T,Θ))

≥ c(v, b)

(
mv(B̃(e, ε))

br(ε)
VolM (Θ)(1 +O(ε)) + oT (1)

)
eδvT

T (r−1)/2
.

It remains to establish the reverse inequality. By Lemma 5.7, we have

VT,b(e, ε,T,Θ)− VT/2,b(e, ε,T,Θ)

⊂ ST,b+ε (Ňε+O(εe−CT/2), (N
−
ε+O(εe−CT/2)

)−1,T+
ε ,Θ

+
ε )

and
VT/2,b(e, ε,T,Θ) ⊂ ST/2,b+ε (ŇO(ε), (NO(ε))

−1,T+
ε ,Θ

+
ε ).

Then using Proposition 5.1 in the above inclusions, we get
#(Γ ∩ VT,b(e, ε,T,Θ))−#(Γ ∩ VT/2,b(e, ε,T,Θ))

≤ c(v, b+ε )
(
ν̃(Ňε+O(εe−CT/2))ν̃i(Nε+O(εe−CT/2))VolM (Θ+

ε ) + oT (1)
) eδvT

T (r−1)/2

= c(v, b)

(
ν̃(Ňε)ν̃i(Nε)VolM (Θ)(1 +O(ε)) + oT (1)

)
eδvT

T (r−1)/2

= c(v, b)

(
mv(B̃(e, ε))

br(ε)
VolM (Θ)(1 +O(ε)) + oT (1)

)
eδvT

T (r−1)/2
.

(5.26)
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Moreover,

#(Γ ∩ VT/2,b(e, ε,T,Θ))

≤ c(v, b)

(
ν̃(Ňε)ν̃i(Nε)VolM (Θ+

ε ) + oT (1)

)
eδvT/2

(T/2)(r−1)/2
. (5.27)

Combining (5.26) and (5.27), we obtain the desired inequality.

Application of a closing lemma. For g0 ∈ G and T, ε > 0, let

WT,b(g0, ε,T,Θ) = {gamg−1 : g ∈ B(g0, ε), am ∈ TT,bΘ}.

Note that the sets VT,b(g0, ε,T,Θ) and WT,b(g0, ε,T,Θ) are similar but the
latter consists only of loxodromic elements and the former does not. We
relate Γ ∩ WT,b(g0, ε,T,Θ) to Γ ∩ VT,b(g0, ε,T,Θ) by using the following
closing lemma for regular directions.

Lemma 5.8. [5, Lemma 2.7] There exists s0 > 0 for which the following
holds. Let ε > 0 be sufficiently small and g0 ∈ G. Suppose there exist
g1, g2 ∈ B(g0, ε) and γ ∈ G such that

g1ãγm̃γ = γg2 (5.28)

for some m̃γ ∈M and ãγ ∈ A with

s = min
α∈Φ+

α(log ãγ) ≥ s0. (5.29)

Then there exist g ∈ B(g0, ε+O(εe−s)), aγ ∈ A and mγ ∈M such that

γ = gaγmγg
−1.

Moreover, aγ ∈ ãγAO(ε) and mγ ∈ m̃γMO(ε).

The next Lemma 5.9 is a precise formulation of the property that the sets
Γ∩WT,b(g0, ε,T,Θ) and Γ∩VT,b(g0, ε,T,Θ) are approximately the same. The
proof of Lemma 5.9 uses the above Closing Lemma 5.8. The essential reason
why we are able to use this closing lemma is because only a finite volume
part of the tube T is too close to the walls of the Weyl chamber to apply
the closing lemma. Excluding this finite volume, we obtain a comparison
between Γ ∩WT,b(g0, ε,T,Θ) and Γ ∩ VT,b(g0, ε,T,Θ).

Lemma 5.9. There exists C > 0 such that for all sufficiently large T, T ′

with T > T ′, we have

Γ ∩
(
VT,b−ε (g0, ε−O(εe−CT

′
)),T−

ε ,Θ
−
ε )− VT ′,b(g0, ε,T,Θ)

)
⊂ Γ ∩WT,b(g0, ε,T,Θ)

where K−
ε , b

−
ε are defined by the equation

⋂
w∈aO(ε)

(TT,b+w) = TT (v,K−
ε , b

−
ε ),

T−
ε = T(v,K−

ε ) and Θ−
ε =

⋂
g1,g2∈MO(ε)

g1Θg2.
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Proof. As in Lemma 5.7, since v ∈ int a+, there exists T0 > 0 sufficiently
large such that the linear forms ψv and α ∈ Φ+ are all positive on T−TT0,b.
Therefore there exists a constant C > 0 such that

Cψv(w) ≤ min
α∈Φ+

α(w)

for all w ∈ a+ in some ε0-neighborhood of T− TT0,b.
For T > 0, let T−

T,ε = TT (v,K−
ε , b

−
ε ). Fix T > T ′ > T0 and assume T ′ is

sufficiently large so that if w ∈ T− TT ′,b, then

min
α∈Φ+

α(w) > CT ′ > s0

where s0 is as in Lemma 5.8. Suppose

γ ∈ Γ ∩
(
VT,b−ε (g0, ε−O(εe−CT

′
)),T−

ε ,Θ
−
ε )− VT ′,b(g0, ε,T,Θ)

)
.

