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Abstract. We present a quantitative isolation property of the lifts of
properly immersed geodesic planes in the frame bundle of a geometri-
cally finite hyperbolic 3-manifold. Our estimates are polynomials in the
tight areas and Bowen-Margulis-Sullivan densities of geodesic planes,
with degree given by the modified critical exponents.
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1. Introduction

LetH3 denote the hyperbolic 3-space, and letG := PSL2(C), which can be
identified with the group Isom+(H3) of all orientation preserving isometries
of H3. Any complete orientable hyperbolic 3-manifold can be presented as
a quotient M = Γ\H3 where Γ is a torsion-free discrete subgroup of G. An
oriented geodesic plane in M is the image of a totally geodesic immersion
of the hyperbolic plane H2 ⊂ H3 equipped with an orientation under the
quotient map H3 → Γ\H3. In this paper, all geodesic planes are assumed to
be oriented. Set X := Γ\G. Via the identification of X with the oriented
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frame bundle FM , a geodesic plane in M arises as the image of a unique
PSL2(R)-orbit under the base point projection map

π : X ≃ FM →M.

Moreover a properly immersed geodesic plane in M corresponds to a closed
PSL2(R)-orbit in X.

Setting H := PSL2(R), the main goal of this paper is to obtain a quan-
titative isolation result for closed H-orbits in X when Γ is a geometrically
finite group. Fix a left invariant Riemannian metric on G, which projects to
the hyperbolic metric on H3. This induces the distance d on X so that the
canonical projection G → X is a local isometry. We use this Riemannian
structure on G to define the volume of a closed H-orbit in X. For a closed
subset S ⊂ X and ε > 0, B(S, ε) denotes the ε-neighborhood of S.

The case when M is compact. We first state the result for compact
hyperbolic 3-manifolds. In this case, Ratner [24] and Shah [28] indepen-
dently showed that every H-orbit is either compact or dense in X. More-
over, there are only countably many compact H-orbits in X. Mozes and
Shah [22] proved that an infinite sequence of compact H-orbits becomes
equidistributed in X. Our questions concern the following quantitative iso-
lation property: for given compact H-orbits Y and Z in X,

(1) How close can Y approach Z?
(2) Given ε > 0, what portion of Y enters into the ε-neighborhood of

Z?

It turns out that volumes of compact orbits are the only complexity which
measures their quantitative isolation property. The following theorem was
proved by Margulis in an unpublished note:

Theorem 1.1 (Margulis). Let Γ be a cocompact lattice in G. For every
1/3 ≤ s < 1, the following hold for any compact H-orbits Y ̸= Z in X:

(1)

d(Y,Z) ≫ α−4/s
s ·Vol(Y )−1/sVol(Z)−1/s

where αs = ( 1
1−s)

1/(1−s).

(2) For all 0 < ε < 1,

mY (Y ∩B(Z, ε)) ≪ α4
s · εs ·Vol(Z)

where mY denotes the H-invariant probability measure on Y .

In both statements, the implied constants depend only on the injectivity ra-
dius of Γ\G (see (11.9) and (11.10) for more details).

Remark 1.2. (1) By recent works ([17], [2]), there may be infinitely
many compact H-orbits only when Γ is an arithmetic lattice.

(2) Theorem 1.1 for some exponent s is proved in [10, Lemma 10.3]. The
proof in [10] is based on the effective ergodic theorem which relies on
the arithmeticity of Γ via uniform spectral gap on compact H-orbits;
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the exponent s obtained in their approach however is much smaller
than 1.

(3) Margulis’ proof does not rely on the arithmeticity of Γ and is based
on the construction of a certain function on Y which measures the
distance d(y, Z) for y ∈ Y (cf. (1.14)). A similar function appeared
first in the work of Eskin, Mozes and Margulis in the study of a
quantitative version of the Oppenheim conjecture [12], and later in
several other works (e.g., [11], [4], and [13]).

General geometrically finite case. We now consider a general hyperbolic
3-manifoldM = Γ\H3. Denote by Λ ⊂ ∂H3 the limit set of Γ and by coreM
the convex core of M , i.e.,

coreM = Γ\hull Λ ⊂M

where hull Λ ⊂ H3 denotes the convex hull of Λ. In the rest of the introduc-
tion, we assume thatM is geometrically finite, that is, the unit neighborhood
of coreM has finite volume.

Let Y ⊂ X be a closed H-orbit and SY = ∆Y \H2 be the associated
hyperbolic surface, where ∆Y < H is the stabilizer in H of a point in Y .
We assume that Y is non-elementary, that is, ∆Y is not virtually cyclic;
otherwise, we cannot expect an isolation phenomenon for Y , as there is a
continuous family of parallel elementary closed H-orbits in general when M
is of infinite volume. It is known that SY is always geometrically finite [23,
Thm. 4.7].

Let 0 < δ(Y ) ≤ 1 denote the critical exponent of SY , i.e., the abscissa of

the convergence of the series
∑

γ∈∆Y
e−sd(o,γ(o)) for some o ∈ H2. We define

the following modified critical exponent of Y :

(1.3) δY :=

{
δ(Y ) if SY has no cusp

2δ(Y )− 1 otherwise;

note that 0 < δY ≤ δ(Y ) ≤ 1, and δY = 1 if and only if SY has finite area.
In generalizing Theorem 1.1(1), we first observe that the distance d(Y,Z)

between two closed H-orbits Y,Z may be zero, e.g., if they both have cusps
going into the same cuspidal end of X. To remedy this issue, we use the
thick-thin decomposition of coreM . For p ∈ M , we denote by inj p the
injectivity radius at p. For all ε > 0, the ε-thick part

(1.4) (coreM)ε := {p ∈ coreM : inj p ≥ ε}

is compact, and for all sufficiently small ε > 0, the ε-thin part given by
coreM − (coreM)ε is contained in finitely many disjoint cuspidal ends, i.e.,
images of horoballs in Γ\H3. Let X0 ⊂ X denote the renormalized frame
bundle RFM (see (2.1)). Using the fact that the projection of X0 is con-
tained in coreM under π, we define the ε-thick part of X0 as follows:

Xε := {x ∈ X0 : π(x) ∈ (coreM)ε}.
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Figure 1. S ∩N (coreM)

The following theorem extends Theorem 1.1 to all geometrically finite
hyperbolic manifolds:

Theorem 1.5. Let M be a geometrically finite hyperbolic 3-manifold. Let
Y ̸= Z be non-elementary closed H-orbits in X, and denote by mY the
probability Bowen-Margulis-Sullivan measure on Y . For every δY

3 ≤ s < δY
the following hold.

(1) For all 0 < ε≪ 1, we have

(1.6) d(Y ∩Xε, Z) ≫ α
−⋆/s
Y,s ·

(
vY,ε

areat Z

)1/s

where
• vY,ε = miny∈Y ∩Xε mY (BY (y, ε)) where BY (y, ε) is the ε-ball
around y in the induced metric on Y .

• areat Z denotes the tight area of SZ relative to M (Def. 1.7).

• αY,s :=
(

sY
δY −s

)1/(δY −s)
where sY is the shadow constant of Y

(Def. 1.8).
(2) For all 0 < ε≪ 1,

mY (Y ∩B(Z, ε)) ≪ α⋆
Y,s · εs · areat Z.

In both statements, the implied constants and ⋆ depend only on Γ.

Remark.

(1) We give a proof of a more general version of Theorem 1.5(1) where
Z is allowed to be equal to Y (see Corollary 10.5 for a precise state-
ment).

(2) When X has finite volume, we have δY = 1 and mY is H-invariant
so that vY,ε ≍ ε3Vol(Y )−1. Moreover, the tight area areat Z and
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the shadow constant sY are simply the usual area of SZ and a fixed
constant (in fact, the constant can be taken to be 2) respectively.
Therefore Theorem 1.5 recovers Theorem 1.1. Moreover, the expo-
nent ⋆ depends only on G as well; this follows since the proofs of
Theorem 9.18 and theorems in Section 10, of which Theorem 1.5 is
a special case, show that ⋆ depends only on sY , pY and δY , which
are all absolute constants in the finite volume case.

We now give definitions of the tight area areat Z and the shadow constant
sY for a general geometrically finite case; these are new geometric invariants
introduced in this paper.

Definition 1.7 (Tight area of S). For a properly immersed geodesic plane
S of M , the tight-area of S relative to M is given by

areat(S) := area(S ∩N (coreM))

where N (coreM) = {p ∈ M : d(p, q) ≤ inj(q) for some q ∈ coreM} is the
tight neighborhood of coreM .

We show that areat(S) is finite in Theorem 3.3, by proving that S ∩
N (coreM) is contained in the union of a bounded neighborhood of core(S)
and finitely many cusp-like regions (see Fig.1). We remark that the area of
the intersection S ∩B(coreM, 1) is not finite in general.

Definition 1.8 (Shadow constant of Y ). For a closed H-orbit Y in X, let
ΛY ⊂ ∂H2 denote the limit set of ∆Y , {νp : p ∈ H2} the Patterson-Sullivan
density for ∆Y , and Bp(ξ, ε) the ε-neighborhood of ξ ∈ ∂H2 with respect to
the Gromov metric at p. The shadow constant of Y is defined as follows:

(1.9) sY := sup
ξ∈ΛY ,p∈[ξ,ΛY ],0<ε≤1/2

νp(Bp(ξ, ε))
1/δY

ε · νp(Bp(ξ, 1/2))1/δY
,

where [ξ,ΛY ] is the union of all geodesics connecting ξ to a point in ΛY .

We show that sY <∞ in Theorem 4.8.

Remark 1.10. If Y is convex cocompact, then for all 0 < ε < 1, vY,ε ≍
ε1+2δY with the implied constant depending on Y . When Y has a cusp,

Sullivan’s shadow lemma (cf. Proposition 4.11) implies that limε→0
log vY,ε

log ε

does not exist.

A hyperbolic 3-manifold M is called convex cocompact acylindrical if
coreM is a compact manifold with no essential discs or cylinders which
are not boundary parallel. For such a manifold, there exists a uniform pos-
itive lower bound for δ(Y ) = δY for all non-elementary closed H-orbits Y
[20]; therefore the dependence of δY can be removed in Theorem 1.5 if one
is content with taking some s which works uniformly for all such orbits.

Examples of X with infinitely many closed H-orbits are provided by the
following theorem which can be deduced from ([20], [21], [3]):
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Figure 2. IZ(y)

Theorem 1.11. Let M0 be an arithmetic hyperbolic 3-manifold with a prop-
erly immersed geodesic plane. Any geometrically finite acylindrical hyper-
bolic 3-manifoldM which coversM0 contains infinitely many non-elementary
properly immersed geodesic planes.

It is easy to construct examples of M satisfying the hypothesis of this
theorem. For instance, if M0 is an arithmetic hyperbolic 3-manifold with
a properly embedded compact geodesic plane P , M0 is covered by a geo-
metrically finite acylindrical manifold M whose convex core has boundary
isometric to P .

Finally, we mention the following application of Theorem 1.5 in view of
recent interests in related counting problems [8].

Corollary 1.12. Let Vol(M) < ∞, and let N (T ) denote the number of
properly immersed totally geodesic planes P in M of area at most T . Then
for any 1/2 < s < 1, we have

N (T ) ≪s T
(6/s)−1 for all T > 1;

see Corollary 10.7 for a detailed information on the dependence of the im-
plied constant.

We remark that when Vol(M) <∞, the heuristics suggest s = dimG/H =
3 in Theorem 1.5 and hence N (T ) ≪ T in Corollary 1.12. Indeed, when
Γ = PSL2(Z[i]), the asymptotic N (T ) ∼ c ·T , as suggested in [26], has been
obtained by Jung [14] based on subtle number theoretic arguments.

Remark 1.13. We can also obtain an estimate for N (T ) for a general
geometrically finite hyperbolic manifold. By [20] and [3], if Vol(M) = ∞,
there are only finitely many properly immersed geodesic planes of finite area
(note that they are necessarily contained in the convex core of M); hence
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supT N (T ) < ∞. Our methods give that there exists N0 ≥ 1 (depending
only on G) such that for any 1/2 < s < 1, we have

N (T ) ≪s Vol(unit-nbd of coreM) ε−N0
M T

6
s
−1

where the implied constant depends only on s (see Remark 10.11 for details).
Note that this kind of upper bound is meaningful despite the finiteness result
mentioned above, as the implied constant is independent of M .

Discussion on proofs. We discuss some of the main ingredients of the
proof of Theorem 1.5. First consider the case when X = Γ\G is compact
(the account below deviates slightly from Margulis’ original argument). Let
εX be the minimum injectivity radius of points in X. The Lie algebra of G
decomposes as sl2(R)⊕ isl2(R). Hence, for each y ∈ Y , the set

IZ(y) := {v ∈ isl2(R) : 0 < ∥v∥ < εX , y exp(v) ∈ Z}
keeps track of all points of Z ∩ B(y, εX) in the direction transversal to H
(see Fig. 2).

Therefore, the following function fs : Y → [2,∞) (0 < s < 1) encodes the
information on the distance d(y, Z):

(1.14) fs(y) =

{∑
v∈IZ(y) ∥v∥−s if IZ(y) ̸= ∅

ε−s
X otherwise

.

A function of this type is referred to as a Margulis function in the literature.
The proof of Theorem 1.1 is based on the following fact: the average of

fs is controlled by the volume of Z, i.e.,

(1.15) mY (fs) ≪s Vol(Z).

We prove the estimate in (1.15) using the following super-harmonicity
type inequality: for any 1/3 ≤ s < 1, there exist t = ts > 0 and b = bs > 1
such that for all y ∈ Y ,

(1.16) Atfs(y) ≤
1

2
fs(y) + bVol(Z)

where (Atfs)(y) =
∫ 1
0 fs(yurat)dr, ur = ( 1 0

r 1 ), and at =
(

et/2 0
0 e−t/2

)
.

The proof of (1.16) is based on the inequality (11.1), which is essentially
a lemma in linear algebra. We refer to the Appendix (section 11), where a
more or less complete proof of Theorem 1.1 is given.

