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Abstract. Let G be a connected semisimple real algebraic group. For
a Zariski dense Anosov subgroup Γ < G with respect to a parabolic
subgroup Pθ, we prove that any Γ-Patterson-Sullivan measure charges no
mass on any proper subvariety of G/Pθ. More generally, we prove that
for a Zariski dense θ-transverse subgroup Γ < G, any (Γ, ψ)-Patterson-
Sullivan measure charges no mass on any proper subvariety of G/Pθ,
provided the ψ-Poincaré series of Γ diverges at s = 1.

1. Introduction

Let G be a connected semisimple real algebraic group and g = LieG. Let
A be a maximal real split torus of G and set a = LieA. Fix a positive Weyl
chamber a+ < a and a maximal compact subgroup K < G such that the
Cartan decomposition G = K(exp a+)K holds. We denote by µ(g) ∈ a the
Cartan projection of g ∈ G, that is, the unique element of a+ such that
g ∈ K exp(µ(g))K. Let Π be the set of simple roots for (g, a+) and fix a
non-empty subset θ ⊂ Π. Let Pθ be the standard parabolic subgroup of G
corresponding to θ and set

Fθ = G/Pθ.

Let Γ < G be a Zariski dense discrete subgroup. Denote by Λθ ⊂ Fθ
the limit set of Γ, which is the unique Γ-minimal subset of Fθ [1]. Let
aθ =

⋂
α∈Π−θ kerα. For a linear form ψ ∈ a∗θ, a Borel probability measure ν

on Fθ is called a (Γ, ψ)-conformal measure if

dγ∗ν

dν
(ξ) = eψ(β

θ
ξ (e,γ)) for all γ ∈ Γ and ξ ∈ Fθ

where γ∗ν(B) = ν(γ−1B) for any Borel subset B ⊂ Fθ and βθξ denotes

the aθ-valued Busemann map defined in (2.1). By a Γ-Patterson-Sullivan
measure on Fθ, we mean a (Γ, ψ)-conformal measure supported on Λθ for
some ψ ∈ a∗θ.

Patterson-Sullivan measures play a fundamental role in the study of geom-
etry and dynamics for Γ-actions. For G of rank one, they were constructed
by Patterson and Sullivan for any non-elementary discrete subgroup Γ of
G ([15], [19]), and hence the name. Their construction was generalized by
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Quint for any Zariski dense subgroup of a semisimple real algebraic group
[16].

A finitely generated subgroup Γ < G is called a θ-Anosov subgroup if
there exist C1, C2 > 0 such that for all γ ∈ Γ and α ∈ θ,

α(µ(γ)) ≥ C1|γ| − C2

where |γ| denotes the word length of γ with respect to a fixed finite gener-
ating set of Γ. A θ-Anosov subgroup is necessarily a word hyperbolic group
[10, Theorem 1.5, Corollary 1.6]. The notion of Anosov subgroups was first
introduced by Labourie for surface groups [13], and was extended to general
word hyperbolic groups by Guichard-Wienhard [7]. Several equivalent char-
acterizations have been established, one of which is the above definition (see
[6] [8] [9] [10]). Anosov subgroups are regarded as natural generalizations
of convex cocompact subgroups of rank one groups, and include the images
of Hitchin representations and of maximal representations as well as higher
rank Schottky subgroups; see [20], [11].

A special case of our main theorem is the following non-concentration
property of Patterson-Sullivan measures for θ-Anosov subgroups:

Theorem 1.1. Let Γ < G be a Zariski dense θ-Anosov subgroup. For any
Γ-Patterson-Sullivan measure ν on Fθ, we have

ν(S) = 0

for any proper subvariety S of Fθ.

Remark 1.2. This was proved by Flaminio-Spatzier [5] for G = SO(n, 1),
n ≥ 2, and by Edwards-Lee-Oh [4] when θ = Π and the opposition involution
i of G is trivial using the ergodic property of the Γ-action on the product
FΠ ×FΠ.

Indeed, we work with a more general class of discrete subgroups, called
θ-transverse subgroups.