Then γ = g1 exp(w)mg2 where g1, g2 ∈ B(g0, ε − O(εe−CT
′
))), w ∈ T−

T,ε −
TT ′,b, and m ∈ Θ−

ε . By Lemma 5.8, we have γ = g exp(w′)m′g−1 for some

g ∈ B
(
g0, ε−O(εe−CT

′
) +O(εe−minα∈Φ+ α(w))

)
⊂ B(g0, ε),

w′ ∈ wAO(ε) and m′ ∈ mMO(ε). It follows that w ∈ TT,b and m′ ∈ Θ, so
γ ∈ Γ ∩WT,b(g0, ε,T,Θ). □

In the next Lemma 5.10, we show that there are just as many primitive
elements in Γ∩WT,b(g0, ε,Θ) as nonprimitive elements. This is what allows
us to consider only primitive elements in Γ as in the joint equidistribution
Theorem 4.5. The proof uses Lemma 5.9 and Proposition 5.6 to get an
estimate for #Γprim ∩WT,b(g0, ε,Θ).

Lemma 5.10. Suppose g0 ∈ G with Γg0M ∈ suppmv and VolM (Θ) > 0.
Then for all sufficiently small ε > 0 and sufficiently large T , we have

#Γ ∩ (WT,b(g0, ε,Θ)−W2T/3,b(g0, ε,Θ)) ≤ #Γprim ∩WT,b(g0, ε,Θ).

Proof. Let Γprimk = {σk : σ ∈ Γprim}. We observe that

#Γprim ∩WT,b(g0, ε,T,Θ)

= #Γ ∩WT,b(g0, ε,T,Θ)#

⋃
k≥2

Γprimk ∩WT,b(g0, ε,T,Θ)


≥ #Γ ∩WT,b(g0, ε,T,Θ)−#

⋃
k≥2

Γ ∩WT/k,b̂(g0, ε, T̂,
k
√
Θ)


where k

√
Θ := {m ∈M : mk ∈ Θ} and T̂ is the essential tube obtained from

T by replacing K with the convex hull of K ∪ {0} and b̂ is any continuous
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extension of b to the convex hull of K ∪ {0}. It suffices to show that for all
sufficiently large T , we have

#

⋃
k≥2

Γ ∩WT/k,b̂(g0, ε, T̂,
k
√
Θ)

 ≤ #Γ ∩W2T/3,b(g0, ε,T,Θ). (5.30)

Since WT/k,b̂(g0, ε, T̂,
k
√
Θ) ⊂ VT/k,b̂(g0, ε, T̂,

k
√
Θ) and Γ∩WT/k,b̂(g0, ε, T̂,

k
√
Θ)

is empty when T/k is sufficiently small, using Proposition 5.6 we get

#

⋃
k≥2

Γ ∩WT/k,b̂(g0, ε, T̂,
k
√
Θ)

 = O

(
T

eδvT/2

T (r−1)/2

)
. (5.31)

Using Lemma 5.9, Proposition 5.6 and VolM (Θ) > 0, we have

#Γ ∩W2T/3,b(g0, ε,T,Θ) ≥ O

(
e2δvT/3

T (r−1)/2

)
. (5.32)

The inequality (5.30) now follows from (5.31) and (5.32). □

Joint Equidistribution. Our next goal is to prove Theorem 4.4. For each
T > 0, we define a Radon measure ηT on Ω × [M ] by the following: for
f ∈ Cc(Ω) and φ ∈ Cl(M), let

ηT (f ⊗ φ) =
∑

[γ]∈[Γprim], λ(γ)∈TT,b

∫
Cγ

f · φ(m(γ)).

We will prove Theorem 4.4 by using the asymptotic in Proposition 5.6. Let
g0 ∈ G with Γg0M ∈ suppmv, Θ ⊂ MΓ be a conjugation-invariant Borel
subset with VolM (Θ) > 0 and VolM (∂Θ) = 0 and let ε > 0 be sufficiently
small as in Proposition 5.6.

Lemma 5.11. [5, Lemma 6.3] For all sufficiently large T > 1, we have

ηT (B̃(g0, ε)⊗Θ) = br(ε) ·#(Γprim ∩WT,b(g0, ε,T,Θ)).

In view of Lemma 5.11, we can now use Lemma 5.9 and Lemma 5.10 to
prove the following lemma comparing ηT with VT,b.