For a general geometrically finite hyperbolic manifold, many changes are
required, and several technical difficulties arise. In general, there is no posi-
tive lower bound for the injectivity radius on X, and the shadow constant of
Y appears in the linear algebra lemma (Lemma 5.6). These facts force us to
incorporate the height of y as well as the shadow constant of Y in the defini-
tion of the Margulis function (see Def. 9.1). The correct substitutes for the
volume measures on Y and Z turn out to be the Bowen-Margulis-Sullivan
probability measure mY and the tight area of Z respectively.
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It is more common in the existing literature on the subject to define the
operator At using averages over large spheres inH2. Our operator At however
is defined using averages over expanding horocyclic pieces; this choice is more
amenable to the change of variables and iteration arguments for Patterson-
Sullivan measures. Indeed, for a locally bounded Borel function f on Y ∩X0

and for any y ∈ Y ∩X0,

(Atf)(y) =
1

µy([−1, 1])

∫ 1

−1
f(yurat)dµy(r)

where µy is the Patterson-Sullivan measure on yU (see (4.2))
WhenX is compact and hencemY isH-invariant, (1.15) follows by simply

integrating (1.16) with respect to mY . In general, we resort to Lemma 7.3
the proof of which is based on an iterated version of (1.16) for Ant0 , n ∈ N,
for some t0 > 0 as well as on the fact that the Bowen-Margulis-Sullivan
measure mY is at0-ergodic.

In fact, the main technical result of this paper can be summarized as
follows:

Proposition 1.17. Let Γ be a geometrically finite subgroup of G. Let Y ̸= Z
be non-elementary closed H-orbits in X = Γ\G, and set Y0 := Y ∩X0. For

any δY
3 ≤ s < δY , there exist ts > 0 and a locally bounded Borel function

Fs : Y0 → (0,∞) with the following properties:

(1) For all y ∈ Y0,

d(y, Z)−s ≤ s⋆Y Fs(y).

(2) For all y ∈ Y0 and n ≥ 1,

(AntsFs) (y) ≤
1

2n
Fs(y) + α⋆

Y,s areat(SZ).

(3) There exists 1 < σ ≪ s⋆Y such that for all y ∈ Y0 and for all h ∈ H
with ∥h∥ ≥ 2 and yh ∈ Y0,

σ−1Fs(y) ≤ Fs(yh) ≤ σFs(y).

Finally we mention that the reason that we can take the exponent s
arbitrarily close to δY lies in the two ingredients of our proof: firstly, the
linear algebra lemma (Lemma 5.6) is obtained for all δY /3 ≤ s < δY and
secondly, for any y ∈ Y ∩ X0, we can find |r| < 1 so that yur ∈ X0 and
the height of yur can be lowered to be O(1) by the geodesic flow of time
comparable to the logarithmic height of y; see Lemma 8.4 for the precise
statement.

Organization. We end this introduction with an outline of the paper. In
§2, we fix some notation and conventions to be used throughout the paper.
In §3, we show the finiteness of the tight area of a properly immersed geodesic
plane. In §4, we show the finiteness of the shadow constant of a closed H-
orbit. In §5, we prove a lemma from linear algebra; this lemma is a key
ingredient to prove a local version of our main inequality. §6 is devoted to
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the study of the height function in X0. In §7, the definition of the Markov
operator and a basic property of this operator are discussed. In §8, we prove
the return lemma, and use it to obtain a uniform control on the number of
sheets of Z in a neighborhood of y. In §9, we construct the desired Margulis
function and prove the main inequalities. In §10, we give a proof of Theorem
1.5. In the Appendix (§11), we provide a proof of Theorem 1.1.

Acknowledgement. A.M. would like to thank the Institute for Advanced
Study for its hospitality during the fall of 2019 where part this project was
carried out. We would like to thank the referee for a careful reading of our
paper and for making many useful comments.

2. Notation and preliminaries

In this section, we review some definitions and introduce notation which
will be used throughout the paper.

We set G = PSL2(C) ≃ Isom+(H3), and H = PSL2(R). We fix H2 ⊂ H3

with an orientation so that {g ∈ G : g(H2) = H2} = H. Let A denote the
following one-parameter subgroup of G:

A =

{
at =

(
et/2 0

0 e−t/2

)
: t ∈ R

}
.

Set K0 = PSU(2) and M0 the centralizer of A in K0. We fix a point
o ∈ H2 ⊂ H3 and a unit tangent vector vo ∈ To(H3) so that their stabilizer
subgroups are K0 and M0 respectively. The isometric action of G on H3

induces identifications G/K0 = H3, G/M0 = T1H3, and G = FH3 where
T1H3 and FH3 denote, respectively, the unit tangent bundle and the ori-
ented frame bundle over H3. Note also that H ∩ K0 = PSO(2) and that
H(o) = H2.

The right translation action of A on G induces the geodesic/frame flow
on T1H3 and FH3, respectively. Let v±o ∈ ∂H3 denote the forward and
backward end points of the geodesic given by vo. For g ∈ G, we define

g± := g(v±o ) ∈ ∂H3.

Let Γ < G be a discrete torsion-free subgroup. We set

M := Γ\H3 and X := Γ\G ≃ FM.

We denote by π : X → M the base point projection map. Denote by
Λ = Λ(Γ) the limit set of Γ. The convex core of M is given by coreM =
Γ\hull(Λ). Let X0 denote the renormalized frame bundle RFM , i.e.,

(2.1) X0 = {[g] ∈ X : g± ∈ Λ},
that is, X0 is the union of all the A-orbits whose projections to M stay
inside coreM . We remark that X0 does not surject onto coreM in general.

In the whole paper, we assume that Γ is geometrically finite, that is,
the unit neighborhood of coreM has finite volume. This is equivalent to
the condition that Λ is the union of the radial limit points and bounded
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parabolic limit points: Λ = Λrad
⋃
Λbp (cf. [5], [18]). A point ξ ∈ Λ is

called radial if the projection of a geodesic ray toward to ξ accumulates on
M = Γ\H3, parabolic if it is fixed by a parabolic element of Γ, and bounded
parabolic if it is parabolic and StabΓ(ξ) acts co-compactly on Λ − {ξ}. In
particular, for Γ geometrically finite, the set of parabolic limit points Λp is
equal to Λbp. For ξ ∈ Λp, the rank of the free abelian subgroup StabΓ(ξ) is
referred to as the rank of ξ.

A geometrically finite group Γ is called convex cocompact if coreM is
compact, or equivalently, if Λ = Λrad.

We denote by N the expanding horospherical subgroup of G for the action
of A:

N =

{
us =

(
1 0
s 1

)
: s ∈ C

}
.

For ξ ∈ Λp, a horoball h̃ξ ⊂ G based at ξ is of the form

(2.2) h̃ξ(T ) = gNA(−∞,−T ]K0 for some T ≥ 1

where g ∈ G is such that g− = ξ and A(−∞,−T ] = {at : −∞ < t ≤ −T}. Its
image h̃ξ(o) in H3 is called a horoball in H3 based at ξ. By a horoball hξ in

X and in M , we mean their respective images of horoballs h̃ξ and h̃ξ(o) in
X and M under the corresponding projection maps.

Thick-thin decomposition of X0. We fix a Riemannian metric d on G
which induces the hyperbolic metric on H3. By abuse of notation, we use d
to denote the distance function on X induced by d, as well as on M . For
a subset S ⊂ ♠ and ε > 0, B♠(S, ε) denotes the set {x ∈ ♠ : d(x, S) ≤ ε}.
When ♠ is a subgroup of G and S = {e}, we simply write B♠(ε) instead of
B♠(S, ε). When there is no room for confusion for the ambient space ♠, we
omit the subscript ♠.

For p ∈M , we denote by inj p the injectivity radius at p ∈M , that is: the
supremum r > 0 such that the projection map H3 →M = Γ\H3 is injective
on the ball BH3(p̃, r) where p̃ ∈ H3 is such that p = [p̃] = p̃Γ. For S ⊂ M
and ε > 0, we call the subsets {p ∈ S : inj(p) ≥ ε} and {p ∈ S : inj(p) < ε}
the ε-thick part and the ε-thin part of S respectively.

As M is geometrically finite, coreM is contained in a union of its ε-thick
part (coreM)ε and finitely many disjoint horoballs for all small ε > 0 (cf.
[18]). If p = gusa−to is contained in a horoball hξ = gNA(−∞,−T ](o), then

inj(p) ≍ e−t for all t≫ T , this is a standard fact see, e.g., [15, Prop. 5.1].
Let εM > 0 be the supremum of ε with respect to which such a decom-

position of coreM holds. We call the εM -thick part of coreM the compact
core of M , and denote by Mcpt.

For x = [g] ∈ X, we denote by inj(x) the injectivity radius of π(x) ∈ M .
For ε > 0, we set

Xε := {x ∈ X0 : inj(x) ≥ ε}.
We set εX = εM/2; note that X0 −XεX is either empty or is contained

in a union of horoballs in X.
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Figure 3. Chimney

Convention. By an absolute constant, we mean a constant which depends
at most on G and Γ. We will use the notation A ≍ B when the ratio
between the two lies in [C−1, C] for some absolute constant C ≥ 1. We
write A ≪ B⋆ (resp. A ≍ B⋆, A ≪ ⋆B) to mean that A ≤ CBL (resp.
C−1BL ≤ A ≤ CBL, A ≤ C · B) for some absolute constants C > 0 and
L > 0.

3. Tight area of a properly immersed geodesic plane

In this section, we show that the tight area of a properly immersed geo-
desic plane of M is finite.

For a closed subset Q ⊂M , we define the tight neighborhood of Q by

N (Q) := {p ∈M : d(p, q) ≤ inj(q) for some q ∈ Q}.

We are mainly interested in the tight neighborhood of coreM . If M is
convex cocompact, N (coreM) is compact. In order to describe the shape of
N (coreM) in the presence of cusps, fix a set ξ1, · · · , ξℓ of Γ-representatives
of Λp, cf. [18]. Then coreM is contained in the union of Mcpt and a disjoint
union

⋃
hξi of horoballs based at the ξis.

Consider the upper half-space model H3 = {(x1, x2, y) : y > 0} = R2 ×
R>0, and let ∞ ∈ Λp. Let p : H3 →M denote the canonical projection map.
As ∞ is a bounded parabolic fixed point, there exists a bounded rectangle,
say, I ⊂ R2 and r > 0 (depending on ∞) such that

(1) p(I × {y > r}) ⊃ N (h∞ ∩ coreM) and
(2) p(I × {r}) ⊂ B(Mcpt, R)

where R depends only on M . We call this set C∞ := I ×{y ≥ r} a chimney
for ∞ (cf. Figure 3).

Note that increasing R if necessary, we have

(3.1) N (coreM) ⊂ B(Mcpt, R) ∪
( ⋃

1≤i≤ℓ

p(Cξi)

)
where Cξi is a chimney for ξi.
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Definition 3.2. For a properly immersed geodesic plane S of M , we define
the tight-area of S relative to M as follows:

areat(S) := area(S ∩N (coreM)).

Theorem 3.3. For a properly immersed non-elementary geodesic plane S
of M , we have

1 ≪ areat(S) <∞
where the implied multiplicative constant depends only on M .

Proof. Since no horoball can contain a complete geodesic, it follows that S
intersects the compact core Mcpt. Therefore,

areat S ≥ 4π sinh2(εX/2),

as S ∩Mcpt contains a hyperbolic disk of radius εX (see Section 2). This
implies the lower bound.

We now turn to the proof of the upper bound. We use the notation in
(3.1). Fix a geodesic plane P ⊂ H3 which covers S and let ∆ = StabΓ(P ).
Fix a Dirichlet domain D in P for the action of ∆. As ∆\P is geometrically
finite, the Dirichlet domain is a finite sided polygon; hence, D ∩ hull(∆)
has finite area, and the set D − hull(∆) is a disjoint union of finitely many
flares, where a flare is a region bounded by three geodesics as shown in
Figure 4. Fixing a flare F ⊂ D − hull(∆), it suffices to show that {x ∈
F : p(x) ∈ N (coreM)} has finite area. As S is properly immersed, the set
{x ∈ F : d(p(x),Mcpt) ≤ R} is bounded. Therefore, fixing a chimney Cξi as
above, it suffices to show that the set {x ∈ F : p(x) ∈ Cξi} = F ∩ ΓCξi has
finite area.

Without loss of generality, we may assume ξi = ∞. We will denote by
∂F the intersection of the closure of F and ∂P , and let Fε ⊂ F denote the
ε-neighborhood of ∂F in the Euclidean metric in the unit disc model of P
(cf. Figure 4).

Fix ε0 > 0 so that

(3.4) Fε0 ∩ {x ∈ D : d(p(x),Mcpt) < R} = ∅;
such ε0 exists, as S is a proper immersion. Writing C∞ = I × {y ≥ r} as
above, let H∞ := R2 × {y > r}, and set Γ∞ := StabΓ(∞).

We claim that

(3.5) #{γH∞ : Fε0/2 ∩ γC∞ ̸= ∅} <∞.

Suppose not. Since ΓH∞ is closed in the space of all horoballs in H3, there
exists a sequence of distinct γi(∞) ∈ Γ(∞) such that Fε0/2 ∩ γiC∞ ̸= ∅ and
the size of the horoballs γiH∞ goes to 0 in the Euclidean metric in the ball
model of H3. Note that if ∞ has rank 2, then Γ∞(I × {r}) = R2 × {r}
and that if ∞ has rank 1, then Γ∞(I × {r}) contains a region between
two parallel horocycles in R2 × {r}. Since P ∩ γiC∞ ̸= ∅, it follows that
P ∩γi(Γ∞(I×{r})) ̸= ∅. Moreover, if i is large enough so that the Euclidean
size of γiH∞ is smaller than ε0/2, the condition Fε0/2 ∩ γiC∞ ̸= ∅ implies
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Figure 4. Flare F and Fε

that Fε0 ∩ γi(Γ∞(I × {r})) ̸= ∅. This yields a contradiction to (3.4) since
p(I × {r}) is contained in the R-neighborhood of Mcpt, proving the claim.