Definition 1.3. A discrete subgroup Γ < G is called θ-transverse if

• it is θ-regular, i.e., lim infγ∈Γ α(µ(γ)) = ∞ for all α ∈ θ; and
• it is θ-antipodal, i.e., if any two distinct ξ, η ∈ Λθ∪i(θ) are in general
position.

Since i(µ(g)) = µ(g−1) for all g ∈ G, it follows that Γ is θ-transverse if and
only if Γ is i(θ)-transverse. The class of θ-transverse subgroups includes all
discrete subgroups of rank one Lie groups, θ-Anosov subgroups and relative
Anosov subgroups.

Let pθ : a → aθ be the projection which is invariant under all Weyl
elements fixing aθ pointwise, and set µθ = pθ ◦ µ. A linear form ψ ∈ a∗θ is
said to be (Γ, θ)-proper if the composition ψ ◦ µθ : Γ → [−ε,∞) is a proper
map for some ε > 0. The following is our main theorem from which Theorem
1.1 is deduced by applying Selberg’s lemma [18].



NON-CONCENTRATION PROPERTY OF PATTERSON-SULLIVAN MEASURES 3

Theorem 1.4. Let Γ < G be a Zariski dense virtually torsion-free θ-
transverse subgroup. Let ψ ∈ a∗θ be a (Γ, θ)-proper linear form such that∑

γ∈Γ e
−ψ(µθ(γ)) = ∞. For any (Γ, ψ)-Patterson-Sullivan measure ν on Fθ,

we have

ν(S) = 0

for any proper subvariety S of Fθ.

For θ-Anosov subgroups Γ, the existence of a (Γ, ψ)-Patterson-Sullivan

measure implies that ψ is (Γ, θ)-proper and
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞ ([14], [17])

Therefore Theorem 1.1 is a special case of Theorem 1.4.

Acknowledgement. We would like to thank Subhadip Dey for helpful con-
versations.

2. Ergodic properties of Patterson-Sullivan measures

Let G be a connected semisimple real algebraic group. Let P < G be
a minimal parabolic subgroup with a fixed Langlands decomposition P =
MAN, where A is a maximal real split torus of G, M is a maximal compact
subgroup commuting with A, and N the unipotent radical of P . We fix a
positive Weyl chamber a+ ⊂ a = LieA so that logN consists of positive root
subspaces. We fix a maximal compact subgroupK < G such that the Cartan
decompositionG = K(exp a+)K holds and denote by µ : G→ a+ the Cartan
projection, i.e., µ(g) ∈ a+ is the unique element such that g ∈ K exp(µ(g))K
for g ∈ G. Let w0 ∈ K be an element of the normalizer of A such that
Adw0 a

+ = −a+. The opposition involution i : a → a is defined by

i(u) = −Adw0(u) for u ∈ a.

Note that µ(g−1) = i(µ(g)) for all g ∈ G.
Let Π denote the set of all simple roots for (g, a+). Fix a non-empty

subset θ ⊂ Π. Let P−
θ and P+

θ be a pair of opposite standard parabolic

subgroups of G corresponding to θ; here Pθ := P−
θ is chosen to contain P .

We set

F−
θ = G/P−

θ and F+
θ = G/P+

θ .

We also write Fθ = F−
θ for simplicity. We set P = PΠ and F = FΠ. Since

P+
θ is conjugate to Pi(θ), we have Fi(θ) = F+

θ . We say ξ ∈ Fθ and η ∈ Fi(θ)

are in general position if (ξ, η) ∈ G(P−
θ , P

+
θ ) under the diagonal G-action

on Fθ ×Fi(θ). We write

F (2)
θ = G(P−

θ , P
+
θ ),

which is the unique open G-orbit in Fθ ×Fi(θ).
Let aθ =

⋂
α∈Π−θ kerα and denote by a∗θ the space of all linear forms on

aθ. We set pθ : a → aθ the unique projection invariant under the subgroup
of the Weyl group fixing aθ pointwise. Set µθ := pθ ◦ µ.
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The a-valued Busemann map β : F ×G×G→ a is defined as follows: for
ξ ∈ F and g, h ∈ G,