Lemma 5.12 (Comparison Lemma). For all sufficiently large T > 1, we
have

br(ε) ·#Γ ∩
(
VT,b−ε (g0, ε−O(εe−2CT/3)),T−

ε ,Θ
−
ε )− V2T/3,b(g0, ε,T,Θ)

)
≤ ηT (B̃(g0, ε)⊗Θ) ≤ br(ε) ·#Γ ∩ VT,b(g0, ε,T,Θ)

where C, Θ−
ε and T−

T,ε are as in Lemma 5.9.
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Proof. The upper bound follows directly from Lemma 5.11 and the inclusion
Γ ∩WT (g0, ε,T,Θ) ⊂ Γ ∩ VT (g0, ε,T,Θ). The lower bound follows by using
Lemma 5.11, Lemma 5.10, and Lemma 5.9:

ηT (B̃(g0, ε)⊗Θ)

= br(ε)#(Γprim ∩WT,b(g0, ε,T,Θ))

≥ br(ε)#Γ ∩ (WT,b(g0, ε,T,Θ)−W2T/3,b(g0, ε,T,Θ))

≥ br(ε)#Γ ∩ (VT,b−ε (g0, ε−O(εe−2CT/3)),T−
ε ,Θ

−
ε )− V2T/3,b(g0, ε,T,Θ)).

□

Combining Proposition 5.6 and Lemma 5.12, we obtain the following as-
ymptotic for ηT (B̃(g0, ε)⊗Θ).

Proposition 5.13. We have

ηT (B̃(g0, ε)⊗Θ) = c(v, b)
(
mv(B̃(g0, ε))VolM (Θ)(1 +O(ε)) + oT (1)

) eδvT

T (r−1)/2

where c(v, b) is as in (4.2).

Proof. Using the asymptotics from Proposition 5.6 in the inequality in Lemma 5.12
gives

ηT (B̃(g0, ε)⊗Θ) ≤ c(v, b)
(
mv(B̃(g0, ε))VolM (Θ)(1 +O(ε)) + oT (1)

) eδvT

T (r−1)/2

and

ηT (B̃(g0, ε)⊗Θ)

≥ br(ε) ·#Γ ∩
(
VT,b−ε (g0, ε−O(εe−2CT/3)),T−

ε ,Θ
−
ε )− V2T/3,b(g0, ε,T,Θ)

)
= c(v, b−ε )

·

br(ε)mv(B̃(g0, ε−O(εe−
2CT
3 )))

br(ε−O(εe−
2CT
3 ))

VolM (Θ−
ε )(1 +O(ε)) + oT (1)

 eδvT

T (r−1)/2

− c(v, b)
(
mv(B̃(g0, ε))VolM (Θ)(1 +O(ε)) + oT (1)

) e2δvT/3

(2T/3)(r−1)/2

= c(v, b)
(
mv(B̃(g0, ε))VolM (Θ)(1 +O(ε)) + oT (1)

) eδvT

T (r−1)/2
.

□

Proofs of Theorem 4.4 and Theorem 4.5. The left-hand side of the
asymptotic formula of Theorem 4.4 is precisely ηT (f ⊗φ). Theorem 4.4 now
follows from Proposition 5.13 and a standard partition of unity argument
([28, Theorem 5.17], [5, Theorem 6.12]).
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We now deduce Theorem 4.5 from Theorem 4.4. Let f ∈ Cc(Ω) and
φ ∈ Cl(M). Since ψv(w) ≤ T + sup b for all w ∈ TT,b, we have

(T + sup b)
∑

[γ]∈[Γprim], λ(γ)∈TT,b

∫
Cγ
f

ψv(λ(γ))
φ(m(γ)) ≥ ηT (f ⊗ φ).

On the other hand, for any ε > 0, we have

1
eδvTT (1−r)/2

∑
[γ]∈[Γprim], λ(γ)∈TT,b

∫
Cγ
f

ψv(λ(γ))
φ(m(γ))

= 1
eδvTT (1−r)/2

∑
[γ]∈[Γprim], λ(γ)∈T(1−ε)T,b

∫
Cγ
f

ψv(λ(γ))
φ(m(γ))

+ 1
eδvTT (1−r)/2

∑
[γ]∈[Γprim], λ(γ)∈TT,b−T(1−ε)T,b

∫
Cγ
f

ψv(λ(γ))
φ(m(γ))

≤ 1
eδvTT (1−r)/2O(η(1−ε)T (f ⊗ φ))

+ 1
eδvTT (1−r)/2 · 1

(1−ε)T+inf b

(
ηT (f ⊗ φ)− η(1−ε)T (f ⊗ φ)

)
= O(Te−εδvT ) + 1

1−ε+(inf b)/T · 1
eδvTT (1−r)/2 ηT (f ⊗ φ).

Using the asymptotic for ηT (f ⊗ φ) from Theorem 4.4 in both inequalities,
taking T → ∞ and ε→ 0 gives the desired asymptotic. □

6. Cartan projections in tubes

In this section, we prove an asymptotic for the number of Cartan projec-
tions of a Zariski dense Anosov subgroup in a given essential tube (Theo-
rem 6.1). Recall the Cartan projection µ : G→ a+.

Cartan projections in tubes. Let Γ < G be a Zariski dense Anosov
subgroup. Fix

an essential tube T = T(v,K) = Rv + K and b ∈ C(K).