By Claim 3.5, it is now enough to show that, fixing a horoball γH∞, the
intersection Fε0 ∩ γΓ∞C∞ has finite area. Suppose that Fε0 ∩ γΓ∞C∞ is
unbounded in P ; otherwise the claim is clear. Without loss of generality,
we may assume γ = e, by replacing P by γ−1P if necessary. If ∞ /∈ ∂P ,
then Fε0 ∩ Γ∞C∞, being contained in P ∩ H∞, is a bounded subset of P ;
contradiction. Therefore, ∞ ∈ ∂P . Then, as Fε0 ∩ Γ∞C∞ ⊂ Fε0 ∩ H∞ is
unbounded, we have ∞ ∈ ∂F . Since F is a flare, it follows that ∞ is not a
limit point for ∆. This implies that the rank of ∞ in Λp is 1 [23, Lem. 6.2].
Therefore Γ∞C∞ is contained in a subset of the form T × {y ≥ r} where
T is a strip between two parallel lines L1, L2 in R2. Since ∞ is not a limit
point for ∆, the vertical plane P is not parallel to the Li. Therefore, the
intersection Fε0 ∩Γ∞C∞, being a subset of P ∩(T ×{y ≥ r}), is contained in
a cusp-like region, isometric to {(x, y) ∈ H2 : y ≥ r} and x is also bounded
from above and below (recall that P is not parallel to the Li). This finishes
the proof. □

The proof of the above theorem demonstrates that the portion of S, es-
pecially of the flares of S, staying in the tight neighborhood of coreM can
go to infinity only in cusp-like shapes, by visiting the chimneys of horoballs
of coreM (Fig. 1). This is not true any more if we replace the tight neigh-
borhood of coreM by the unit neighborhood of coreM . More precisely if Λ
contains a parabolic limit point of rank one which is not stabilized by any
element of π1(S), then some region of S with infinite area can stay inside
the unit neighborhood of coreM . This situation may be compared to the
presence of divergent geodesics in finite area setting.
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4. Shadow constants

In this section, fixing a closed non-elementary H-orbit Y in X, we recall
the definition of Patterson-Sullivan measures µy on horocycles in Y , and
relate its density with the shadow constant sY , which we show is a finite
number.

Set ∆Y := StabH(y0) to be the stabilizer of a point y0 ∈ Y ; note that
despite the notation, ∆Y is uniquely determined up to a conjugation by an
element of H. As Γ is geometrically finite and Y = Hy0 is a closed orbit,
the subgroup ∆Y is a geometrically finite subgroup of H, [23, Thm. 4.7].
We denote by ΛY ⊂ ∂H2 the limit set of ∆Y . Let 0 < δ(Y ) ≤ 1 denote the
critical exponent of ∆Y , or equivalently, the Hausdorff dimension of ΛY .

We denote by {νp = νY,p : p ∈ H2} the Patterson-Sullivan density for ∆Y ,
normalized so that |νo| = 1. This means that the collection {νp} consists of
Borel measures on ΛY satisfying that for all γ ∈ ∆Y , p, q ∈ H2, ξ ∈ ΛY ,

dγ∗νp
dνp

(ξ) = e−δ(Y )βξ(γ
−1(p),p) and

dνq
dνp

(ξ) = e−δ(Y )βξ(q,p)

where βξ(·, ·) denotes the Busemann function. In the sequel we will refer to
the first identity above as Γ-conformality of {νp}.

As ∆Y is geometrically finite, there exists a unique Patterson-Sullivan
density up to a constant multiple.

PS-measures on U-orbits. Set

U :=

{
ur =

(
1 0
r 1

)
: r ∈ R

}
= N ∩H

which is the expanding horocylic subgroup of H. Using the parametrization
r 7→ ur, we may identify U with R. Note that for all r, t ∈ R,

a−turat = uetr.

For any h ∈ H, the restriction of the visual map g 7→ g+ is a diffeomor-
phism between hU and ∂H2 − {h−}. Using this diffeomorphism, we can
define a measure µhU on hU :

(4.1) dµhU (hur) = e
δ(Y )β(hur)+

(p,hur(p))dνp(hur)
+;

this is independent of the choice of p ∈ H2. We simply write dµh(r) for
dµhU (hur). Note that these measures depend on the U -orbits but not on
the individual points. By the ∆Y -invariance and the conformal property of
the PS-density, we have

(4.2) dµh(O) = dµγh(O)

for any γ ∈ ∆Y and for any bounded Borel set O ⊂ R; therefore µy(O) is
well-defined for y ∈ ∆Y \H.

For any y ∈ ∆Y \H and any t ∈ R, we have:

(4.3) µy([−et, et]) = eδ(Y )tµya−t([−1, 1]).
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Set

(4.4) Y0 := {[h] ∈ ∆Y \H : h± ∈ ΛY }
where h± = limt→±∞ hat(o).

Shadow constant. As in the introduction, we define the modified critical
exponent of Y :

(4.5) δY =

{
δ(Y ) if Y is convex cocompact

2δ(Y )− 1 otherwise.

If Y has a cusp, then δ(Y ) > 1/2, and hence 0 < δY ≤ δ(Y ) ≤ 1.
Define

(4.6) pY = sup
y∈Y0,0<r≤2

µy([−r, r])1/δY
r · µy([−1, 1])1/δY

;

the range 0 < r ≤ 2 is motivated by our applications later, see e.g., (7.13).
Recall the shadow constant sY = sup0<ε≤1/2 sY (ε) in (1.8) where

(4.7) sY (ε) := sup
ξ∈ΛY ,p∈[ξ,ΛY ]

νp(Bp(ξ, ε))
1/δY

ε · νp(Bp(ξ, 1/2))1/δY
.

where [ξ,ΛY ] is the union of all geodesics connecting ξ to a point in ΛY , and
Bp(ξ, ·) is as in (4.10).

The rest of this section is devoted to the proof of the following theorem
using a uniform version of Sullivan’s shadow lemma.

Theorem 4.8. We have
sY ≍ pY <∞.

In principle, this definition of sY involves making a choice of ∆Y =
StabH(y0), i.e., the choice of y0 ∈ Y , as ΛY is the limit set of ∆Y . However
we observe the following:

Lemma 4.9. The constant sY is independent of the choice of y0 ∈ Y .

Proof. Let y = y0h
−1 ∈ Y for h ∈ H. Define s′Y similar to sY using ∆′

Y =
StabH(y) = h∆Y h

−1 and put ν ′p := h∗νh−1p for each p ∈ H2. If ξ ∈ ΛY ,
then

d
(
(hγh−1)∗ν

′
p

)
dν ′p

(hξ) =
d
(
(hγ)∗νh−1p

)
dh∗νh−1p

(hξ) =
dγ∗νh−1p

dνh−1p
(ξ)

= e−δ(Y )βξ(γ
−1(h−1p),h−1p) = e−δ(Y )βhξ(hγ

−1h−1(p),p).

Since the limit set of ∆′
Y is given by hΛY , this implies that the family {ν ′p :

p ∈ H2} is the Patterson-Sullivan density for ∆′
Y . Now for any 0 < ε ≤ 1

and ξ ∈ ΛY , we have

ν ′hp(Bhp(hξ, ε)) = h∗νp(Bhp(hξ, ε)) = νp(h
−1Bhp(hξ, ε)) = νp(Bp(ξ, ε)).

It follows that sY = s′Y . □
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Shadow lemma. Consider the associated hyperbolic plane and its convex
core:

SY := ∆Y \H2 and core(SY ) := ∆Y \hull(ΛY ).

We denote by CY the compact core of SY , defined as the minimal connected
surface whose complement in core(SY ) is a union of disjoint cusps. If SY is
convex cocompact, then CY = SY . Let

dY := max{1, diam(CY )}.
We can write core(SY ) as the disjoint union of the compact core C0 := CY

and finitely many cusps, say, C1, . . . , Cm. Fix a Dirichlet domain FY ⊂ H2

for ∆Y containing the base point o. For each Ci, 0 ≤ i ≤ m, choose the lift
C̃i ⊂ FY ∩ hull(ΛY ) so that ∆Y \∆Y C̃i = Ci. In particular, ∂C̃0 intersects

C̃i in an interval for i ≥ 1. Let ξi ∈ ΛY be the base point of the horodisc
C̃i, i.e., ξi = ∂C̃i ∩ ∂H2. Let Fξi ⊂ ∂H2 − {ξi} be a minimal closed interval
so that ΛY − {ξi} ⊂ Stab∆Y

(ξi)Fξi .
For p ∈ H2, let dp denote the Gromov distance on ∂H2: for ξ ̸= η ∈ ∂H2,

dp(ξ, η) = e−(βξ(p,q)+βη(p,q))/2

where q is any point on the geodesic connecting ξ and η. The diameter of
(∂H2, dp) is equal to 1.

For any h ∈ H, we have dp(ξ, η) = dh(p)(h(ξ), h(η)). For ξ ∈ ∂H2, and
r > 0, set

(4.10) Bp(ξ, r) = {η ∈ ∂H2 : dp(η, ξ) ≤ r}
as was defined in the introduction. Also, denote by V (p, ξ, r) the set of all
η ∈ ∂H2 such that the distance between p and the orthogonal projection of
η onto the geodesic [p, ξ) is at least r. Note that

V (p, ξ, t) = Bp(ξ,
e−t

√
1+e−2t

),

see ([27, Lemma 2.5] and the discussion following that lemma). Therefore,

V (p, ξ, r + 1) ⊂ Bp(ξ, e
−r) ⊂ V (p, ξ, r − 1) for all r ≥ 1.

The following is a uniform version of Sullivan’s shadow lemma [29]. The
proof of this proposition is similar to the proof of [27, Thm. 3.2]; since the
dependence on the multiplicative constant is important to us, we give a
sketch of the proof while making the dependence of constants explicit.

Proposition 4.11. There exists a constant c ≍ e⋆dY such that for all ξ ∈
ΛY , p ∈ C̃0, and t > 0,

c−1 · νp(Fξt)βY e
−δ(Y )t+(1−δ(Y ))d(ξt,∆Y (p)) ≤ νp(V (p, ξ, t))

≤ c · νp(Fξt)e
−δ(Y )t+(1−δ(Y ))d(ξt,∆Y (p))

where

• {ξt} is the unit speed geodesic ray [p, ξ) so that d(p, ξt) = t;

• Fξt = ∂H2 if ξt ∈ ∆Y C̃0, and Fξt = Fξi if ξt ∈ ∆Y C̃i for 1 ≤ i ≤ m;
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• βY := infη∈ΛY ,q∈C̃0
νq(Bq(η, e

−dY )).

Proof. Let p, ξ ∈ ΛY and ξt be as in the statement. By the δ(Y )-conformality
of the PS density, we have

νp(V (p, ξ, t)) = e−δ(Y )tνξt(V (p, ξ, t)).

Therefore it suffices to show

νξt(V (p, ξ, t)) ≍ νp(Fξt) · e(1−δ(Y ))d(ξt,∆Y (p))

while making the dependence of the implied constant explicit.

Claim A. If ξt ∈ ∆Y C̃0, then

(4.12) e−δ(Y )dY · inf
η∈ΛY

νp(B(η, e−dY )) ≪ νξt(V (p, ξ, t)) ≪ eδ(Y )dY |νp|

where the implied constants are absolute.
First note that this implies the claim in the proposition if ξt ∈ ∆Y C̃0.

Indeed d(ξt,∆Y (p)) ≤ dY and Fξt = ∂H2 in this case. Moreover, by (4.12),
we have

e−⋆dY βY e
−δ(Y )t ≤ νp(V (p, ξ, t)) = e−δ(Y )tνξt(V (p, ξ, t)) ≤ e⋆dY e−δ(Y )t

where we also used |νp| = e⋆dY (recall that p ∈ C̃0). Thus the claim in the
proposition follows in this case.

We now turn to the proof of Claim A. As ξt ∈ ∆Y C̃0, there exists γ ∈ ∆Y

such that d(ξt, γp) ≤ dY . Hence

e−δ(Y )dY νξt(V (p, ξ, t)) ≤ νγp(V (p, ξ, t)) = νp(V (γ−1p, γ−1ξ, t))

≤ eδ(Y )dY νξt(V (p, ξ, t)).

The upper bound in (4.12) follows from the first inequality, while the
lower bound follows from the second inequality; indeed

V (γ−1p, γ−1ξ, t) = V (γ−1ξt, γ
−1ξ, 0)

and the latter contains Bp(γ
−1ξ, e−dY ), since d(p, γ−1ξt) ≤ dY and dY ≥ 1.

Claim B. Let ξ be a parabolic limit point in ΛY . Assume that for some
i ≥ 1, ξt ∈ C̃i for all large t.

We claim:

(4.13) νξt(V (p, ξ, t)) ≍ νp(Fξ) · e(1−δ(Y ))(d(ξt,∆Y (p))+dY )

and

(4.14) νξt(∂H2 − V (p, ξ, t)) ≍ νp(Fξ) · e(1−δ(Y ))(d(ξt,∆Y (p))+dY )

where here and in what follows implied constants are of the form e±⋆dY

unless otherwise is stated explicitly.
Let si ≥ 0 be such that ξsi ∈ ∂C̃i. Then for all t ≥ si,

|d(ξt,∆Y (p))− (t− si)| ≤ dY .
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Hence for (4.13), it suffices to show

(4.15) νξt(V (p, ξ, t)) ≍ e(1−δ(Y ))(t−si)νp(Fξ).

Note that if we set ∆Y,ξ = Stab∆Y
(ξ),

νξt(V (p, ξ, t)) ≍
∑

γ∈∆Y,ξ,γFξ∩V (p,x̃,t)̸=∅

νξt(γFξ).

Let F ∗
ξ denote the image of Fξ on the horocycle based at ξ passing through

p via the inverse of the visual map. Since p ∈ C̃0, there exists γ ∈ ∆Y,ξ so

that γF ∗
ξ is contained in the closure of C̃0. Hence,

diamF ∗
ξ ≤ dY = max{1, diam(C̃0)}.

We now apply [27, Lemma 2.9] with K = F ∗
ξ and let K3 be as in loc.

cit. By the definition of K3 given in the proof of [27, Lemma 2.9], we have
K3 ≪ diamF ∗

ξ where the implied constant is absolute. In view of [27, Lemma

2.9], thus, if γ ∈ ∆Y,ξ is so that γFξ∩V (p, ξ, t) ̸= ∅, then d(p, γp) ≥ 2t−kdY ,
where k is absolute. In consequence,

νξt(V (p, ξ, t)) ≍
∑

γ∈∆Y,ξ,d(p,γp)≥2t

νξt(γFξ)

where the implied constant is absolute.
Now we use the fact that if d(p, γp) ≥ 2t, then for all η ∈ Fξ,

|βη(γ−1ξt, ξt)− d(p, γp) + 2t| ≪ diamF ∗
ξ ≤ dY

(cf. proof of [27, Lemma 2.9]). Since

νξt(γFξ) =

∫
γFξ

dνξt =

∫
Fξ

e−δ(Y )βγη(ξt,γξt))dνξt(η),

and νξt(Fξ) = e−δ(Y )tνp(Fξ), we deduce, with multiplicative constant ≍
eδ(Y )dY , ∑

γ∈∆Y,ξ,d(p,γp)≥2t

νξt(γFξ) ≍
∑

γ∈∆Y,ξ,d(p,γp)≥2t

e2δ(Y )t−δ(Y )d(p,γp)νξt(Fξ)

≍ νp(Fξ)e
δ(Y )t

∑
γ∈∆Y,ξ,d(p,γp)≥2t

e−δ(Y )d(p,γp)

≍ νp(Fξ)e
(1−δ(Y ))t

using an := #{γ ∈ ∆Y,ξ : n < d(p, γp) ≤ n+ 1} ≍ en/2 in the last estimate.
This proves (4.13).

