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Abstract. We present a topological proof of the following theorem
of Benoist-Quint: for a finitely generated non-elementary discrete sub-
group Γ1 of PSL(2,R) with no parabolics, and for a cocompact lattice
Γ2 of PSL(2,R), any Γ1 orbit on Γ2\PSL(2,R) is either finite or dense.

1. Introduction

Let Γ1 be a non-elementary finitely generated discrete subgroup with no
parabolic elements of PSL(2,R). Let Γ2 be a cocompact lattice in PSL(2,R).
The following is the first non-trivial case of a theorem of Benoist-Quint [1].

Theorem 1.1. Any Γ1-orbit on Γ2\PSL(2,R) is either finite or dense.

The proof of Benoist-Quint is quite involved even in the case as simple as
above and in particular uses their classification of stationary measures [2].
The aim of this note is to present a short, and rather elementary proof.

We will deduce Theorem 1.1 from the following Theorem 1.2. Let

• H1 = H2 := PSL(2,R) and G := H1 ×H2;
• H := {(h, h) : h ∈ PSL2(R)} and Γ := Γ1 × Γ2.

Theorem 1.2. For any x ∈ Γ\G, the orbit xH is either closed or dense.

Our proof of Theorem 1.2 is purely topological, and inspired by the re-
cent work of McMullen, Mohammadi and Oh [5] where the orbit closures
of the PSL(2,R) action on Γ0\PSL(2,C) are classified for certain Kleinian
subgroups Γ0 of infinite co-volume. While the proof of Theorem 1.2 follows
closely the sections 8-9 of [5], the arguments in this paper are simpler be-
cause of the assumption that Γ2 is cocompact. We remark that the approach
of [5] and hence of this paper is somewhat modeled after Margulis’s original
proof of Oppenheim conjecture [4]. When Γ1 is cocompact as well, Theorem
1.2 also follows from [6].

2. Horocyclic flow on convex cocompact surfaces

In this section we prove a few preliminary facts about unipo-
tent dynamics involving only one factor H1.
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We recall that Γ1 is a non-elementary finitely generated discrete subgroup
with no parabolic elements of the group H1 = PSL2(R), that is, Γ1 is a
convex cocompact subgroup. We will identify the boundary of the hyperbolic
plane H2 := {z ∈ C : Im z > 0} with the extended real line ∂H2 = R ∪ {∞}
which is topologically a circle. Let S1 denote the hyperbolic orbifold Γ1\H2,
and let ΛΓ1 ⊂ ∂H2 be the limit set of Γ1. Let A1 and U1 be the subgroups
of H1 given by

A1 := {at =

(
et/2 0

0 e−t/2

)
: t ∈ R} and U1 := {ut =

(
1 t
0 1

)
: t ∈ R}.

The set

ΩΓ1 = {x ∈ Γ1\H1 : xA1 is bounded}. (2.1)

is called the renormalized frame bundle of Γ1. As Γ1 is a convex cocompact
subgroup, ΩΓ1 is a compact A1-invariant subset and one has the equality

ΩΓ1 = {[h] ∈ Γ1\H1 : h(0), h(∞) ∈ ΛΓ1}.

The image of ΩΓ1 in S1 under the map h 7→ h(i) is equal to the convex core
of S1.

Definition 2.2. Let K > 1. A subset I ⊂ R is called K-thick if, for any
t > 0, I meets [−Kt,−t] ∪ [t,Kt].

Lemma 2.3. There exists K > 1 such that for any x ∈ ΩΓ1, the subset
I(x) := {t ∈ R : xut ∈ ΩΓ1} is K-thick.

Proof. Using an isometry, we may assume without loss of generality that x =
[e] where e corresponds to a downward unit vector at i in the identification
of PSL2(R) and T1(H2). As x ∈ ΩΓ1 , both points 0 and ∞ belong to
the limit set ΛΓ1 . Since ut(∞) = ∞ and ut(0) = t, one has the equality
I(x) = {t ∈ R : t ∈ ΛΓ1}. Write R − ΛΓ1 as the union ∪J` where J`’s
are maximal open intervals. Note that the minimum distance between the
convex hulls

δ := inf
`6=m

d(hull(J`), hull(Jm))

is positive, as 2δ is the length of the shortest closed geodesic of the double
of the core of S1. Choose the constant K > 1 so that for t > 0, one has

d(hull[−Kt,−t],hull[t,Kt]) = δ/2.