Recall that associated to v are the Γ-conformal measures ν = νv and
νi = νi(v). Fix Borel subsets Ξ1,Ξ2 ⊂ K such that Ξ1M = Ξ1, MΞ2 = Ξ2,
and ν(∂Ξ1) = νi(∂Ξ

−1
2 ) = 0. We will abuse notation and also view Ξ1,Ξ

−1
2

as subsets of F ∼= K/M .
Recall the notation:

TT,b = TT (v,K, b) = {tv + u ∈ L : 0 ≤ t ≤ T + b(u), u ∈ K}.

Theorem 6.1 (Cartan projections in tubes). We have as T → ∞,

#Γ ∩ Ξ1 exp(TT,b)Ξ2 ∼ c(v, b) · ν(Ξ1) · νi(Ξ−1
2 )

eδvT

T (r−1)/2

where c(v, b) is as in (4.2).
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An immediate corollary is:

Corollary 6.2. As T → ∞ we have

#{γ ∈ Γ : µ(γ) ∈ TT,b} ∼ c(v, b) · eδvT

T (r−1)/2
.

Corollary 6.2 together with Theorem 4.2 now implies the following:

Corollary 6.3. We have as T → ∞,
#{γ ∈ Γ : µ(γ) ∈ TT,b}

#{[γ] ∈ [Γ] : λ(γ) ∈ TT,b}
∼ [M :MΓ]

|mXv |
T.

Proof of Theorem 6.1. In [10, Section 9], an asymptotic for the number of
Cartan projections in cones was obtained for certain special kind of norms.
In principle, it is not clear whether their result can be extended to deal with
the Euclidean norm counting in cones. However for counting in tubes, the
fact that the tubes contain only one direction implies that all norms are
essentially the same restricted to tubes. Together with integral computation
in Lemma 5.4, this enables us to use the approach of [10, Section 9] to prove
Theorem 6.1. To be precise, consider the following bounded subset for each
T : let

RT,b = RT (Ξ1,Ξ2,T, b) = Ξ1 exp(TT,b)Ξ2.

For a given bounded subset B ⊂ G, define the counting function FB :
Γ\G→ R by

FB(Γg) =
∑
γ∈Γ

1B(γg) = #(Γ ∩Bg−1).

We claim that for any Ψ ∈ Cc(Γ\G), we have

lim
T→∞

⟨FRT,b ,Ψ⟩
eδvTT (1−r)/2 = c(v, b) · ν(Ξ1) ·mBR

v (Ψ ∗ 1Ξ2)

where Ψ ∗ 1Ξ2(x) =
∫
Ξ2

Ψ(xk) dk.
The Haar measure dg on G can be written

dg = ζ(w) dk1d k2 dw

where g = k1 exp(w)k2 ∈ K exp(a+)K, ζ(w) =
∏
α∈Φ+ 2 sinh(α(w)); here dk

and dw denote the Haar measures onK and a+ respectively ([22, Proposition
5.28], c.f. [30, Theorem 8.1] for the normalization).

Using this formula as in the proof of [10, Proposition 9.10] and the de-
composition of TT,b as in Lemma 5.4, we have

⟨FRT,b ,Ψ⟩
eδvTT (1−r)/2 =

1

eδvTT (1−r)/2

∫
kerψv

∫
RT (u)

(
eδvte−2ρ(tv+

√
tu)ζ(tv +

√
tu)

· t(r−1)/2e2ρ(tv+
√
tu)−δvt

∫
k∈Ξ1

Ψ ∗ 1Ξ2(Γkatv+
√
tu) d(Γk)

)
dt du.

Note that
lim
t→∞

e−2ρ(tv+
√
tu)ζ(tv +

√
tu) = 1.
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By [10, Proposition 8.11], we have

lim
t→∞

t(r−1)/2e2ρ(tv+
√
tu)−δvt

∫
k∈Ξ1

Ψ ∗ 1Ξ2(Γkatv+
√
tu) d(Γk)

=
κv

|mXv |
e−I(u)νK(Ξ1)m

BR
v (Ψ ∗ 1Ξ2). (6.1)

Then we can apply the Lebesgue dominated convergence theorem, (6.1) and
Lemma 5.4 to conclude that

lim
T→∞

⟨FRT,b ,Ψ⟩
eδvTT (1−r)/2

= lim
T→∞

1

eδvTT (1−r)/2

∫
kerψv

∫
RT (u)

eδvt
κv

|mXv |
e−I(u)ν(Ξ1)m

BR
v (Ψ ∗ 1Ξ2) dt du

=
κv

δv|mXv |

∫
K
eδvb(u) du · ν(Ξ1)m

BR
v (Ψ ∗ 1Ξ2).

This proves the claim. Theorem 6.1 is then proved in the same way as
[10, Corollary 9.21].

Proof of Theorem 1.5. Theorem 1.5 is deduced from Corollary 6.2 in the
same way that Theorem 1.4 was deduced from Theorem 4.2.