The estimate (4.14) follows similarly now using

νξt(∂H2 − V (p, ξ, t)) ≍
∑

γ∈∆Y,ξ,d(p,γp)≤2t

νξt(γF )

and
∑[2t]

n=0 ane
−δ(Y )n ≍ e(1−2δ(Y ))t.
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Note that when ξ is a parabolic limit point, (4.13) holds with multiplica-
tive constant ≍ e⋆dY (see the proof of [27, Prop. 3.4]).

As for the remaining case, i.e., ξ is a radial limit point but ξt ∈ ∆Y C̃i for
some i, one can prove that (4.13) holds with multiplicative constant ≍ e⋆dY

(see the proof of [27, Lemma 3.6]). □

Proposition 4.16. Fix p = pY ∈ C̃0. There exists RY ≍ e⋆dY such that for
all y ∈ Y0, we have

R−1
Y βY e

(1−δ(Y ))d(CY ,π(y))|νp| ≤ µy([−1, 1]) ≤ RY e
(1−δ(Y ))d(CY ,π(y))|νp|

where π denotes the base point projection ∆Y \H = T1(SY ) → SY .

Proof. The following argument is a slight modification of the proof of [19,
Prop. 5.1]. Since the map y 7→ µy[−1, 1] is continuous on Y0 and {[h] ∈ Y0 :
h− is a radial limit point of ΛY } is dense in Y0, it suffices to prove the claim
for y = [h], assuming that h− is a radial limit point for ∆Y .

Recall that µy([−1, 1]) = eδ(Y )tµya−t([−e−t, e−t]) for all t ∈ R. Let t ≥ 0
be the minimal number so that π(ya−t) ∈ CY ; this exists as h− is a radial
limit point. Then

(4.17) d(π(y), CY ) ≤ d(π(y), π(ya−t)) ≤ dY + d(π(y), CY ).

Set ξt = ha−t(o). Then

µya−t [−e−t, e−t] ≍ νξt(V (ξt, h
+, t))

(cf. [27, Lemma 4.4]).
Since ya−t ∈ CY , Fξt = ∂H2. So νξt(Fξt) = |νξt | ≍ |νp| up to a multi-

plicative constant e⋆dY . Therefore, for some implied constant ≍ e⋆dY , we
have

βY e
−δ(Y )t+(1−δ(Y ))d(π(y),π(ya−t))|νp| ≪ νξt(V (ξt, h

+, t)) ≪

e−δ(Y )t+(1−δ(Y ))d(π(y),π(ya−t))|νp|.

This estimate and (4.17), therefore, imply that

βY e
(1−δ(Y ))d(π(y),CY )|νp| ≪ µy([−1, 1]) ≪ e(1−δ(Y ))d(π(y),CY )|νp|

with the implied constant ≍ e⋆dY , proving the claim. □

We use the following result, essentially obtained by Schapira-Maucourant
([29], [19]):

Corollary 4.18. Fix ρ > 0. Then for all 0 < ε ≤ ρ,

R−2
Y · βY ≤ sup

y∈Y0

µy([−ε, ε])
εδY µy([−1, 1])

≤ max{1, ρ2} ·R2
Y · β−1

Y <∞,

where RY is as in Proposition 4.16.
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Proof. By (4.3), we have µy([−ε, ε]) = εδ(Y )µya− log ε
([−1, 1]). Hence the case

when Y is convex cocompact follows from Proposition 4.16.
Now suppose that Y has a cusp. Let y ∈ Y0. Using the triangle inequal-

ity, we get that d(π(ya− log ε), CY ) − d(π(y), CY ) ≤ | log ε|. Therefore, by
Proposition 4.16, we have

µya− log ε
([−1,1])

µy([−1,1]) ≤ R2
Y β

−1
Y · e(1−δ(Y ))(d(π(ya− log ε),CY )−d(π(y),CY ))

≤

{
R2

Y · β−1
Y · εδ(Y )−1 if 0 < ε < 1

R2
Y · β−1

Y · ε1−δ(Y ) if ε ≥ 1
.

As a consequence, we have

µy([−ε,ε])

ε2δ(Y )−1µy([−1,1])
≤

{
R2

Y · β−1
Y if 0 < ε < 1

R2
Y · β−1

Y · ρ2 if ρ ≥ 1 and 1 ≤ ε ≤ ρ
.

Recall from (4.5) that δY = δ(Y ) when Y is cocompact and δY = 2δ(Y )− 1
otherwise. The above thus establishes the upper bound.

By choosing y ∈ Y0 such that d(π(ya− log ε), CY ) − d(π(y), CY ) = | log ε|,
we get the lower bound. □

Theorem 4.8 follows from the following:

Proposition 4.19. We have

(1) for any 0 < ε ≤ 1/2, 0 < sY (ε) <∞.

(2) sY ≍ pY ≪ e⋆dY /δY β
−1/δY
Y .

Proof. Let y ∈ Y0 and h ∈ H be so that y = [h]. Fix 0 < r ≤ 2. Recall

µy([−r, r]) =
∫ r

−r
e
−δ(Y )β

hu+s
(h(o),hus(o))

dνh(o)(hu
+
s ).

Since |βhu+
r
(h(o), hur(o))| ≤ d(o, ur(o)), we have

e
−δ(Y )β

hu+r
(h(o),hur(o)) ≍ 1

with the implied constant independent of all 0 < r ≤ 2.
Since do(u

+
r , e

+) = dh(o)((hur)
+, h+) where e is the identity (recall that

v+o = e+), we have

νh(o)(Bh(o)(h
+, c−1r√

1+2r2
)) ≪ µy([−r, r]) ≪ νh(o)(Bh(o)(h

+, cr√
1+2r2

))

for some c > 1 independent of r and h.
This implies that

µy([−ε/c′, ε/c′]) ≪ νh(o)(Bh(o)(h
+, ε)) ≪ µy([−c′ε, c′ε])

as well as

µy([−ε/c′, ε/c′])
εδY µy([−c′/2, c′/2])

≪
νh(o)(Bh(o)(h

+, ε))

εδY νh(o)(Bh(o)(h+, 1/2))
≪ µy([−c′ε, c′ε])

εδY µy([−1/(2c′), 1/(2c′)])

where c′ > 1 is independent of 0 < ε < 1/2 and h ∈ H.
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First note that by Corollary 4.18, we have

µy([−1/(2c′), 1/(2c′)]) ≍c′ µy[−1, 1] ≍c′ µy([−c′/2, c′/2]).
Similarly, using Corollary 4.18, for any 0 < ε ≤ 1/2, we have

µy([−ε/c′, ε/c′]) ≍c′ µy[−4ε, 4ε] ≍c′ µy([−c′ε, c′ε]);
the choice of the constant 4 here is motivated by the definitions of pY and
sY in (4.6) and (4.7), respectively.

Altogether we conclude that

νh(o)(Bh(o)(h
+, ε))

εδY νh(o)(Bh(o)(h+, 1/2))
≍ µy([−4ε, 4ε])

(4ε)δY µy([−1, 1])
.

Taking supremum over 0 < ε ≤ 1/2 and h ∈ H with h± ∈ ΛY , we conclude
that sY ≍ pY .

The last claim follows from Corollary 4.18. □

5. Linear algebra lemma

The goal of this section is to prove the linear algebra lemma (Lemma 5.6)
and its slight variant (Lemma 5.13).

In this section, it is more convenient to identify G as SO(Q)◦ for the
quadratic form

Q(x1, x2, x3, x4) = 2x1x4 − x22 − x23.

As Q has signature (1, 3), PSL2(C) ≃ SO(Q)◦ as real Lie groups. We con-
sider the standard representation of G on the space R4 of row vectors and
denote the Euclidean norm on R4 by ∥ · ∥. We have

H = StabG(e3) ≃ SO(1, 2)◦,

A = {at = diag(et, 1, 1, e−t) : t ∈ R} < H and

U =

ur =


1 0 0 0
r 1 0 0
0 0 1 0
r2

2 r 0 1

 : r ∈ R

 < H.

Set
V := Re1 ⊕ Re2 ⊕ Re4.

Then the restriction of the standard representation of G to H induces a
representation of H on V , which is isomorphic to the adjoint representation
of H on its Lie algebra sl2(R); in particular, it is irreducible.

Note that for each t > 0, Re2 = {v ∈ V : vat = v}, Re1 is the subspace of
all vectors with eigenvalues > 1, and Re4 is the subspace of all vectors with
eigenvalues < 1.

Let p : V → Re1⊕Re2 and p+ : V → Re1 denote the natural projections.
Writing v = v1e1 + v2e2 + v4e4, a direct computation yields that for any
r ∈ R,

(5.1) p(vur) = (v1 + v2r +
v4r2

2 )e1 + (v2 + v4r)e2 and
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p+(vur) = (v1 + v2r +
v4r2

2 )e1.

For a unit vector v ∈ V and ε > 0, define

D(v, ε) = {r ∈ [−1, 1] : ∥p(vur)∥ ≤ ε};

D+(v, ε) = {r ∈ [−1, 1] : ∥p+(vur)∥ ≤ ε}.

Lemma 5.2. For all 0 < ε < 1/2 and a unit vector v ∈ V , we have

ℓ(D(v, ε)) ≪ ε and ℓ(D+(v, ε)) ≪ ε1/2

where ℓ denotes the Lebesgue measure on R.

Proof. Since we are allowed to choose the implied constant in the statement,
it suffices to prove the lemma for 0 < ε ≤ 0.01.

Writing v = v1e1 + v2e2 + v4e4, we have

ℓ(D(v, ε)) ≤ ℓ{r ∈ [−1, 1] : |v1 + v2r +
v4r2

2 | ≤ ε and |v2 + v4r| ≤ ε}.

If |v4| ≥ 0.01, then

ℓ(D(v, ε)) ≤ ℓ{r ∈ [−1, 1] : |v2 + v4r| ≤ ε} ≤ 200ε.

If |v4| < 0.01 but 0.1 ≤ |v2| ≤ 1, then for r ∈ [−1, 1], we have |v2+ v4r| ≥
0.09, and hence for all ε ≤ 0.01,

ℓ(D(v, ε)) ≤ ℓ{r ∈ [−1, 1] : |v2 + v4r| ≤ ε} = 0.

Now consider the case when |v4| ≤ 0.01 and |v2| ≤ 0.1. Then, since ∥v∥ = 1,
we get that |v1| ≥ 0.7. Hence for all r ∈ [−1, 1], |v1 + v2r + v4r

2/2| > 0.5.
In consequence, for all ε < 1/2,

ℓ(D(v, ε)) ≤ ℓ{r ∈ [−1, 1] : |v1 + v2r + v4r
2/2| ≤ ε} = 0,

proving the estimate onD(v, ε). To estimateD+(v, ε), observe that p+(vur) =

(v1+v2r+
v4r2

2 )e1 is a polynomial map of degree at most 2. Moreover, since
∥v∥ = 1, we have

max{|v1|, |v2|, |v4|} ≫ 1.

Therefore, supr∈[−1,1] ∥p+(vur)∥ ≫ 1. The claim about D+(v, ε) now follows

using Lagrange’s interpolation, see [7] for a more general statement. □

For the rest of this section, we fix a closed non-elementary H-orbit Y .

Lemma 5.3. There exists an absolute constant b̂0 > 0 for which the follow-
ing holds: for any y ∈ Y0 and 0 < ε < 1, we have

(5.4) sup
v∈V,∥v∥=1

µy(D(v, ε)) ≤ b̂0p
δY
Y εδY µy([−1, 1]),

and

(5.5) sup
v∈V,∥v∥=1

µy(D
+(v, ε)) ≤ b̂0p

δY
Y εδY /2µy([−1, 1])

where pY is given as in (4.6).



23

Proof. By (5.1), each set D(v, ε) and D+(v, ε) consists of at most 2 inter-
vals. By Lemma 5.2, D(v, ε) (resp. D+(v, ε)) may be covered by ≪ 1 many

intervals of length ε (resp. ε1/2). Therefore (5.4) (resp. (5.5)) follows from
the definition of pY . □

We use Lemma 5.3 to prove the following lemma which will be crucial in
the sequel.

Lemma 5.6 (Linear algebra lemma). For any δY
3 ≤ s < δY , 1 ≤ ρ ≤ 2, and

t > 0, we have

(5.7) sup
y∈Y0,v∈V,∥v∥=1

1

µy([−ρ, ρ])

∫ ρ

−ρ

1

∥vurat∥s
dµy(r) ≤ b0

pδYY e−(δY −s)t/4

(δY − s)

where b0 ≥ 2 is an absolute constant.

Proof. We first claim that it suffices to prove the claim for ρ = 1. Indeed,
let tρ = t − log ρ and let yρ = ya− log ρ, and for every v ∈ V , let vρ =

va− log ρ. Recall also that µy[−r, r] = ρδ(Y )µya− log ρ
[−r/ρ, r/ρ] and that Y0

is A-invariant. Thus,

1

µy([−ρ, ρ])

∫ ρ

−ρ

1

∥vurat∥s
dµy(r) =

1

µy([−ρ, ρ])

∫ ρ

−ρ

1

∥va− log ρuρ−1ratρ∥s
dµy(r)

= ρδ(Y )∥vρ∥−s 1

µyρ([−1, 1])

∫ 1

−1

1

∥v′ρuratρ∥s
dµyρ(r)

where v′ρ = vρ/∥vρ∥.
Since ∥vρ∥−s ≍ 1 (with absolute implied constants for 1 ≤ ρ ≤ 2) and Y0

is A-invariant, it thus suffices to prove the lemma for ρ = 1.
Fix 0 < s < δY and t > 0. We observe that for all r ∈ R,

(5.8) ∥vurat∥ ≥ ∥p(vur)∥ and ∥vurat∥ ≥ et∥p+(vur)∥.