βξ(g, h) := σ(g−1, ξ)− σ(h−1, ξ)

where σ(g−1, ξ) ∈ a is the unique element such that g−1k ∈ K exp(σ(g−1, ξ))N
for any k ∈ K with ξ = kP . For ξ = kPθ ∈ Fθ for k ∈ K, we define the
aθ-valued Busemann map βθ : Fθ ×G×G→ aθ as

βθξ (g, h) := pθ(βkP (g, h)) ∈ aθ; (2.1)

this is well-defined [16, Section 6].
In the rest of this section, let Γ < G be a Zariski dense θ-transverse

subgroup as in Definition 1.3. For a (Γ, θ)-proper linear form ψ ∈ a∗θ, we
denote by δψ ∈ (0,∞] the abscissa of convergence of the series Pψ(s) :=∑

γ∈Γ e
−sψ(µθ(γ)); this is well-defined [12, Lemma 4.2]. We set

Dθ
Γ := {ψ ∈ a∗θ : (Γ, θ)-proper, δψ = 1 and Pψ(1) = ∞}.

Note that ψ ◦ i can be regarded as a linear form on ai(θ). Using the property

that i(µ(g)) = µ(g−1) for all g ∈ G, we deduce that Pψ = Pψ◦i and hence

ψ ∈ Dθ
Γ if and only if ψ ◦ i ∈ Di(θ)

Γ .
The θ-limit set Λθ of Γ is the unique Γ-minimal subset of Fθ [1]. We also

write

Λ
(2)
θ := {(ξ, η) ∈ F (2)

θ : ξ ∈ Λθ, η ∈ Λi(θ)}. (2.2)

The following ergodic property of Patterson-Sullivan measures was obtained
by Canary-Zhang-Zimmer [3]:

Theorem 2.1. [3, Proposition 9.1, Corollary 11.1] Suppose that θ = i(θ).
Let Γ < G be a Zariski dense θ-transverse subgroup. For any ψ ∈ Dθ

Γ,
there exists a unique (Γ, ψ)-Patterson-Sullivan measure νψ on Λθ and νψ is

non-atomic. Moreover, the diagonal Γ-action on (Λ
(2)
θ , (νψ × νψ◦i)|Λ(2)

θ

) is

ergodic.

3. A property of convergence group actions

In this section, we prove a certain property of convergence group actions
which we will need in the proof of our main theorem in the next section.
We refer to [2] for basic properties of convergence group actions. Let Γ be
a countable group acting on a compact metrizable space X (with #X ≥ 3)
by homeomorphisms. This action is called a convergence action if for any
sequence of distinct elements γn ∈ Γ, there exist a subsequence γnk

and a, b ∈
X such that as k → ∞, γnk

(x) converges to a for all x ∈ X−{b}, uniformly
on compact subsets. In this case, we say Γ acts on X as a convergence
group, which we suppose in the following. Any element γ ∈ Γ of infinite
order fixes precisely one or two points of X, and γ is called parabolic or
loxodromic accordingly. In that case, there exist aγ , bγ ∈ X, fixed by γ,
such that γn|X−{bγ} → aγ uniformly on compact subsets as n → ∞. We
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have γ loxodromic if and only if aγ ̸= bγ , in which case aγ and bγ are called
the attracting and repelling fixed points of γ respectively.

We will use the following lemma in the next section:

Lemma 3.1. Let Γ be a torsion-free countable group acting on a compact
metric space X as a convergence group. For any compact subset W of X
with at least two points, the subgroup ΓW = {γ ∈ Γ : γW = W} acts on
X−W properly discontinuously, that is, for any η ∈ X−W , there exists an
open neighborhood U of η such that γU ∩ U ̸= ∅ for γ ∈ ΓW implies γ = e.