7. Applications to correlations of spectra and the growth
indicator

In this section, we prove Theorem 1.1 as an application of Theorem 4.2
and Corollary 6.2. For this section, let G1, . . . , Gd be connected simple real
algebraic groups of rank one. For each i, we use the same notations for Lie
subgroups of Gi as introduced in Section 2 but with i as subscript. For each
i, let (Xi = Gi/Ki, di) denote the associated Riemannian symmetric space.
Let qi ∈ Xi be the point stabilized by a Ki. We identify each a+i with [0,∞)
using the induced norm on ai.

Correlations of length spectra and correlations of displacement
spectra for convex cocompact manifolds. We give an application of
Theorem 4.2 to the correlations of length spectra. We also give an applica-
tion of Theorem 6.1 to the correlations of displacement spectra in the same
setting.

Let ρ = (ρ1, . . . , ρd) : Γ → G1 × · · · × Gd be a d-tuple of faithful rep-
resentations of a finitely generated group Γ whose images are Zariski dense
convex cocompact subgroups. For each i = 1. . . . , d, each conjugacy class
[ρi(γ)] ∈ [ρi(Γ)] corresponds to a unique closed geodesic in the convex co-
compact manifold ρi(Γ)\Xi whose length ℓρi(γ) is equal to the Jordan pro-
jection of ρi(γ). We denote by [mρi(γ)] ∈ [Mi] the holonomy class associated
to ρi(γ). Define the spectrum cone Lρ of ρ as the smallest closed cone in Rd
containing the set

{(ℓρ1(γ), . . . , ℓρd(γ)) : γ ∈ Γ}.
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Theorem 7.1 (Correlations of length spectra and holonomies). For any v =
(v1, . . . , vd) ∈ intLρ, there exists δρ(v) > 0 such that for any ε1, . . . , εd > 0
and for any conjugation-invariant Borel sets Θi ⊂ Mi with null boundaries,
we have as T → ∞,

#{[γ] ∈ [Γ] : viT ≤ ℓρi(γ) ≤ viT + εi, mρi(γ) ∈ Θi, 1 ≤ i ≤ d}

∼ c
eδρ(v)T

T (d+1)/2

d∏
i=1

VolMi(Θi) (7.1)

for some constant c = c(v, ε1, . . . , εd) > 0. Moreover, we have

δρ(v) ≤ min
i
δρi(Γ)vi. (7.2)

If d ≥ 2, we also have

δρ(v) <
1

d

d∑
i=1

δρi(Γ)vi. (7.3)

Theorem 7.2 (Correlations of displacements). For any v = (v1, . . . , vd) ∈
intLρ and for any ε1, . . . , εd > 0, as T → ∞,

#{γ ∈ Γ : viT ≤ di(ρi(γ)qi, qi) ≤ viT + εi, 1 ≤ i ≤ d} ∼ c′c
eδρ(v)T

T (d−1)/2

where c = c(v, ε1, . . . , εd) is as in Theorem 7.1 and c′ = c′(v, ρ) > 0.

Remark 7.3. We say that ρ1, . . . , ρd are independent from each other if ρj ◦
ρ−1
i : ρi(Γ) → ρj(Γ) does not extend to a Lie group isomorphism Gi → Gj

for all i ̸= j. In the case that ρ1, . . . , ρd are not independent from each other,
we observe in the proof of Theorem 7.1 that Lρ has empty interior and hence
the above theorems are vacuous in that case.

Proofs of Theorems 7.1 and 7.2. The self-joining of Γ via ρ = (ρ1, . . . , ρd)
is the discrete subgroup

Γρ = {ρ(γ) = (ρ1(γ), . . . , ρd(γ)) : γ ∈ Γ} <
d∏
i=1

Gi. (7.4)

By Remark 7.3, it suffices to consider the case where ρ1, . . . , ρd are inde-
pendent from each other. Since ρi(Γ) is a Zariski dense subgroup of Gi for
each 1 ≤ i ≤ d, it follows that Γρ is a Zariski dense in

∏d
i=1Gi (cf. [21,

Lemma 4.1]). Since ρi(Γ) is convex cocompact for each i = 1, . . . , d, Γρ is
an Anosov subgroup [15, Theorem 4.11]. Identifying a with Rd, the Jordan
projection of ρ(γ) ∈ Γρ is

λ(ρ(γ)) = (ℓρ1(γ), . . . , ℓρd(γ)).

Hence Lρ = LΓρ and in particular Lρ has non-empty interior. We prove
Theorem 7.1 first using the above setup. For γ ∈ Γ, let

m(ρ(γ)) = (mρ1(γ), . . . ,mρd(γ)).
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We are interested in the asymptotic of

#{[ρ(γ)] ∈ [Γρ] : λ(ρ(γ)) ∈
d∏
i=1

[viT, viT + εi], m(ρ(γ)) ∈
d∏
i=1

Θi}.