For simplicity, set βy := 1
µy([−1,1]) . The inequality (5.4) and the first

estimate in (5.8) imply that for any 0 < ε ≤ 1 and any unit vector v ∈ V ,
we have

βy

∫
r∈D(v,ε)−D(v,ε/2)

∥vurat∥−sdµy(r) ≤ b̂0pY
δY
εδY · (ε/2)−s

≤ 2b̂0p
δY
Y εδY −s.

We writeD(v, ε) =
⋃∞

k=0D(v, ε/2k)−D(v, ε/2k+1). Now applying the above

estimate for each ε/2k and summing up the geometric series, we get that for
any 0 < ε < 1,

(5.9) βy

∫
r∈D(v,ε)

∥vurat∥−sdµy(r) ≤
2b̂0p

δY
Y εδY −s

1− 2s−δY
.
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Moreover, using (5.5) and the first estimate in (5.8) again, for any κ > 0,
we have

(5.10) βy

∫
r∈D+(v,κ)−D(v,ε)

∥vurat∥−sdµy(r) ≤ 2b̂0p
δY
Y κδY /2ε−s.

Finally, the definition of D+(v, κ) and the second estimate in (5.8) imply

(5.11) βy

∫
r∈[−1,1]−D+(v,κ)

∥vurat∥−sdµy(r) ≤ κ−se−st.

Combining (5.9), (5.10), and (5.11) and using the inequality 1
1−2−(δY −s) ≤

2
δY −s , we deduce that for any 0 < ε, κ < 1,

βy

∫ 1

−1
∥vurat∥−sdµy(r) ≤

2b̂0p
δY
Y

δY − s

(
εδY −s + κδY /2ε−s + κ−se−st

)
.

Let ε = e−t/4 and κ = ε2. As δY /3 ≤ s < δY , we have e−s/2 ≤ e(s−δY )/4.
This yields:

βy

∫ 1

−1
∥vurat∥−sdµy(r) ≤

6b̂0p
δY
Y

δY − s
· e−(δY −s)t/4,

as we claimed. □

We will extend the upper bound in Lemma 5.6 to all unit vectors v ∈ e1G,
based on the fact that the vectors in e1G are projectively away from the H-
invariant point corresponding to Re3.

Lemma 5.12. There exists an absolute constant b1 > 1 such that for any
vector v ∈ e1G ⊂ R4,

∥v∥ ≤ b1∥v1∥
where v1 is the projection of v ∈ R4 to V = Re1 ⊕ Re2 ⊕ Re4.

Proof. Since Q(e1) = 0 and G = SO(Q)◦, we have Q(e1g) = 0 for every
g ∈ G. Since Q(e3) = −1, the set {∥v∥−1v : v ∈ e1G} is a compact subset
of the unit sphere in R4 not containing ±e3. Therefore there exists an
absolute constant 0 < η < 1 such that if we write v = v1 + re3 ∈ e1G, then
|r| ≤ η∥v∥. Therefore ∥v1∥2 = ∥v∥2 − r2 ≥ (1− η2)∥v∥2. Hence it suffices to

set b1 = (1− η2)−1/2. □

Lemma 5.13 (Linear algebra lemma II). For any δY
3 ≤ s < δY , 1 ≤ ρ ≤ 2,

and t > 0, we have

sup
y∈Y0,v∈e1G,∥v∥=1

1

µy([−ρ, ρ])

∫ ρ

−ρ

1

∥vurat∥s
dµy(r) ≤ b0b1

pδYY e−(δY −s)t/4

(δY − s)

where b0 ≥ 2 and b1 > 1 are absolute constants as in Lemmas 5.6 and 5.12
respectively.
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Proof. Let v ∈ e1G be a unit vector, and write v = v0 + v1 where v0 ∈ Re3
and v1 ∈ V . Since e3 is H-invariant, we have vh = v0 + v1h ∈ Re3 ⊕ V for
all h ∈ H. Therefore,

1

µy([−ρ, ρ])

∫ ρ

−ρ

1

∥vurat∥s
dµy(r) ≤

1

µy([−ρ, ρ])

∫ ρ

−ρ

1

∥v1urat∥s
dµy(r)

≤
b0p

δY
Y e−(δY −s)t/4

(δY − s)
∥v1∥−s by Lemma 5.6

≤
b0b1p

δY
Y e−(δY −s)t/4

(δY − s)
∥v∥−s by Lemma 5.12.

□

6. Height function ω

In this section we define the height function ω : X0 → (0,∞) and show
that ω(x) is comparable to the reciprocal of the injectivity radius at x.

For this purpose, we continue to realize G as SO(Q)◦ acting on R4 by the
standard representation, as in Section 5. Observe that Q(e1) = 0 and the
stabilizer of e1 in G is equal to M0N .

Fixing a set of Γ-representatives ξ1, · · · , ξℓ in Λbp, choose elements gi ∈ G

so that g−i = ξi and ∥e1g−1
i ∥ = 1; this is possible since {g ∈ G : g− = ξi} is

a conjugate of AM0N .
Set

(6.1) vi := e1g
−1
i ∈ e1G.

Note that

StabG(ξi) = giAM0Ng
−1
i and StabG(vi) = giM0Ng

−1
i .

By Witt’s theorem, we have that for each i,

{v ∈ R4 − {0} : Q(v) = 0} = viG ≃ giM0Ng
−1
i \G.

Lemma 6.2. For each 1 ≤ i ≤ ℓ, the orbit viΓ is a closed (and hence
discrete) subset of R4.

Proof. The condition ξi ∈ Λbp implies that Γ\ΓgiM0N is a closed subset of

X. Equivalently, ΓgiM0N as well as ΓgiM0Ng
−1
i is closed in G. Therefore,

its inverse giM0Ng
−1
i Γ is a closed subset of G. In consequence, viΓ ⊂ R4 is

a closed subset of viG = {v ∈ R4 − {0} : Q(v) = 0}.
It remains to show that viΓ does not accumulate on 0. Suppose on the

contrary that there exists an infinite sequence viγℓ converging to 0 for some
γℓ ∈ Γ. Using the Iwasawa decomposition G = giNAK0, we may write
γℓ = ginℓatℓkℓ with nℓ ∈ N, tℓ ∈ R and kℓ ∈ K0. Since

viγℓ = etℓ(e1kℓ),

the assumption that viγℓ → 0 implies that tℓ → −∞.
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On the other hand, as ξi ∈ Λbp, StabΓ(ξi) = Γ ∩ giAM0Ng
−1
i contains a

parabolic element, say, γ′ ̸= e. Note that n0 := g−1
i γ′gi is then an element

of N and hence a unipotent element, as any parabolic element of AM0N
belongs to N in the group G ≃ PSL2(C). Now observe that, as N is abelian,

γ−1
ℓ γ′γℓ = k−1

ℓ a−tℓ(n
−1
ℓ g−1

i γ′ginℓ)atℓkℓ = k−1
ℓ (a−tℓn0atℓ)kℓ.

Since tℓ → −∞, the sequence a−tℓn0atℓ converges to e. Since {k−1
ℓ } is a

bounded sequence, it follows that, up to passing to a subsequence, γ−1
ℓ γ′γℓ is

an infinite sequence converging to e, contradicting the discreteness of Γ. □

Definition 6.3 (Height function). Define the height function ω : X0 →
[2,∞) by

ω(x) := max
1≤i≤ℓ

ωi(x)

where

ωi(x) = max
γ∈Γ

{
2, ∥viγg∥−1

}
for any g ∈ G with x = [g];

this is well-defined by Lemma 6.2.
If Γ has no parabolic elements, we define ω(x) = 2 for all x ∈ X0.

By the definition of εX , X0 is contained in the union of XεX and ∪ℓ
j=1hj

where hj is a horoball based at ξj .

Fix Tj > 0 so that hj = [gj ]NA(−∞,−Tj ]K0.

Set h̃j := gjNA(−∞,−Tj ]K0.
The following is an immediate consequence of the thick-thin decomposi-

tion of M :

Lemma 6.4. If h̃j ∩ γh̃i ̸= ∅ for some 1 ≤ i, j ≤ ℓ and γ ∈ Γ, then i = j,

γ ∈ StabG(ξi) = Stab h̃i, and hence h̃j = γh̃i.

Lemma 6.5. For all 1 ≤ i, j ≤ ℓ and γ ∈ Γ such that h̃j ̸= γh̃i,

(6.6) inf
q∈h̃i

∥vjγh∥ ≥ η0

where η0 := min1≤m≤ℓ e
−Tm .

Proof. Let q ∈ h̃i and γ ∈ Γ. Using G = gjNAK0, write γq = gjuask ∈
gjNAK0. Then ∥vjγq∥ = es. Hence if ∥vjγq∥ < η0, then s ≤ −Tj . So

γq ∈ h̃j . Therefore h̃j ∩ γh̃i ̸= ∅. By Lemma 6.4, h̃j = γh̃i. □

Proposition 6.7. There is an absolute constant α ≥ 2 such that for all
x ∈ X0,

(6.8) 1
2α · inj(x) ≤ ω(x)−1 ≤ α

2 · inj(x).

Proof. Fixing 1 ≤ j ≤ ℓ, it suffices to show the claim for all x ∈ X0 ∩ hj .

Let g ∈ giua−tk ∈ h̃i be so that x = [g], where ua−tk ∈ NA(−∞,−Tj ]K0.
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Note that

ωi(x)
−1 ≤ ∥vig∥ = ∥e1g−1

i (giua−tk)∥ = ∥e1ua−tk∥ = e−t.

In view of the definition of ω and ωi, this together with Lemma 6.5 implies
that

ω(x) = ωi(x) = et.

Since inj(x) ≍ e−t, this finishes proof. □

7. Markov operators

In this section we define a Markov operator At and prove Proposition
7.5 which relates the average mY (F ) of a locally bounded, log-continuous,
Borel function F on Y0 with a super-harmonic type inequality for AtF . This
proposition will serve as a main tool in our approach to prove Theorem 1.5.

Fix a closed non-elementary H-orbit Y in X.

Bowen-Margulis-Sullivan measure mY . We denote by mY the Bowen-
Margulis-Sullivan probability measure on ∆Y \H = T1(SY ), which is the
unique probability measure of maximal entropy (that is δ(Y )) for the ge-
odesic flow. We will also use the same notation mY to denote the push-
forward of the measure to Y via the map StabH(y0)\H → Y given by
[h] → y0h. Considered as a measure on Y , mY is well-defined, independent
of the choice of y0 ∈ Y .

Recall the definition of Y0 in (4.4); note that Y0 = suppmY . In the
following, all of our Borel functions are assumed to be defined everywhere
in their domains. By a locally bounded function, we mean a function which
is bounded on every compact subset.

Definition 7.1 (Markov Operator). Let t ∈ R and ρ > 0. For a locally
bounded Borel function ψ : Y0 → R, we define

(7.2) (At,ρψ)(y) :=
1

µy([−ρ, ρ])

∫ ρ

−ρ
ψ(yurat)dµy(r).

We set At := At,1.

Note that At,ρψ is a locally bounded Borel function on Y0. Although
limn→∞ Ant(ψ) = mY (ψ) for any ψ ∈ Cc(Y0) and any t > 0 [23], theMargulis
function F we will be constructing is not a continuous function on Y0, and
hence we cannot use such an equidistribution statement to control mY (F ).
We will use the following lemma instead:

Lemma 7.3. Let F : Y0 → [2,∞) be a locally bounded Borel function.
Assume that there exist some t > 0 and D > 0 such that

(7.4) lim sup
n→∞

AntF (y) ≤ D for all y ∈ Y0.

Then

mY (F ) ≤ 8D.
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Proof. For every k ≥ 2, let Fk : Y0 → [2,∞) be given by

Fk(y) := min{F (y), k}.

As Fk is bounded, it belongs to L1(Y0,mY ). Since the action of A is mixing
for mY by the work of Babillot [1], we have mY is at-ergodic for each t ̸= 0.
Hence, by the Birkhoff ergodic theorem, for mY -a.e. y ∈ Y0, we have

lim
N→∞

1

N

N∑
n=1

Fk(yant) =

∫
Fk dmY .

Therefore, using Egorov’s theorem, for every ε > 0, there exist Nε > 1 and a
measurable subset Y ′

ε ⊂ Y0 with mY (Y
′
ε ) > 1− ε2 such that for every y ∈ Y ′

ε

and all N > Nε, we have

1

N

N∑
n=1

Fk(yant) >
1

2

∫
Fk dmY .

Now by the maximal ergodic theorem [16, App. A.1], if ε is small enough,
there exists a measurable subset Yε ⊂ Y ′

ε with m(Yε) > 1− ε so that for all
y ∈ Yε, we have

µy{r ∈ [−1, 1] : yur ∈ Y ′
ε} > 1

2µy([−1, 1]).

Altogether, if y ∈ Yε and N > Nε, we have

1
N

N∑
n=1

AntFk(y) =
1

µy([−1,1])

∫ 1

−1

1
N

N∑
n=1

Fk(yurant)dµy(r) >
1
4

∫
Fk dmY .

Fix y ∈ Yε. By the hypothesis (7.4), there exists n0 = n0(y) such that for
all n ≥ n0, we have

AntFk(y) ≤ AntF (y) ≤ 2D.

Therefore, we deduce that for all sufficiently large N ≫ 1,

1
4

∫
Fk dmY ≤ 1

N

(
n0∑
n=1

AntFk(y) +
N∑

n=n0+1

AntFk(y)

)
≤ kn0

N + 2D(N−n0)
N .

By sending N → ∞, we get that for all k > 2,∫
Fk dmY ≤ 8D.

Since {Fk : k = 3, 4, ..} is an increasing sequence of positive functions
converging to F point-wise, the monotone convergence theorem implies∫

F dmY = lim
k→∞

∫
Fk dmY ≤ 8D

as we claimed. □
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We remark that in [12], the Markov operator At was defined using the
integral over the translates SO(2)at, whereas we use the integral over the
translates U[−ρ,ρ]at of a horocyclic piece. The proof of the following propo-
sition, which is an analogue of [12, §5.3], is the main reason for our digres-
sion from their definition, as the handling of the PS-measure on U is more
manageable than that of the PS-measure on SO(2) in performing change of
variables.

Proposition 7.5. Let F : Y0 → [2,∞) be a locally bounded Borel function
satisfying the following properties:

(a) There exists σ ≥ 2 such that for all h ∈ BH(2) and y ∈ Y0,

σ−1F (y) ≤ F (yh) ≤ σF (y).

(b) There exist t ≥ 2 and D0 > 0 such that for all y ∈ Y0 and 1 ≤ ρ ≤ 2,

At,ρF (y) ≤
1

8σpδYY
· F (y) +D0

where pY is as in (4.6).