Note that this choice of K is independent of t. If I(x) does not intersect
[−Kt,−t] ∪ [t,Kt] for some t > 0, then the intervals [−Kt,−t] and [t,Kt]
must belong to two distinct intervals J` and Jm, since 0 ∈ ΛΓ1 . This con-
tradicts to the choice of K. �

Lemma 2.4. Let K > 1 and let I be a K-thick subset of R. For any
sequence hn in H1 rU1 converging to e, there exists a sequence tn ∈ I such
that the sequence u−tnhnutn has a non-trivial limit point in U1.
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Proof. Write hn =

(
an bn
cn dn

)
. We compute

qn := u−tnhnutn =

(
an − cntn (an − dn − cntn)tn + bn

cn dn + cntn

)
.

Since hn does not belong to U1, it follows that the (1, 2)-entries Pn :=
(an−dn− cntn)tn + bn are non-constant polynomials in tn of degree at most
2 whose coefficients converge to 0. Hence we can choose tn ∈ I going to ∞
so that 1 ≤ |Pn| ≤ k, for some positive constant k depending only on K.
Then the product cntn must converge to 0 and the sequence qn has a limit
point in U1 − {e}. �

Lemma 2.5. Let U+
1 be the semigroup {ut : t ≥ 0}. If Γ1 is cocompact, any

U+
1 -orbit is dense in Γ1\H1.

Proof. Consider xU+
1 for x ∈ Γ1\H1. Set xn := xun. We then have

xnu−nU
+
1 ⊂ xU+

1 . Hence if z is a limit point of the sequence xn, we have

zU ⊂ xU+
1 . By Hedlund’s theorem [3], zU is dense, proving the claim. �

3. Proof of Theorems 1.1 and 1.2

In this section, using minimal sets and unipotent dynamics
on the product space Γ\G, we provide a proof of Theorem
1.2.

3.1. Unipotent dynamics. We recall the notationG := PSL2(R)×PSL2(R)
and Γ := Γ1 × Γ2. Set

• H1 = {(h, e)}, H2 = {(e, h)}, H = {(h, h)};
• U1 = {(ut, e)}, U2 = {(e, ut)}, U = {(ut, ut)};
• A1 = {(at, e)}, A2 = {(e, at)}, A = {(at, at)};
• X1 = Γ1\H1, X2 = Γ2\H2, X = Γ\G = X1 ×X2.

Recall that Γ1 is a non-elementary finitely generated discrete subgroup of
H1 with no parabolic elements and that Γ2 is a cocompact lattice in H2,

For simplicity, we write ũt for (ut, ut) and ãt for (at, at). Note that the
normalizer of U in G is AU1U2.

Lemma 3.1. Let gn be a sequence in G r AU1U2 converging to e, and let
I be a K-thick subset of R for some K > 1. Then for any neighborhood G0

of e in G, there exist sequences sn ∈ I and tn ∈ R such that the sequence
ũ−sngnũtn has a non-trivial limit point q ∈ AU2 ∩G0.

Proof. Fix ε > 0. Write gn = (g
(1)
n , g

(2)
n ) with g

(i)
n =

(
a

(i)
n b

(i)
n

c
(i)
n d

(i)
n

)
. Then the

products qn := ũ−sngnũtn are given by

q(i)
n = u−sng

(i)
n utn =

(
a

(i)
n − c(i)

n sn (b
(i)
n − d(i)

n sn)− tn(c
(i)
n sn − a(i)

n )

c
(i)
n d

(i)
n + c

(i)
n tn

)
.
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Set tn = b
(1)
n −d

(1)
n sn

c
(1)
n sn−a(1)n

. The differences qn − e are now rational functions in

sn of the form qn − e = 1

c
(1)
n sn−a(1)n

Pn, where Pn is a polynomial in sn of

degree at most 2 with values in M2(R) ×M2(R). Since the elements gn do
not belong to AU1U2, these polynomials Pn are non-constants. Hence we
can choose sn ∈ I going to ∞ so that ε ≤ ‖Pn‖ ≤ kε for some constant
k > 1 depending only on K. We can also simultaneously impose that the

denominator satisfy 1/2 ≤ |c(1)
n sn − a(1)

n | ≤ k so that ε/k ≤ ‖qn − e‖ ≤ 2kε.
By construction, when ε is small enough, the sequence qn has a non trivial
limit point q in A1A2U2 ∩G0.