Up to re-scaling, we may assume that v = (v1, · · · , vd) is a unit vector
in intLρ. We claim that we can choose a compact subset K ⊂ kerψv and
b1, b2 ∈ C(K) such that the truncated tubes TT (v,K, b1) and TT (v,K, b2)
satisfy

TT (v,K, b1)− TT (v,K, b2) =
d∏
i=1

[viT, viT + εi]

for all sufficiently large T . Consider the box
∏d
i=1[0, εi]. Let F1 ⊂ Rd (resp.

F2 ⊂ Rd) denote the union of the faces of the box not containing (resp.
containing) the origin in Rd. Then it suffices to choose the truncated tubes
so that (see Fig. 4 for an illustration of the d = 2 case)

TT (v,K, b1) = [0, T ]v + F1; TT (v,K, b2) = [0, T ]v + F2.

Equivalently, we need to choose K, b1 and b2 so that

{b1(u)v + u : u ∈ K} = F1; {b2(u)v + u : u ∈ K} = F2.

Noting that Rd = Rv ⊕ kerψv, it suffices to check that for each i = 1, 2, the
following holds:

(1) if w,w′ ∈ Fi and w ̸= w′, then w − w′ /∈ Rv;
(2) F1 and F2 have the same image under the projection Rv⊕ kerψv →

kerψv.

For (1), suppose that w = (w1, . . . , wd), w
′ = (w′

1, . . . , w
′
d) ∈ Fi with w ̸= w′.

If w and w′ are in the same face of the box, then there exists 1 ≤ j ≤ d
such that wj = w′

j . Then wj − w′
j = 0 and hence w − w′ cannot be parallel

to v ∈ (0,∞)d. Suppose w and w′ are in different faces. If w,w′ ∈ F1,
then there exist 1 ≤ j, k ≤ d with j ̸= k such that wj = vjεj > w′

j and
w′
k = vkεk > wk. Then wj −w′

j > 0 > wk −w′
k so w−w′ cannot be parallel

to v. If w,w′ ∈ F2, then there exist 1 ≤ j, k ≤ d with j ̸= k such that
wj = 0 < w′

j and w′
k = 0 < wk. Then wj − w′

j < 0 < wk − w′
k so w − w′

cannot be parallel to v. This establishes (1). For (2), note that since v is not
parallel to the faces of the box, any affine line parallel to v that intersects
F1 ∪ F2 − F1 ∩ F2, must do so at exactly two points which cannot lie in the
same Fi by (1). This establishes (2).

Let δρ = ψΓρ . Recall from Section 2 that Mρi(Γ) = Mi since Gi is rank
one for each i = 1, . . . , d. Applying Theorem 4.2 to each tube TT (v,K, bi),
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we have as T → ∞

#{[γ] ∈ [Γ] : λ(ρ(γ)) ∈ TT (v,K, bi), m(ρ(γ)) ∈
d∏
i=1

Θi}

∼ Ci
eδρ(v)T

T (d−1)/2

d∏
i=1

VolMi(Θi)

where δρ(v) = ψΓρ(v) and Ci = κv
ψΓρ (v)[M :MΓ]

∫
K e

δρ(v)bi(u) du for i = 1, 2. Note
that by construction, b1 > b2 and hence C1 > C2. Then taking the difference
gives

#{ρ(γ) ∈ [Γρ] : λ(ρ(γ)) ∈
d∏
i=1

[viT, viT + εi], m(ρ(γ)) ∈
d∏
i=1

Θi}

∼ (C1 − C2)
eδρ(v)T

T (d−1)/2

d∏
i=1

VolMi(Θi).

The upper bounds (7.2) and (7.3) are direct consequences of [19, Theorem 1.4
and Corollary 1.6] since δρ = ψΓρ . This completes the proof of Theorem 7.1
with c = C1 − C2.

Now we prove Theorem 7.2. For each i = 1, . . . , d, we have di(ρi(γ)qi, qi) =
∥µ(ρi(γ))∥. Let

µ(ρ(γ)) = (d1(ρ1(γ)q1, q1), . . . , dd(ρi(γ)qd, qd)).

We are now interested in the asymptotic of

#{ρ(γ) ∈ Γρ : µ(ρ(γ)) ∈
d∏
i=1

[viT, viT + εi]}.

ℓρ2(γ)

ℓρ1(γ)

slope = mρ

slope = Mρ

slope = v2/v1

v2T

v2T + ε2

v1T v1T + ε1

TT (v,K, b1)

ℓρ2(γ)

ℓρ1(γ)

slope = mρ

slope = Mρ

slope = v2/v1

v2T

v2T + ε2

v1T v1T + ε1

TT (v,K, b2)

Figure 4
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Applying Corollary 6.2 to the truncated tubes TT (v,K, b1) and TT (v,K, b2)
as above, we obtain

#{ρ(γ) ∈ Γρ : µ(ρ(γ)) ∈
d∏
i=1

[viT, viT+εi]} ∼ c
|mXv |

eδρ(v)T

T (d−1)/2

d∏
i=1

VolMi(Θi).