Then
mY (F ) ≤ 64D0p

δY
Y .

In view of Lemma 7.3, Proposition 7.5 is an immediate consequence of
the following:

Proposition 7.6. Let F be as in Proposition 7.5. Then for all y ∈ Y0 and
n ≥ 1, we have

(7.7) AntF (y) ≤
1

2n
F (y) + 8D0p

δY
Y .

Proof. The main step of the proof is the following estimate.
Claim: For any 1 ≤ ρ ≤ 3

2 , y ∈ Y0 and n ∈ N, we have

(7.8) A(n+1)t,ρF (y) ≤ 1
2Ant,ρ+e−ntF (y) + D̂

where D̂ := 4D0p
δY
Y ; recall that e−nt ≤ 1/2.

Let us first assume this claim and prove the proposition. We observe

•
∑

j≥1 e
−jt ≤ 1/2 (as t ≥ 2),

• (8σpδYY )−1 ≤ 1/2, and

• D0 ≤ D̂.

Using the assumption (b) of Proposition 7.5 with ρn = 1+
∑n−1

j=1 e
−jt (n ≥ 2),

we deduce that for any n ≥ 2,

AntF (y) ≤ 1
2n−1At,ρnF (y) + D̂(1 + 1

2 + · · ·+ 1
2n−2 )

≤ 1
2n−1

(
(8σpδYY )−1F (y) +D0

)
+ D̂(1 + 1

2 + · · ·+ 1
2n−2 )

≤ 1
2nF (y) + 2D̂(7.9)

which establishes the proposition.
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We now prove the claim (7.8). For y ∈ Y0 and ρ > 0, set

by(ρ) := µy([−ρ, ρ]) and by = by(1).

To ease the notation, we prove (7.8) with ρ = 1; the proof in general is
similar. By assumption (a) and (b) of Proposition 7.5, we have

(7.10) AtF (y) ≤ c0F (y) +D0 ≤
(c0σ
by

∫ 1

−1
F (yur)dµy(r)

)
+D0

where c0 = (8σpδYY )−1.
Set ρn := e−nt. Let {[rj − ρn, rj + ρn] : j ∈ J} be a covering of

[−1, 1] ∩ supp(µy)

with rj ∈ [−1, 1] ∩ supp(µy) and with multiplicity bounded by 2. For each
j ∈ J , let zj := yurj . Then

(7.11)
∑
j

bzj (ρn) =
∑
j

µy([rj − ρn, rj + ρn]) ≤ 2by(2).

Moreover, we get

A(n+1)tF (y) =
1

by

∫ 1

−1
F (yura(n+1)t)dµy(r)

≤ 1

by

∑
j

∫ ρn

−ρn

F (zjura(n+1)t)dµzj (r)

=
1

by

∑
j

∫ ρn

−ρn

F (zjanturentat)dµzj (r).(7.12)

We now make the change of variables s = rent. In view of (7.12), we have

A(n+1)tF (y) ≤
1

by

∑
j

bzj (ρn)

bzjant

∫ 1

−1
F (zjantusat)dµzjant(s).

Applying (7.10) with the base point zjant, we get from the above that

(7.13) A(n+1)tF (y) ≤
1

by

∑
j

bzj (ρn)c0σ

bzjant

∫ 1

−1
F (zjantus)dµzjant(s)+

1

by

∑
j

bzj (ρn)D0.

By (7.11), we have 1
by

∑
j bzj (ρn)D0 ≤ D̂.
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Therefore, reversing the change of variable, i.e., now letting r = e−nts,
we get from (7.13) the following:

A(n+1)tF (y) ≤
1

by

∑
j

c0σ

∫ ρn

−ρn

F (zjurant)dµzj (r) + D̂

≤ 2c0σ

by

∫ 1+ρn

−(1+ρn)
F (yurant)dµy(r) + D̂

=
2c0σby(1 + ρn)

by
Ant,1+ρnF (y) + D̂.

Since

sup
y∈Y0

2c0σby(2)

by
= (4pδYY )−1 sup

y∈Y0

by(2)

by
≤ 1

2
,

we get

A(n+1)tF (y) ≤
1

2
Ant,1+ρnF (y) + D̂.

The proof is complete. □

8. Return lemma and number of nearby sheets

We fix closed non-elementary H-orbits Y and Z in X. Since Z is closed,
a fixed ball around y ∈ Y0 intersects only finitely many sheets of Z (Fig.
2). The aim of this section is to show that the number of sheets of Z
in B(y, inj(y)) is controlled by the tight area of SZ with a multiplicative
constant depending on pY and δY .

The main ingredient is a return lemma which says that for any y ∈ Y0,
there exists some point in {yur ∈ Y0 : r ∈ [−1, 1]} whose minimum return
time to a fixed compact subset under the geodesic flow is comparable to
log(ω(y)) (see Lemma 8.4).

Return lemma. We use the notation of section 6.
Recall that Lie(G) = isl2(R)⊕sl2(R). We define a norm ∥·∥ on Lie(G) us-

ing an inner product with respect to which sl2(R) and isl2(R) are orthogonal
to each other. Given a vector w ∈ Lie(G), we write

w = iIm(w) + Re(w) ∈ isl2(R)⊕ sl2(R).

Since the exponential map Lie(G) → G defines a local diffeomorphism, there
exists an absolute constant c1 ≥ 2 satisfying the following two properties:

(1) for all x ∈ X, and all w = iIm(w) + Re(w) ∈ Lie(G) with ∥w∥ ≤
max(1, εX),

(8.1) c−1
1 ∥w∥ ≤ d(x, x exp(iIm(w)) exp(Re(w))) ≤ c1∥w∥;

(2) If d(x, x′) ≤ εX/c1, then x′ = x exp(iIm(w)) exp(Re(w)) for some
w ∈ Lie(G).
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We choose an absolute constant dX ≥ 24 so that

XεX ⊂ {x ∈ X0 : ω(x) ≤ dX}.

Let D1 := D1(Y ) be given by

(8.2) D1 = c1α
(

6b1
κη0

+ dX

)
where κ is defined by b̂0p

δY
Y κδY /2 = 1/2, 0 < η0 < 1 is as in (6.6), α ≥ 1 is

as in (6.8), and c1 is as in (8.1). We note that by increasing b̂0 if necessary,
we may and will assume that κ ∈ (0, 1). Moreover we put η0 =

1
2 when Y is

convex cocompact.
Define

(8.3) KY = {y ∈ Y0 : ω(y) ≤ D1/(c1α)}.

Note that XεX ∩ Y0 ⊂ KY .
The choices of the above parameters are motivated by our applications

in the following lemmas. Indeed the choice of κ is used in (8.6). The
multiplicative parameter c1α, which features in the definitions ofD1 and KY ,
is tailored so that we may utilize Lemma 8.10 in the proof of Lemma 8.13.

Lemma 8.4 (Return lemma). For every y ∈ Y0, there exists some |r| ≤ 1
so that yura−t ∈ KY where t = log(η0ω(y)/6).

Proof. Let y ∈ Y0 − KY . By the definition of ω, there exist 1 ≤ i ≤ ℓ and
g ∈ h̃i so that y = [g] and

ω(y) = ωi(y),

see §6 for the notation. Set v := vig. Then

∥v∥−1 = ωi(y) = ω(y).

Let us write v = w+se3 where w ∈ V and s ∈ R. Recall from Lemma 5.12
that there exists b1 > 1 so that

(8.5) ∥w∥ ≥ b−1
1 ∥v∥.

Let κ > 0 be as used in (8.2). Then (5.5) implies that

(8.6) µy(D
+( w

∥w∥ , κ)) ≤
1
2µy([−1, 1]).

Therefore, there exists r ∈ supp(µy) ∩
(
[−1, 1] −D+( w

∥w∥ , κ)
)
. This means

that yur ∈ Y0, moreover, we have, using (8.5),

∥p+(vur)∥ = ∥p+(wur)∥ > κ∥w∥ ≥ κb−1
1 ∥v∥.

Set t := log(η0ω(y)/6). Then

κb−1
1 ∥v∥ · η0ω(y)

6 = κb−1
1 ∥v∥et ≤ ∥p+(vur)at∥

≤ ∥vurat∥ ≤ ∥vur∥et ≤ 2∥v∥ · η0ω(y)
6 ,

where we use ∥vur∥ ≤ 2∥v∥ in the last inequality.
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Hence, using the fact that ω(y) = ∥v∥−1,

κb−1
1 η0
6 ≤ ∥vurat∥ = ∥vigurat∥ ≤ η0

3 .

This in particular implies that gurat ∈ h̃i. By Lemma 6.5, whenever γ ∈ Γ
and 1 ≤ j ≤ ℓ satisfy that h̃j ̸= γh̃i, we have

∥vjγgurat∥ ≥ η0;

note that i = j is allowed.
This and the above upper bound thus imply

ω(yurat) = ∥vigurat∥−1.

Therefore,

ω(yurat) ≤
6b1
κη0

≤ D1/(c1α)

proving the claim. □

Number of nearby sheets. Recalling that sl2(C) = sl2(R) ⊕ isl2(R),
we set V = isl2(R) and consider the action of H on V via the adjoint
representation; so v · h = h−1vh for v ∈ V and h ∈ H. We use the relation
g(exp v)h = gh exp(v · h) which is valid for all g ∈ G, v ∈ V, h ∈ H.

If D ≥ α/2 for α as in Proposition 6.7, then D−1ω(y)−1 ≤ 1
2 inj(y).

Definition 8.7. For y ∈ Y0 and D ≥ α/2, we define

(8.8) IZ(y,D) = {v ∈ V − {0} : ∥v∥ < D−1ω(y)−1, y exp(v) ∈ Z}.

Since V is the orthogonal complement to Lie(H), the set IZ(y,D) can
be understood as the number of sheets of Z in the ball around y of radius
D−1ω(y)−1.

It turns out that #IZ(y,D) can be controlled in terms of the tight area
of SZ , uniformly over all y ∈ Y0 for an appropriate D > 1.

Notation 8.9. We set

τZ := areat(SZ).

Theorem 3.3 shows that 1 ≪ τZ <∞ where the implied constant depends
only on M .

We begin with the following lemma:

Lemma 8.10. With c1 ≥ 2 and α ≥ 2 given respectively in (8.1) and (6.7),
we have that for all y ∈ Y0,

(8.11) #IZ(y, c1α) ≪ ω(y)3τZ .

Proof. Let c1 ≥ 1 and α be the absolute constants given in (8.1) and (6.7)
respectively. It follows that for any y ∈ Y0 and v ∈ IZ(y, α),

(8.12) d(y, y exp(v)) ≤ c1∥v∥ ≤ c1(c1α)
−1 · ω(y)−1 < 1

2 · inj(y).
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It follows that for each v ∈ IZ(y, c1α), inj(y exp v) ≥ inj(y)/2. Hence the
balls BZ(y exp v, inj(y)/2), v ∈ IZ(y, c1α) are disjoint from each other, and
hence

#IZ(y, α)·Vol(BH(e, inj(y)/2)) = Vol
{⋃

BZ(y exp v, inj(y)/2) : v ∈ IZ(y, α)
}
.

On the other hand, if we set ρy := min{1, inj(y)/2}, then

π
({⋃

BZ(y exp v, ρy) : v ∈ IZ(y, c1α)
})

⊂ SZ ∩N (core(M)).

Therefore

#IZ(y, c1α) ≤ Vol(BH(e, ρy))
−1 · τZ ≪ ρ−3

y τZ ≪ ω(y)3τZ ;

we have used that 2π(cosh r − 1) ≥ r3 for all r > 0 and Proposition 6.7
respectively in the last two estimates. □

Let D1 be as in (8.2). By the choice of κ, we have D1 ≪ p2Y (see the
discussion following (8.2)).

Lemma 8.13 (Number of sheets). For D1 = D1(Y ) ≪ p2Y as in (8.2), we
have

sup
y∈Y0

#IZ(y,D1) ≤ c0 · p6Y · τZ

where c0 ≥ 2 is an absolute constant.

Proof. Let KY be as in (8.3):

KY = {y ∈ Y0 : ω(y) ≤ (c1α)
−1D1}.

If y ∈ KY , then, by Lemma 8.10,

#IZ(y,D1) ≤ #IZ(y, c1α) ≪ D3
1τZ ≪ p6Y τZ .

Now suppose that y ∈ Y0 − KY . By Lemma 8.4, there exist |r| < 1 and
t = log(η0 · ω(y)/6), where 0 < η0 ≤ 1 is as in (6.6), such that

yurat ∈ KY .

We claim that if v ∈ IZ(y,D1), then v(urat) ∈ IZ(yurat, c1α). Firstly,
note that, plugging t = log(η0 · ω(y)/6) and using 0 < η ≤ 1,

∥v(urat)∥ ≤ 3et∥v∥ = 3η0 ω(y) ∥v∥
6 < ω(y) · ∥v∥.

Hence for v ∈ IZ(y,D1), as ω(y)∥v∥ < D−1
1 ,

∥v(urat)∥ < ω(y) · ∥v∥ ≤ D−1
1 ≤ (c1α)

−1ω(yurat)
−1.

where we used the fact that (c1α)
−1D1 > ω(yurat).

Since y(exp v)urat = (yurat) exp(v(urat)) ∈ Z, this implies that v(urat) ∈
IZ(yurat, c1α). Therefore the map v 7→ v(urat) is an injective map from
IZ(y,D1) into IZ(yurat, c1α). Consequently,

#IZ(y,D1) ≤ #IZ(yurat, c1α) ≪ p6Y · τZ .
This finishes the proof. □



35

9. Margulis function: construction and estimate

Throughout this section, we fix closed non-elementary H-orbits Y,Z in
X and

δY
3

≤ s < δY .

In this section, we define a family of Margulis functions Fs,λ = Fs,λ,Y,Z ,
λ > 1 and show that the hypothesis of Proposition 7.5 is satisfied for a
certain choice of λ, which we will denote by λs. As a consequence, we will
get an estimate on mY (Fs,λs) in Theorem 9.18.

We set

IZ(y) := {v ∈ V − {0} : ∥v∥ < D−1
1 ω(y)−1, y exp(v) ∈ Z}

for D1 > 1 as given in Lemma 8.13.

Definition 9.1 (Margulis function). (1) Define fs := fs,Y,Z : Y0 →
(0,∞) by

fs(y) :=

{∑
v∈IZ(y) ∥v∥−s if IZ(y) ̸= ∅

ω(y)s otherwise.