We claim that this limit q = (q(1), q(2)) belongs to the group AU2. It

suffices to check that the diagonal entries of q(1) and q(2) are equal. If not,

the two sequences c
(i)
n sn converge to real numbers c(i) with c(1) 6= c(2), and

a simple calculation shows that the (1, 2)- entries of q
(2)
n are comparable to

c(2)−c(1)
1−c(1) sn which tends to ∞. Contradiction. Hence q belongs to AU2. �

3.2. H-minimal and U-minimal subsets. Let

Ω := ΩΓ1 ×X2

where ΩΓ1 is the renormalized frame bundle of Γ1 as in (2.1). Note that,
since Γ2 is cocompact, the renormalized frame bundle of Γ2 is ΩΓ2 = X2.

Let x = (x1, x2) ∈ Γ\G and consider the orbit xH. Note that xH in-
tersects Ω non-trivially. Let Y be an H-minimal subset of the closure xH
with respect to Ω, i.e., Y is a closed H-invariant subset of xH such that
Y ∩ Ω 6= ∅ and the orbit yH is dense in Y for any y ∈ Y ∩ Ω. Since any
H orbit intersects Ω, it follows that yH is dense in Y for any y ∈ Y . Let
Z be a U -minimal subset of Y with respect to Ω. Since Ω is compact, such
minimal sets Y and Z exist. Set

Y ∗ = Y ∩ Ω and Z∗ = Z ∩ Ω.

In the following, we assume that

the orbit xH is not closed

and aim to show that xH is dense in X.

Lemma 3.2. For any y ∈ Y , the identity element e is an accumulation
point of the set {g ∈ GrH : yg ∈ xH}.
Proof. If y does not belong to xH, there exists a sequence hn ∈ H such that
xhn converges to y. Hence there exists a sequence gn ∈ G converging to e
such that xhn = ygn. These elements gn do not belong to H; hence proving
the claim.

Suppose now that y belongs to xH. If the claim does not hold, then for a
sufficiently small neighborhood G0 of e in G, the set yG0 ∩ Y is included in
the orbit yH. This implies that the orbit yH is an open subset of Y . The
minimality of Y implies that Y = yH, contradicting the assumption that
the orbit yH is not closed. �
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Lemma 3.3. There exists a non-trivial element v ∈ U2 such that Zv ⊂ xH.

Proof. Choose a point z = (z1, z2) ∈ Z∗. By Lemma 3.2, there exists a
sequence gn in GrH converging to e such that zgn ∈ xH. We may assume
without loss of generality that gn belongs to H2. If gn belongs to U2 for
some n, the Lemma follows. Suppose that gn does not belong to U2. Then,
since the set I(z1) is K-thick for some K > 1 by Lemma 2.3, it follows from
Lemma 2.4 that there exist a sequence tn → ∞ in I(z2) such that, after
extraction, the products ũ−tngnũtn converge to non-trivial element v ∈ U2.

Since the points zũtn belong to Ω, this sequence has a limit point z′ ∈ Z∗.
Since one has the equality

z′v = lim
n→∞

zũtn(ũ−tngnũtn)

the point z′v belongs to xH. Since v commutes with U and Z is U -minimal
with respect to Ω, one has the equality Zv = z′vU , hence the set Zv is
included in xH. �

Lemma 3.4. For any z ∈ Z∗, there exists a sequence gn in GrU converging
to e such that zgn ∈ Z.

Proof. Since the group Γ2 is cocompact, it does not contain unipotent ele-
ments and hence the orbit zU is not compact. Since the orbit zU is recurrent
in Z∗, the set Z∗rzU contains at least one point. Call it z′. Since the orbit
z′U is dense in Z, there exists a sequence ũtn ∈ U such that z = lim z′ũtn .
Hence one can write z′ũtn = zgn with gn in Gr U converging to e. �

Proposition 3.5. There exists a one-parameter semi-group L+ ⊂ AU2 such
that ZL+ ⊂ Z.

Proof. It suffices to find, for any neighborhood G0 of e, a non-trivial element
q in AU2 ∩G0 such that the set Zq is included in Z; then writing q = expw
for an element w of the Lie algebra of G, we can take L+ to be the semigroup
{exp(sw∞) : s ≥ 0} where w∞ is a limit point of the elements w

‖w‖ when the

diameter of G0 shrinks to 0.
Fix a point z = (z1, z2) ∈ Z∗. According to Lemma 3.4 there exists a

sequence gn ∈ Gr U converging to e such that zgn ∈ Z.
Suppose first that gn belongs to AU1U2 for infinitely many n; then one

can find ũtn ∈ U such that the product qn := gnũtn belongs to AU2 and is
non-trivial, and zqn belongs to Z. Hence, since qn normalizes U and since
Z is U -minimal with respect to Ω, the set Zqn is included in Z.