This finishes the proof of Theorem 7.2 with c′ = 1
|mXv |

.

Correlation entropy rigidity. In view of Theorem 7.1 on the correlations
of length spectra, we define a correlation entropy function for a general d-
tuple of faithful representations ρ = (ρ1, . . . , ρd) : Γ → G1 × · · · × Gd of a
group Γ.

Definition 7.4 (Correlation entropy function). For any d-tuple of discrete
faithful representations ρ = (ρ1, . . . , ρd) : Γ → G1 × · · · × Gd of a group Γ,
define the correlation entropy function δρ : Rd → [−∞,∞] as follows. Given
v = (v1, . . . , vd) ∈ Rd, define

δρ(v) = lim inf
maxi εi→0+

δρ(v, ε1, . . . , εd)

where δρ(v, ε1, . . . , εd) is given by

lim inf
T→∞

1
T log#{[γ] ∈ [Γ] : ρi(γ) loxodromic, viT ≤ ℓρi(γ) ≤ viT + εi

for all i = 1, . . . , d}.

In the previous section, we have seen that for a d-tuple ρ = (ρ1, . . . , ρd) :
Γ → G1× · · ·×Gd of faithful representations of a finitely generated group Γ
whose images are Zariski dense convex cocompact subgroups, the correlation
entropy δρ(v) is positive on intLρ when ρ1, . . . , ρd are independent from each
other Theorem 7.1. When ρ1, . . . , ρd are not independent from each other,
we observed that Lρ has empty interior and moreover, δρ = −∞ on Rd − Lρ,
so the set {v ∈ Rd : δρ(v) > 0} has empty interior.

This phenomenon in fact holds without the convex cocompact assumption:

Corollary 7.5 (Correlation entropy rigidity). Suppose ρ = (ρ1, . . . , ρd) :
Γ → G1 × · · · × Gd is a d-tuple of discrete faithful representations of a
countable group Γ with Zariski dense image. If ρ1, . . . , ρd are independent
from each other, then the interior of the set {v ∈ Rd : δρ(v) > 0} is a non-
empty convex cone. Otherwise, the set {v ∈ Rd : δρ(v) > 0} has empty
interior.

Proof. Corollary 7.5 can be deduced from Theorem 7.1 as follows. Using
the same notation as in the previous subsection but without the convex
cocompact assumption on the representations ρ1, . . . , ρd, we can still consider
the self-joining Γρ. Note that if v ∈ Rd−LΓρ , then clearly, δρ(v, ε1, . . . , εd) =
−∞ for all ε1, . . . , εd > 0.

Suppose ρ1, . . . , ρd are independent from each other. Then Γρ is Zariski
dense and the limit cone LΓρ has non-empty interior. Let v = (v1, . . . , vd) ∈
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intLΓρ . By [1, Proposition 4.3], there exists a Zariski dense Schottky sub-
group Γ′ < Γρ such that v ∈ intLΓ′ . Moreover, Γ′ is Anosov (cf. [10, Lemma
7.2]). Then as in the proof of Theorem 7.1, we have

0 < ψΓ′(v) = lim
T→∞

1
T log#{[γ′] ∈ [Γ′] : λ(γ′) ∈ Rv +

d∏
i=1

[0, εi], ∥λ(γ′)∥ ≤ T}

≤ lim
T→∞

1
T log#{[ρ(γ)] ∈ [Γρ] : λ(ρ(γ)) ∈ Rv +

d∏
i=1

[0, εi], ∥λ(ρ(γ))∥ ≤ T}

Taking the infimum over εi → 0, we get 0 < ψΓ′(v) ≤ δρ(v). Hence we
conclude that

int{v ∈ Rd : δρ(v) > 0} = intLΓρ .

If ρ1, . . . , ρd are not independent from each other, then LΓρ is contained
in a strictly lower dimensional subspace of Rd. This implies that {v ∈ Rd :
δρ(v) > 0} ⊂ LΓρ has empty interior. □

8. Growth indicators using Jordan projections and tubes

Let Γ < G be a Zariski dense Anosov subgroup. In this section, we prove
Theorem 8.1 which gives equivalent definitions of the growth indicator ψΓ,
except possibly on the boundary of L, using Jordan projections or Cartan
projections and cones or tubes. From Theorem 8.1, we deduce Corollary 8.3
on the positivity of the exponential growth of Jordan and Cartan projections
in essential tubes for general Zariski dense subgroups. Recall the definitions
of ψtubes

Γ , htubesΓ and hconesΓ in (1.8).