Proof. Suppose not. Then there exist η ∈ X −W , a decreasing sequence
of open neighborhoods Un of η in X with

⋂
n Un = {η} and a sequence

e ̸= γn ∈ Γ such that γnW = W and γnUn ∩ Un ̸= ∅ for each n ∈ N. Hence
there exists a sequence ηn ∈ Un∩γ−1

n Un; so ηn → η and γnηn → η as n→ ∞.
We claim that the elements γn are all pairwise distinct, possibly after

passing to a subsequence. Otherwise, it would mean that, after passing to
a subsequence, γn’s are constant sequence, say γn = γ ̸= e. Since γη =
limn γnηn = η, η must be a fixed point of γ. Since Γ is torsion-free, γ is
either parabolic or loxodromic, and in particular it has at most two fixed
points in X, including η. Since η ̸∈ W and W has at least two points, we
can take w ∈ W which is not fixed by γ. Then as n → +∞, γnw → η or
γ−nw → η. Since W is a compact subset such that γW = W and η /∈ W ,
this yields a contradiction.

Therefore we may assume that {γn} is an infinite sequence of distinct
elements. Since the action of Γ on X is a convergence action, there exist
subsequence γnk

and a, b ∈ X such that as k → ∞, γnk
(x) converges to a

for all x ∈ X − {b}, uniformly on compact subsets. There are two cases to
consider. Suppose that b = η. Then W ⊂ X − {b}, and hence γnk

W → a
uniformly as k → ∞. Since γnk

W = W and W is a compact subset, it
follows that W = {a}, contradicting the hypothesis that W consists of at
least two elements. Now suppose that b ̸= η. Since ηnk

converges to η,
we may assume that ηnk

̸= b for all k. Noting that #W ≥ 2, we can take
w0 ∈W − {b}. If we now consider the following compact subset

W0 := {ηnk
: k ∈ N} ∪ {η, w0} ⊂ X − {b},

we then have γnk
W0 → a uniformly as k → ∞. Since ηnk

∈ W0 for each k
and γnk

ηnk
→ η as k → ∞, we must have

a = η.

On the other hand, since w0 ∈ W0 ∩W , γnk
w0 → η as k → ∞. This

implies η ∈W since W is compact and γnk
w0 ∈W , yielding a contradiction

to the hypothesis η /∈W . This completes the proof. □

We denote by ΛX the set of all accumulation points of a Γ-orbit in X.
If #ΛX ≥ 3, the Γ-action is called non-elementary and ΛX is the unique
Γ-minimal subset [2].
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A well-known example of a convergence action is given by a word hy-
perbolic group Γ. Fix a finite symmetric generating subset SΓ of Γ. A
geodesic ray in Γ is an infinite sequence (γi)

∞
i=0 of elements of Γ such that

γ−1
i γi+1 ∈ SΓ for all i ≥ 0. The Gromov boundary ∂Γ is the set of equiv-

alence classes of geodesic rays, where two rays are equivalent to each other
if and only if their Hausdorff distance is finite. The group Γ acts on ∂Γ
by γ · [(γi)] = [(γγi)]. This action is known to be a convergence action [2,
Lemma 1.11].

Another important example of a convergence group action is the action
of a θ-transverse subgroup Γ on Λθ∪i(θ):

Proposition 3.2. [9, Theorem 4.21] For a θ-transverse subgroup Γ, the
action of Γ on Λθ∪i(θ) is a convergence group action.

4. Non-concentration property

We fix a non-empty subset θ ⊂ Π. We first prove the following proposition
from which we will deduce Theorem 1.4.

Proposition 4.1. Let Γ < G be a torsion-free Zariski dense discrete sub-
group admitting a convergence action on a compact metrizable space X.
We assume that this action is θ-antipodal in the sense that there exist Γ-
equivariant homeomorphisms fθ : ΛX → Λθ and fi(θ) : ΛX → Λi(θ) such that
for any ξ ̸= η in ΛX , (

fθ(ξ), fi(θ)(η)
)
∈ Λ

(2)
θ .

Let ν be a Γ-quasi-invariant measure on Λθ such that

(1) ν is non-atomic;

(2) Γ acts ergodically on (Λ
(2)
θ , (ν × νi)|Λ(2)

θ

) for some Γ-quasi-invariant

measure νi on Λi(θ).