Now suppose that gn is not in AU1U2. By Lemmas 2.3 and 3.1, there exist
sequences sn ∈ I(z1) and tn ∈ R such that, after passing to a subsequence,
the products ũ−sngnũtn converge to a non-trivial element q ∈ AU2 ∩ G0.
Since the elements zũtn belong to Z∗, they have a limit point z′ ∈ Z∗. Since
we have

z′q = lim
n→∞

zũsn(ũ−sngnũtn)
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the element z′q belongs to Z. As q normalizes U , it follows that Zq is
contained in Z. �

Proposition 3.6. There exist an element z ∈ xH and a one-parameter
semi-group U+

2 ⊂ U2 such that zU+
2 ⊂ xH.

Proof. By Proposition 3.5 there exists a one-parameter semigroup L+ ⊂ AU2

such that ZL+ ⊂ Z. This semigroup L+ is equal to one of the following:
U+

2 , A+ or v−1
0 A+v0 for some non-trivial element v0 ∈ U2, where U+

2 and
A+ are one-parameter semigroups of U2 and A respectively.

When L+ = U+
2 , our claim is proved.

Suppose now L+ = A+. By Lemma 3.3 there exists a non-trivial element
v ∈ U2 such that Zv ⊂ xH. Then one has the inclusions

ZA+vA ⊂ ZvA ⊂ xHA ⊂ xH.

Choose a point z′ ∈ Z∗ and a sequence ãtn ∈ A+ going to ∞. Since z′ãtn
belong to Ω, after passing to a subsequence, the sequence z′ãtn converges to
a point z ∈ xH ∩Ω. Moreover, since the Hausdorff limit of the sets ã−tnA

+

is A, one has the inclusions

zAvA ⊂ lim
n→∞

z′ãtn(ã−tnA
+)vA = z′A+vA ⊂ xH.

Now by a simple computation, we can check that the set AvA contains a
one-parameter semigroup U+

2 of U2, and hence the orbit zU+
2 is included in

xH as desired.
Suppose finally L+ = v−1

0 A+v0 for some v0 ∈ U2. We can assume without
loss of generality that A+ = {ãεt : t ≥ 0} where ε = ±1 and that v0 =
(e, u1). A simple computation shows that the set v−1

0 A+v0A contains the
set U ′2 := {(e, uεt) : 0 ≤ t ≤ 1}. Hence one has the inclusions

ZU ′2 ⊂ Zv−1
0 A+v0A ⊂ ZA ⊂ xH.

Choose a point z′ ∈ Z∗ and let z ∈ xH be a limit of a sequence z′ã−tn
with tn going to +∞. Since the Hausdorff limit of the sets ãtnU

′
2ã−tn is the

semigroup U+
2 := {(e, uεt) : t ≥ 0}, one has the inclusions

zU+
2 ⊂ lim

n→∞
(z′ã−tn)ãtnU

′
2ã−tn ⊂ ZU ′2A ⊂ xH. �

3.3. Conclusion.

Proof of Theorem 1.2. Suppose that the orbit xH is not closed. By Propo-
sition 3.6, the orbit closure xH contains an orbit zU+

2 of a one-parameter
subsemigroup of U2. Since Γ2 is cocompact in H2, by Lemma 2.5, this orbit
zU+

2 is dense in zH2. Hence we have the inclusions

X = zG = zH2H ⊂ HzU+
2 ⊂ xH.

This proves the claim. �
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Proof of Theorem 1.1. Let x = [g] be a point of X2 = Γ2\H2. By replacing
Γ1 by g−1Γ1g, we may assume without loss of generality that g = e. One
deduces Theorem 1.1 from Theorem 1.2 thanks to the following equivalences:
The orbit [e]H is closed (resp. dense) in Γ\G ⇐⇒
The orbit Γ[e] is closed (resp. dense) in G/H ⇐⇒
The product Γ2Γ1 is closed (resp. dense) in PSL2(R) ⇐⇒
The orbit [e]Γ1 is closed (resp. dense) in Γ2\PSL2(R). �
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