Theorem 8.1. For any Zariski dense Anosov subgroup Γ < G,

ψΓ = ψtubes
Γ = htubesΓ = hconesΓ on a+ − ∂L

and
ψΓ = ψtubes

Γ ≤ htubesΓ ≤ hconesΓ on ∂L. (8.1)

Proof. Recall that ψΓ, ψ
tubes
Γ , htubesΓ , hconesΓ are equal to −∞ on a+ − L and

they are degree one homogeneous functions. Then it suffices to consider a
unit vector v ∈ intL. By [33, Theorem 3.1.1], since ψΓ(v) > 0,

ψΓ(v) = inf
open cones C ∋ v

lim sup
T→∞

1
T log#{γ ∈ Γ : µ(γ) ∈ C, ∥µ(γ)∥ ≤ T}.

By Theorem 1.4 and Theorem 1.5, for any essential tube T of direction v,
we have

lim
T→∞

1
T log#{γ ∈ Γ : µ(γ) ∈ T, ∥µ(γ)∥ ≤ T}

= lim
T→∞

1
T log#{[γ] ∈ [Γ] : λ(γ) ∈ T, ∥λ(γ)∥ ≤ T}

= ψΓ(v) > 0.

This implies that the first two quantities are equal to ψtubes
Γ (v) and htubesΓ (v)

respectively, and that ψΓ(v) = ψtubes
Γ (v) = htubesΓ (v).
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It remains to show that ψΓ(v) = hconesΓ (v). We will use the fact that the
definition of hconesΓ is independent of the choice of norm ∥·∥. We consider the
more convenient norm N : a → [0,∞) which is induced by the inner product
for which v and kerψv are orthogonal to each other and satisfies N(v) = 1.
This norm N has the property that v is the maximal growth direction in the
sense that ψΓ(v) = maxN(w)=1 ψΓ(w). To see this, suppose w ∈ a+ such that
N(w) = 1. Then we can write w = tv + u with t ∈ T, u ∈ kerψv such that
t2 + N(u)2 = 1. Then ψΓ(w) = ψΓ(tv + u) ≤ ψv(tv + u) = tψv(v) and the
maximum is achieved when t = 1 and u = 0, proving the claim. Therefore
[5, Corollary 7.8] implies that for any open cone C with v ∈ C,

lim
T→∞

1
T log#{[γ] ∈ [Γ] : N(λ(γ)) ≤ T, λ(γ) ∈ C} = ψΓ(v).

Hence it follows that hconesΓ (v) = ψΓ(v).
Recall that ψΓ is upper-semicontinuous, and concave. It can be checked

directly using the definitions that the other functions ψtubes
Γ , hconesΓ and htubesΓ

are all upper-semicontinuous. We can then deduce from Theorem 8.1 that
ψΓ(v) ≤ min{ψtubes

Γ (v), hconesΓ (v), htubesΓ (v)} for all v ∈ ∂L. To see this, let
v ∈ ∂L. Choose any v0 ∈ intL. Let φ denote any of ψtubes

Γ , hconesΓ , and
htubesΓ . By the concavity of ψΓ and Theorem 8.1, we have for all 0 < t < 1,

tψΓ(v0) + (1− t)ψΓ(v) ≤ ψΓ(tv0 + (1− t)v) = φ(tv0 + (1− t)v).

By taking t→ 0+ and the upper-semicontinuity of φ, we get ψΓ(v) ≤ φ(v),
proving claim. Since ψtubes

Γ ≤ ψΓ, it follows that ψtubes
Γ = ψΓ. Finally, since

hconesΓ ≥ htubesΓ by definition, this finishes the proof. □

Remark 8.2. It is likely that hconesΓ ≤ ψΓ for any Zariski dense discrete
subgroup which would then imply the equalities on ∂L in (8.1).

Exponential growth of Jordan and Cartan projections in tubes.
Theorem 8.1 now implies the positivity of the exponential growth rates of
both Jordan and Cartan projections in either tubes or cones for general
Zariski dense subgroups:

Corollary 8.3. For any Zariski dense discrete subgroup Γ < G, we have

ψtubes
Γ , htubesΓ , hconesΓ > 0 on intL.

Proof. Let v ∈ intL. By [1, Proposition 4.3], there exists a Zariski dense
Schottky subgroup Γ′ < Γ such that v ∈ intLΓ′ . In particular, Γ′ is Anosov.
Applying Theorem 8.1 to Γ′, we have hconesΓ′ (v), htubesΓ′ (v) and ψtubes

Γ′ (v) are
all equal to ψΓ′(v), which is positive, but since Γ′ < Γ this shows that ψΓ′(v)
is a lower bound for hconesΓ (v), htubesΓ (v) and ψtubes

Γ (v). □

This positivity result in the above corollary also implies that for all unit
vector v ∈ intL, we have

ψtubes
Γ (v) = inf

open tubes T ∋ v
lim sup
T→∞

1
T log#{γ ∈ Γ : µ(γ) ∈ T, ∥µ(γ)∥ ≤ T};
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htubesΓ (v) = inf
open tubes T ∋ v

lim sup
T→∞

1
T log#{[γ] ∈ [Γ] : λ(γ) ∈ T, ∥λ(γ)∥ ≤ T};

hconesΓ (v) = inf
open cones C ∋ v

lim sup
T→∞

1
T log#{[γ] ∈ [Γ] : λ(γ) ∈ C, ∥λ(γ)∥ ≤ T}.
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