(2) For λ ≥ 1, define Fs,λ = Fs,λ,Y,Z : Y0 → (0,∞) as follows:

(9.2) Fs,λ(y) = fs(y) + λ ω(y)s.

Note that for all y ∈ Y0

(9.3) ω(y)s ≤ fs(y) <∞.

Since Y and Z are closed orbits, both fs and Fs,λ are locally bounded.
Moreover, they are also Borel functions. Indeed, ωs is continuous on Y0,
and fs is continuous on the open subset {y ∈ Y0 : IZ(y) ̸= ∅} as well as on
its complement.

In this section, we specify choices of parameters ts and λs so that the
average AtsFs,λs satisfies the hypothesis of Proposition 7.5 with controlled
size of the additive term (Lemma 9.14).

Notation 9.4 (Parameters). (1) For 0 < c < 1, define t(c, s) > 0 by

b0b1p
δY
Y e−(δY −s)t(c,s)/4

(δY − s)
= c

where b0 and b1 are given in Lemma 5.13.
(2) For 0 < c < 1 and t > 0, define λ(t, c, s) > 0 by

λ(t, c, s) :=
(
2c0D1p

6
Y τZ

) e2ts
c

where c0 is given by (8.13).
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As it is evident from the above, the definition of t(c, s) is motivated by the
linear algebra lemma 5.13. Indeed, for any vector v ∈ e1G and t ≥ t(c, s),
we have we have

sup
1≤ρ≤2

1

µy[−ρ, ρ]

∫ ρ

−ρ

1

∥vurat∥s
dµy(r) ≤ c∥v∥−s.(9.5)

The choice of λ(t, c, s) is to control the additive difference between fs(yurat)
and

∑
v∈IZ(y) ∥vurat∥−s uniformly over all r ∈ [−1, 1] such that yur ∈ Y0,

so that we will get:

Atfs(y) ≤ c · fs(y) + λ(t,c,s)c
2 ω(y)s

(see Lemma 9.11, (9.15) and (9.16)).

Markov operator for the height function. In this subsection, we use
notation from section 6.

It will be convenient to introduce the following notation:

Notation 9.6. Let Q ⊂ G be a compact subset.

(1) Let dQ ≥ 1 be the infimum of all d ≥ 1 such that for all g ∈ Q and
v ∈ R4,

(9.7) d−1∥v∥ ≤ ∥vg∥ ≤ d∥v∥.
Note that dQ ≍ maxg∈Q ∥g∥, up to an absolute multiplicative con-
stant.

(2) We also define cQ ≥ 1 to be the infimum of all c ≥ 1 such that for
any x ∈ X0, g ∈ Q with xg ∈ X0, and for all 1 ≤ i ≤ ℓ

(9.8) c−1ωi(x) ≤ ωi(xg) ≤ c ωi(x).

We note that cQ ≍ maxg∈Q ∥g∥ up to an absolute multiplicative
constant.

Lemma 9.9. For any 0 < c ≤ 1/2 and t ≥ t(c, s), there exists D2 ≍ e2t so
that for all y ∈ Y0 and 1 ≤ ρ ≤ 2,

At,ρω(y)
s ≤ c · ω(y)s +D2.

Proof. Let t ≥ t(c, s). We compare ω(yurat) and ω(y) for r ∈ [−2, 2].
Setting

Q := {aτur : |r| ≤ 2, |τ | ≤ t},
we have cQ ≍ et.

Let η0 be as in Lemma 6.5. Fix 0 < ηX ≤ min{εX , η0} so that

ηX ≍ εX and η−1
X ≥ sup

y∈XεX
∩Y0

ω(y);

We consider two cases.
Case 1: ω(y) ≤ 2cQ/ηX . In this case, for h ∈ Q with yh ∈ Y0,

ω(yh) ≤ 2c2Q/ηX .

Hence, the claim in this case follows if we choose D2 = 2c2Q/ηX ≍ e2t.
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Case 2: ω(y) > 2cQ/ηX . By the definition of ω, there exists 1 ≤ i ≤ ℓ such
that

ωi(y) > 2cQ/ηX , and hence y ∈ hi.

By the definition of cQ, see (9.8), we have

ωi(yh) > 2/ηX , and hence yh ∈ hi

for all h ∈ Q with yh ∈ Y0. Choose g0 ∈ G so that y = [g0]. In view of
Lemma 6.5, see in particular (6.6), and since ηX ≤ η0 there exists γ ∈ Γ
such that simultaneously for all h ∈ Q with yh ∈ Y0,

ω(yh) = ωi(yh) = ∥viγg0h∥−1.

Since vi = e1g
−1
i ∈ e1G (see (6.1)), we may apply Lemma 5.13 (linear

algebra lemma II) and deduce:

At,ρω(y)
s =

1

µy([−ρ, ρ])

∫ ρ

−ρ

1

∥viγurat∥s
dµy(r)

≤
b0b1p

δY
Y e−(δY −s)t/4

(δY − s)
∥viγ∥−s ≤ c · ω(y)s;

in the last inequality we used the fact that t ≥ t(c, s). The proof is now
complete. □

Log-continuity of Fs,λ. The following log-continuity lemma with a control
on the multiplicative constant σ is the first hypothesis in Proposition 7.5.

Lemma 9.10 (Log-continuity lemma). There exists 2 ≤ σ ≪ p8Y so that
the following holds: for every λ ≥ τZ , we have

σ−1Fs,λ(y) ≤ Fs,λ(yh) ≤ σFs,λ(y)

for all y ∈ Y0 and all h ∈ BH(2) so that yh ∈ Y0.

Let c0 be as in Lemma 8.13. Recall from Theorem 3.3 that τZ ≥ ε2X ,
replacing c0 by its multiple (which we continue to denote by c0) if necessary
we assume that c0τZ ≥ 1.

We first obtain the following estimate for f on nearby points:

Lemma 9.11. Let Q ⊂ H be a compact subset. For any y ∈ Y0 and h ∈ Q
such that yh ∈ Y0, we have

fs(yh) ≤
∑

v∈IZ(y)

∥vh∥−s +
(
c0cQdQD1p

6
Y τZ

)
ω(y)s

where c0 is as above and the sum is understood as 0 when IZ(y) = ∅.

Proof. Let y ∈ Y0 and h ∈ Q with yh ∈ Y0. If IZ(yh) = ∅, then by (9.8), we
have

fs(yh) = ω(yh)s ≤ csQω(y)
s

proving the claim; recall that c0τZ ≥ 1.
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Now suppose that IZ(yh) ̸= ∅. Setting

ε := (dQD1ω(y))
−1,

we write

fs(yh) =
∑

v∈IZ(yh),∥v∥<ε

∥v∥−s +
∑

v∈IZ(yh),∥v∥≥ε

∥v∥−s.(9.12)

Since #IZ(yh) ≤ c0p
6
Y τZ by Lemma 8.13, we have∑

v∈IZ(yh),∥v∥≥ε

∥v∥−s ≤
(
c0p

6
Y τZ

)
ε−s ≤

(
c0dQD1p

6
Y τZ

)
ω(y)s.(9.13)

Thus, if there is no v ∈ IZ(yh) with ∥v∥ ≤ ε, then the lemma follows from
(9.12).

If v ∈ IZ(yh) satisfies ∥v∥ < ε, then

∥vh−1∥ ≤ dQε = D−1
1 ω(y)−1;

in particular, vh−1 ∈ IZ(y). Therefore, by setting v′ = vh−1,∑
v∈IZ(yh),∥v∥<ε

∥v∥−s ≤
∑

v′∈IZ(y)

∥v′h∥−s.

Together with (9.13), this finishes the proof. □

Proof of Lemma 9.10. Since BH(2)−1 = BH(2), it suffices to show the
inequality ≤. By Lemma 9.11, applied with Q = BH(2), c := cBH(2) and
d := dBH(2), we have that for all h ∈ BH(1) with yh ∈ Y0, we have

fs(yh) ≤
∑

v∈IZ(y)

∥vh∥−s +
(
c0cdD1p

6
Y τZ

)
ω(y)s

≤ d
∑

v∈IZ(y)

∥v∥−s + c0cdD1p
6
Y τZω(y)

s.

where we used the definition of d.
Recall from Theorem 3.3 that ε2X ≤ τZ ≤ λ and that D1 ≪ p2Y .
If IZ(y) = ∅, then

Fs,λ(yh) ≪ p8Y τZω(y)
s + λω(y)s ≪ p8Y λω(y)

s

≪ p8Y (fs(y) + λω(y)s) ≪ p8Y Fs,λ(y).

If IZ(y) ̸= ∅, then

Fs,λ(yh) ≤ d · fs(y) + c0cdD1p
6
Y τZω(y)

s + λω(yh)s

≪ fs(y) + p8Y λω(y)
s ≪ p8Y Fs,λ(y).

This finishes the upper bound. The lower bound can be obtained similarly.

Main inequality. We will apply the following lemma to obtain the second

hypothesis of Proposition 7.5 for c := (8σpδYY )−1 < 1/2.
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Lemma 9.14 (Main inequality). Let 0 < c ≤ 1/2. For t ≥ t(c/2, s) and
λ = λ(t, c, s), we have the following: for any y ∈ Y0 and 1 ≤ ρ ≤ 2, we have

At,ρFs,λ(y) ≤ c Fs,λ(y) + λD2

where D2 ≪ e2t is as in Lemma 9.9.

Proof. The following argument is based on comparing the values of fs(yurat)
and fs(y) for r ∈ [−2, 2] such that yurat ∈ Y0.

Let Q := {aτur : |r| ≤ 2, |τ | ≤ t}. Then
cQ≍et and dQ≍et

where cQ and dQ are as in (9.6). Hence, by Lemma 9.11, we have that for
any |r| ≤ 2 such that yurat ∈ Y0,

(9.15) fs(yurat) ≤
∑

v∈IZ(y)

∥vurat∥−s + c0D1p
6
Y τZω(y)

se2ts

where c0 is as in Lemma 9.11.
By averaging (9.15) over [−ρ, ρ] with respect to µy, and applying (9.5),

we get

At,ρfs(y) ≤ c · fs(y) + c0D1p
6
Y τZω(y)

se2ts(9.16)

≤ c · fs(y) + λc
2 ω(y)

s.

Then by Lemma 9.9 and (9.16), we have

At,ρFs,λ(y) = At,ρfs(y) + At,ρλω(y)
s

≤ c · fs(y) + cλ
2 ω(y)

s + cλ
2 ω(y)

s + λD2

= c · Fs,λ(y) + λD2.

□

By Theorem 4.8, we have sY ≍ pY . For the sake of simplicity of notation,
we put

(9.17) αY,s :=

(
sY

δY − s

)1/(δY −s)

≍
(

pY
δY − s

)1/(δY −s)

.

We are now in a position to apply Proposition 7.5 to get the following
estimate:

Theorem 9.18 (Margulis function on average). There exists λs > 1 such
that

mY (Fs,λs) ≪ α⋆
Y,sτZ .

Proof. Let 1 ≤ σ ≪ p8Y be given by Lemma 9.10. Let c := (8σpδYY )−1 <
1/2, ts := t(c, s) and λs := λ(ts, c, s) be given by (9.4). Then in view of
Lemmas 9.10 and 9.14, Fs,λs satisfies the conditions of Proposition 7.5 with
t = ts and D0 = λsD2, where D2 ≪ e2ts is given in Lemma 9.9. Therefore

(9.19) mY (Fs,λs) ≤ 64λsp
δY
Y D2.
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Since

e(δY −s)ts =
(8σb0b1p

2δY
Y )4

(δY −s)4
≪
(

pY
δY −s

)⋆
and λs =

(
2c0D1p

6
Y τZ

)
e2tss

c ,

we get

λsp
δY
Y D2 ≪ p⋆Y e

4tsτZ ≪ α⋆
Y,sτZ .

Combining this with (9.19) finishes the proof. □

10. Quantitative isolation of a closed orbit

In this section, we deduce Theorem 1.5 from Theorem 9.18. Let Y,Z be
non-elementary closed H-orbits in X. We allow the case Y = Z as well. Let
δY
3 ≤ s < δY .
Recall the definitions of fs = fs,Y,Z and Fs,λ = Fs,λ,Y,Z from Definition

9.1. Let λs be given by Theorem 9.18. Using the log-continuity lemma for
Fs,λs (Lemma 9.10), we first deduce the following estimate:

Proposition 10.1. For any 0 < ε < εX and y ∈ Y0 ∩Xε, we have

fs,Y,Z(y) ≤ Fs,λs(y) ≪
α⋆
Y,sτZ

mY (B(y, ε))
.

Proof. Let y ∈ Y0 ∩Xε. Then inj(y) ≥ ε and hence yBH(ε) = B(y, ε). For
all h ∈ BH(εX), Fs,λs(y) ≤ σFs,λs(yh) for some constant σ ≪ p6Y by Lemma
9.10. By applying Theorem 9.18, we get

Fs,λs(y) ≤
σ
∫
x∈yBH(ε) Fs,λs(x)dmY (x)

mY (B(y, ε))
≤
σ ·mY (Fs,λs)

mY (B(y, ε))
≪

α⋆
Y,sτZ

mY (B(y, ε))
.

□

Recall from (6.8) that for all x ∈ X0,

(10.2) 1
2α · inj(x) ≤ ω(x)−1 ≤ α

2 · inj(x).
Using the next lemma, we will be able to use the estimate for fs,Y,Z

obtained in Proposition 10.1 to deduce a lower bound for d(y, Z).

Lemma 10.3. (1) Let y ∈ Y0 and z ∈ Z − BY (y, inj(y)). If d(y, z) ≤
1

2αc1D1
inj(y), then

d(y, z)−s ≤ c1fs,Y,Z(y)

where c1 ≥ 1 is as in (8.1).
(2) If Y ̸= Z, then for any y ∈ Y0,

d(y, Z)−s ≪ p2Y fs,Y,Z(y).

Proof. As Z is closed and d(y, z) ≤ 1
2αc1D1

inj(y) < 1
2 inj(y), the hypothesis

z ∈ Z − BY (y, inj(y)) and the choice of c1 implies that z is of the form
y exp(v) exp(v′) with v ∈ isl2(R)− {0} and v′ ∈ sl2(R).