Then for any proper algebraic subset S of Fθ, we have

ν(S) = 0.

Proof. We first claim that the Γ-action on (Λθ×Λi(θ), ν× νi) is ergodic. Set
R := (Λθ×Λi(θ))−Λ

(2)
θ . Since the Γ-action on (Λ

(2)
θ , (ν×νi)|Λ(2)

θ

) is ergodic,

it suffices to show that

(ν × νi)(R) = 0.

For y ∈ Λi(θ), let R(y) := {x ∈ Λθ : (x, y) ∈ R}. By the antipodal property
of the pair (fθ, fi(θ)), we have that for each y ∈ Λi(θ), we have R(y) = ∅ or

R(y) = {(fθ ◦ f−1
i(θ))(y)} and hence ν(R(y)) = 0 by the non-atomicity of ν.

Therefore

(ν × νi)(R) =

∫
y∈Λi(θ)

ν(R(y)) dνi(y) = 0, (4.1)

proving the claim.
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Now suppose that ν(S) > 0 for some proper algebraic subset S ⊂ Fθ. We
may assume that S is irreducible and of minimal dimension among all such
algebraic subsets of Fθ. Let W = f−1

θ (S ∩Λθ) ⊂ ΛX . Since ν is non-atomic
and ν(S) > 0, we have #W = ∞ > 2. This implies #ΛX ≥ 3. By the
property of a non-elementary convergence group action, ΛX is the unique
Γ-minimal subset of X and there always exists a loxodromic element of Γ
[2].

Since Γ < G is Zariski dense, Λθ is Zariski dense in Fθ as well, and hence
Λθ ̸⊂ S. ThereforeX−W is a non-empty open subset intersecting ΛX . Since
Γ acts minimally on ΛX and the set of attracting fixed points of loxodromic
elements of Γ is a non-empty Γ-invariant subset, there exists a loxodromic
element γ0 ∈ Γ whose attracting fixed point aγ0 is contained in ΛX −W .
Hence applying Lemma 3.1 to η = aγ0 , we have an open neighborhood U of
aγ0 in ΛX such that

γU ∩ U = ∅ (4.2)

for all non-trivial γ ∈ Γ with γW =W .
Since γm0 |ΛX−{bγ0} → aγ0 uniformly on compact subsets as m→ +∞ and

#ΛX ≥ 3, U contains a point ξ ∈ ΛX−{aγ0 , bγ0}. By replacing γ0 by a large
power γm0 if necessary, we can find an open neighborhood V of ξ contained
in U − {aγ0} such that γ0V ⊂ U and γ0V ∩ V = ∅.

We now consider the subset

S × fi(θ)(V )

of Fθ × Fi(θ). Since ν(S) > 0 and νi(fi(θ)(V )) > 0, we have that Γ(S ×
fi(θ)(V )) has full ν × νi-measure by the ergodicity of the Γ-action on (Λθ ×
Λi(θ), ν× νi). Since (ν× νi)(S×γ0fi(θ)(V )) > 0, there exists γ ∈ Γ such that

(ν × νi)
(
(S × γ0fi(θ)(V )) ∩ (γS × γfi(θ)(V )

)
> 0.

In particular, we have

ν(S ∩ γS) > 0 and νi(γ0fi(θ)(V ) ∩ γfi(θ)(V )) > 0.

Since S was chosen to be of minimal dimension and irreducible among proper
algebraic sets with positive ν-measure, we must have S = γS. It follows from
the Γ-invariance of Λθ that W = γW .