In particular y exp(v) = z exp(−v′) ∈ Z. Moreover, by (8.1),

∥v∥ ≤ ∥v + v′∥ ≤ c1d(y, z) ≤ D−1
1 inj(y)/(2α) ≤ (D1ω(y))

−1.
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It follows that v ∈ IZ(y,D1). Therefore

(10.4) d(y, z)−s ≤ cs1∥v∥−s ≤ c1∥v∥−s ≤ c1fs(y),

proving (1).
We now turn to the proof of (2); suppose thus that Y ̸= Z. Then there

exists z ∈ Z such that d(y, Z) = d(y, z). In view of (1), it suffices to consider
the case when d(y, z) > 1

2αc1D1
inj(y).

Since s ≤ 1, ω(y)s ≤ fs(y), and D1 ≪ p2Y , we get

d(y, z)−s ≤ 2αc1D1 inj(y)
−s ≤ 2α2c1D1ω(y)

s ≪ p2Y fs,Y,Z(y)

where we also used (10.2). The proof is complete. □

Theorem 1.5(1) is a special case of the following theorem:

Theorem 10.5 (Isolation in distance). For any 0 < ε < εX , y ∈ Y0 ∩Xε,
and z ∈ Z, at least one of the following holds:

(1) z ∈ BY (y, ε) = yBH(e, ε), or

(2) d(y, z) ≫ α
−⋆/s
Y,s mY (B(y, ε))1/sτZ

−1/s, where αY,s is as given in (9.17).

Proof. As y ∈ Xε, inj(y) ≥ ε. Suppose that z /∈ BY (y, ε). We first observe

that since mY (B(y, ε))1/s ≪ ε and p−2
Y ≫ α

−⋆/s
Y,s , we have

ε

2αc1D1
≫ p−2

Y ε≫ α
−⋆/s
Y,s mY (B(y, ε))1/s.

Therefore, if d(y, z) ≥ 1
2αc1D1

ε, then (2) holds in view of the fact that

τZ ≥ ε2X .

If d(y, z) ≤ 1
2αc1D1

ε ≤ 1
2αc1D1

inj(y), then by Lemma 10.3, d(y, z)−s ≤
c1fs(y). Hence applying Proposition 10.1, we conclude

d(y, z)−s ≤ c1fs(y) ≤ c1
α⋆
Y,sτZ

mY (B(y, ε))

which finishes the proof in this case as well. □

The following theorem is Theorem 1.5(2):

Theorem 10.6 (Isolation in measure). Let 0 < ε ≤ εX . Let Y ̸= Z. We
have

mY {y ∈ Y : d(y, Z) ≤ ε} ≪ α⋆
Y,sτZε

s.

Proof. Let λs be given by Theorem 9.18. By Lemma 10.3(2),

d(y, Z)−s ≤ cfs,Y.Z(y) ≤ C · Fs,λs(y)

for some 1 < C ≪ p2Y .
For 0 < ε < εX , if we set

Ωε := {y ∈ Y0 : Fs,λs(y) > C−1ε−s},
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then {y ∈ Y0 : d(y, Z) ≤ ε} ⊂ Ωε. On the other hand, we have

C−1ε−smY (Ωε) ≤
∫
Ωε

Fs,λsdmY ≤ mY (Fs,λs).

Since mY (Fs,λs) ≪ α⋆
Y,sτZ by Theorem 9.18, we get that

mY {y ∈ Y0 : d(y, Z) ≤ ε} ≤ mY (Ωε) ≪ α⋆
Y,sτZε

s.

□

Proof of Proposition 1.17. Let Fs = Fs,λs be as in Theorem 9.18. Then Fs

satisfies (1) in the proposition by Lemma 10.3. It satisfies (3) by Lemma 9.10.
Moreover, in view of Lemmas 9.10 and 9.14, Fs satisfies the conditions

of Proposition 7.5. Hence, by Proposition 7.6, it also satisfies (2) in the
proposition. □

We remark that in both Theorems 10.5 and 10.6, the exponents ⋆ depend
only on G, and the implied constants are respectively of the form c εNX and

c−1 ε−N
X for some c ≤ 1 and N ≥ 1 both depending only on G.

Number of properly immersed geodesic planes. When Vol(M) <∞,
we record the following corollary of Theorem 10.5. Let N (T ) denote the
number of properly immersed totally geodesic planes P in M of area at
most T .

We deduce the following upper bound from Theorem 10.5 using the pi-
geonhole principle:

Corollary 10.7. Let Vol(M) <∞. There exists N ≥ 1 (depending only on
G) such that for any 1/2 < s < 1, we have

N (T ) ≪s Vol(M)ε−N
X T

6
s
−1

where the implied constant depends only on s.

Proof. We begin by recalling that αY,s = αs := ( 1
1−s)

1/(1−s) for any closed

H-orbit Y in X when Vol(M) <∞.
We obtain an upper bound for the number of closed H-orbits in X which

yields the above result. The proof is based on applying Theorem 10.5.
If X is compact, let ρ = 0.1εX . If X is not compact, then the quantitative

non-divergence of the action of U on X implies that there exists ρ > 0 so
that for all x ∈ X such that xU is not compact,

1

T
ℓ{t ∈ [0, T ] : xut ∈ X −Xρ} ≤ 0.01

for all sufficiently large T ≫ 1, e.g., see [9]. Moreover ρ can be taken to be
≍ εkX for some k ≥ 1.

Since (Y,mY ) is U -ergodic by the Moore’s ergodicity theorem for every
closed orbit Y = xH, the Birkhoff ergodic theorem says that for mY a.e.
y ∈ Y ,

lim
T→∞

1

T
ℓ{t ∈ [0, T ] : yut ∈ X −Xρ} = mY (X −Xρ)
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where ℓ denotes the Lebesgue measure on R; therefore

(10.8) mY (X −Xρ) < 0.01.

For every S > 0 put

Y(S) := {xH : xH is closed and S/2 < Vol(xH) ≤ S}.

In view of the above choice of ρ, we have Vol(xH) ≥ ρ3 ≫ 1 for every closed
orbit xH. Let n0 = ⌊3 log2(ρ)⌋ and for every T > 1, let nT = ⌈log2 T ⌉.
Then we have

{xH : xH is closed and vol(xH) ≤ T} ⊂
nT⋃
n0

Y(2k).

Let η ≍ ρ be so that the map g 7→ xg is injective for all x ∈ Xρ and all

g ∈ Box(η) := exp(Bisl2(R)(0, η)) exp(Bsl2(R)(0, η)).

Fix some 1/2 < s < 1 and some z ∈ X. We claim that

(10.9) #
(
connected components of Y(2k) ∩ z.Box(η)

)
≪ α12/s

s 26k/s

where the implied constant depends on ρ.
For any connected component C of Y(2k) ∩ z.Box(η), there exists some

v ∈ isl2(R) so that

C = z exp(v) exp(Bsl2(R)(0, η)).

Let us write C = Cv. Now in view of Theorem 10.5, for every two connected
components Cv ̸= Cv′ , we have

(10.10) ∥v − v′∥ ≫ρ α
−4/s
s 2−2k/s.

Because dim(r) = 3, the cardinality of an α
−4/s
s 2−2k/s-separated set in

Bisl2(R)(0, η) is ≪ α
12/s
s 26k/s, where the implied constant depends only on

the choice of norm. The claim in (10.9) thus follows from (10.10).
Let

{
zj .Box(η) : 1 ≤ j ≤ R

}
be a covering of Xρ with sets of the form

z.Box(η); we may find such a covering with R = O(Vol(X)η−6) the implied
constant is absolute, see also the definition of c1 in (8.1). Then we compute

N (2k) ≤ 2−k+1
∑
Y(2k)

vol(xH) by def. of Y(2k)

≪ 2−k
M∑
j=1

∑
Cv⊂zj .Box(η)

vol(Cv) by (10.8)

≪ α12/s
s

R∑
j=1

2
6k
s
−k by (10.9)

≪ Vol(X)α12/s
s 2

6k
s
−k since R = O(Vol(X))

in the above we also used the fact that vol(Cv) ≪ρ 1.
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Since ρ ≍ η can be taken ≍ εkX , we conclude that for some absolute
constant N1, N2 ≥ 1 and c = c(s) ≥ 1,

N (T ) ≤ c Vol(X)ρ−N1α12/s
s

nT∑
k=n0

2
6k
s
−k ≤ c Vol(X)ε−N2

X T
6
s
−1

which implies the claim (note here that Vol(X) = Vol(M), since Γ is torsion-
free.) □

Remark 10.11. Let NM (T ) be the number of properly immersed geodesic
planes of area at most T in a general geometrically finite manifold M =
Γ\H3. If Y is a closed H-orbit Y of finite area in Γ\G, then pY ≍ sY = 2,
τY = Vol(Y ) and the non-divergence of the U -action as given in [6, Thm.
1.1] implies that (10.8) also holds in this setting.

In view of these, the proof of Corollary 10.7 works in the same way for
the following: there exists N ≥ 1 (depending only on G) such that for any
1/2 < s < 1, we have

NM (T ) ≪s Vol(unit-nbd of coreM) ε−N
M T

6
s
−1

where the implied constant depends only on s.

11. Appendix: Proof of Theorem 1.1 in the compact case

In this section we present the proof of Theorem 1.1 when X is compact.
As was mentioned in the introduction, this case is due to G. Margulis.

Let Y ̸= Z be two closedH-orbits inX = Γ\G. Recall εX = minx∈X inj(x)
where inj(x) is the injectivity radius measured in Γ\H3.

Fix 0 < s < 1, and define fs : Y → [2,∞) as follows: for any y ∈ Y ,

fs(y) =

{∑
v∈IZ(y) ∥v∥−s if IZ(y) ̸= ∅

ε−s
X otherwise

where
IZ(y) = {v ∈ isl2(R) : 0 < ∥v∥ < εX , y exp(v) ∈ Z}.

Define Fs = Fs,Y,Z : Y → (0,∞) as follows:

Fs(y) = fs(y) + Vol(Z)ε−s
X .

Note that in the case at hand, Fs is a bounded Borel function on Y .
We also note that in the case at hand ω, as defined in (6.3), is a bounded
function on X (recall that ω = 2 in this case), and hence Fs here and Fs,λs

that we considered in the proof of Theorem 1.5 are essentially the same
functions in this case.

We use the following special case of Lemma 5.6: for any v ∈ isl2(R) with
∥v∥ = 1, 1/3 ≤ s < 1 and t > 0, we have

(11.1)

∫ 1

0

dr

∥vurat∥s
≤ b0

e(s−1)t/4

1− s

where vh = Ad(h)(v) for all h ∈ H.
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Remark 11.2. It is worth noting that the symmetric interval [−1, 1] was
used in Lemma 5.6. We remark that this is necessary in the infinite volume
setting; indeed the half interval [0, 1] may even be a null set for µy for some
y, see (4.1) for the notation.

For a locally bounded function ψ on Y and t > 0, define

(11.3) Atψ(y) =

∫ 1

0
ψ(yurat)dr for y ∈ Y .

Proposition 11.4. Let 1/3 ≤ s < 1. There exists t = t(s) > 0 such that
for all y ∈ Y ,

(11.5) AtFs(y) ≤
1

2
Fs(y) + c ε−4

X α4
s Vol(Z)

where αs = (1− s)−1/(1−s) and c ≥ 1 is an absolute constant.

Proof. It suffices to show that Atfs(y) ≤ 1
2fs(y) + α4

sVol(Z).
Let b0 be as in (11.1), and let t = t(s) be given by the equation

b0
e(s−1)t/4

1− s
= 1/2.

We compare fs(yurat) and fs(y) for r ∈ [0, 1]. Let C1 ≍ et be large
enough so that ∥vh∥ ≤ C1∥v∥ for all v ∈ isl2(R) and all

h ∈ {aτur : |r| < 1, |τ | ≤ t}.
Let v ∈ IZ(yurat) be so that ∥v∥ < εX/C1. Then ∥va−tu−r∥ ≤ εX ; in
particular, va−tu−r ∈ IZ(y).

In the following, if IZ(·) = ∅, the sum is interpreted as to equal to ε−s
X .

In view of the above observation and the definition of fs, we have

fs(yurat) =
∑

v∈IZ(yurat)

∥v∥−s

=
∑

v∈IZ(yurat),∥v∥<εX/C1

∥v∥−s +
∑

v∈IZ(yurat),∥v∥≥εX/C1

∥v∥−s

≤
∑

v∈IZ(y)

∥vurat∥−s +
∑

v∈IZ(yurat),∥v∥≥εX/C1

∥v∥−s.(11.6)

Moreover, note that #IZ(y) ≪ ε−3
X Vol(Z) (see the proof of Lemma 8.13).

Hence,

(11.7)
∑

∥v∥≥εX/C1
∥v∥−s ≪ Cs

1ε
−4
X Vol(Z) ≪ ε−4

X estVol(Z).

We now average (11.6) over [0, 1]. Then using (11.7) and (11.1) we get

Atfs(y) ≤ 1
2fs(y) +O(estVol(Z)).

As (1− s)−1/(1−s) ≍ est/4, this proves (11.5). □

Let mY be the H-invariant probability measure on Y :
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Corollary 11.8. We have

mY (Fs) ≤ c ε−4
X α4

s Vol(Z)

where c ≥ 1 is an absolute constant.

Proof. SincemY is anH-invariant probability measure,mY (Atfs) = mY (fs).
Hence the claim follows by integrating (11.5) with respect to mY . □

Proof of Theorem 1.1. There exists σ > 0 such that for any h ∈ BH(εX)
and y ∈ Y , Fs(y) ≤ σFs(yh) (cf. Lemma 9.10); BH(εX) denotes the εX -ball
centered at the identity in H.

Hence, using Corollary 11.8, we deduce

fs(y) ≤ Fs(y) ≤
σ
∫
BH(εX) Fs(yh)dmY (yh)

mY (B(y, εX))

≤ σ ·mY (Fs)

mY (B(y, εX))
≪ α4

sε
−7
X Vol(Y )Vol(Z)

with an absolute implied constant. Since d(y, Z)−s ≤ c1fs(y) for an absolute
constant c1 ≥ 1 (see (10.4)), we have

(11.9) d(y, Z) ≫ α−4/s
s ε

7/s
X Vol(Z)−1/sVol(Y )−1/s.

This shows Theorem 1.1(1). By Corollary 11.8 and the Chebyshev in-
equality, we get

mY {y ∈ Y : d(y, Z) ≤ ε} ≤ mY {y ∈ Y : Fs(y) ≥ c−1
1 ε−s} ≤ c1mY (Fs)ε

s.

Therefore

(11.10) mY {y ∈ Y : d(y, Z) ≤ ε} ≤ c1cε
sε−4

X α4
s Vol(Z),

which implies Theorem 1.1(2). □
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