The Γ-equivariance of fi(θ) implies that

νi(fi(θ)(γ0V ∩ γV )) > 0. (4.3)

Since γ0V ∩ V = ∅, we have γ ̸= e. Hence it follows from V ⊂ U , γ0V ⊂ U
and the choice (4.2) of U that

γ0V ∩ γV ⊂ U ∩ γU = ∅,

which gives a contradiction to (4.3). This finishes the proof. □
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Proof of Theorem 1.4. Let Γ < G be a Zariski dense θ-transverse sub-
group and ν a (Γ, ψ)-Patterson-Sullivan measure for a (Γ, θ)-proper linear

form ψ ∈ a∗θ such that
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞. We may assume without loss

of generality that Γ is torsion-free. Indeed, let Γ0 < Γ be a torsion-free sub-
group of finite index. Then Γ0 is also a Zariski dense θ-transverse subgroup
of G. Moreover, ν is a (Γ0, ψ)-Patterson-Sullivan measure since the limit
sets for Γ and Γ0 are same. Write Γ =

⋃n
i=1 γiΓ0 for some γ1, · · · , γn ∈ Γ.

By [1, Lemma 4.6], there exists C > 0 such that ∥µ(γiγ)−µ(γ)∥ ≤ C for all
γ ∈ Γ0 and i = 1, · · ·n. Hence we have that ψ is (Γ0, θ)-proper as well and

∞ =
∑
γ∈Γ

e−ψ(µθ(γ)) =
n∑
i=1

∑
γ∈Γ0

e−ψ(µθ(γiγ)) ≤ ne∥ψ∥C
∑
γ∈Γ0

e−ψ(µθ(γ))

where ∥ψ∥ denotes the operator norm of ψ. In particular,
∑

γ∈Γ0
e−ψ(µθ(γ)) =

∞. Therefore, replacing Γ by Γ0, we assume that Γ is torsion-free. By
Proposition 3.2, the action of Γ on Λθ∪i(θ) is a convergence group action.

Since there exists a (Γ, ψ)-conformal measure, we have δψ ≤ 1 by [12,

Lemma 7.3]. Therefore the hypothesis
∑

γ∈Γ e
−ψ(µθ(γ)) = ∞ implies that

ψ ∈ Dθ
Γ. Moreover, the θ-antipodality of Γ implies that the canonical pro-

jections
fθ : Λθ∪i(θ) → Λθ and fi(θ) : Λθ∪i(θ) → Λi(θ)

are Γ-equivariant θ-antipodal homeomorphisms [12, Lemma 9.5]. This im-
plies that Theorem 2.1 indeed holds for a general θ without the hypothesis
θ = i(θ). Hence ν = νψ, νψ is non-atomic and the diagonal Γ-action on

(Λ
(2)
θ , (νψ × νψ◦i)|Λ(2)

θ

) is ergodic. Since νψ◦i is Γ-conformal, it is Γ-quasi-

invariant. Therefore Theorem 1.4 follows from Proposition 4.1.

We emphasize again that Lemma 3.1 and Proposition 4.1 were introduced
to deal with the case when i is non-trivial. Indeed, when i is trivial, Theorem
1.4 follows from the following θ-version of [4, Theorem 9.3].

Theorem 4.2. Let Γ < G be a Zariski dense discrete subgroup. Let ν be
a Γ-quasi-invariant measure on Λθ. Suppose that the diagonal Γ-action on
(Λθ × Λθ, ν × ν) is ergodic. Then for any proper algebraic subset S of Fθ,
we have

ν(S) = 0.

Proof. The proof is identical to the proof of [4, Theorem 9.3] except that we
work with a general θ. We reproduce it here for the convenience of readers.
Let S be a proper irreducible subvariety of Fθ with ν(S) > 0 and of minimal
dimension. Since (ν × ν)(S × S) > 0, the Γ-ergodicity of ν × ν implies that
(ν×ν)(Γ(S×S)) = 1. It follows that for any γ0 ∈ Γ, there exists γ ∈ Γ such
that (S× γ0S)∩ (γS× γS) has positive ν× ν-measure; hence ν(S ∩ γS) > 0
and ν(γ0S ∩ γS) > 0. Since S is irreducible and of minimal dimension, it
follows that S = γS = γ0S. Since γ0 ∈ Γ was arbitrary, we have ΓS = S,
contradicting the Zariski density hypothesis on Γ. □
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We finally mention that the proof of Proposition 4.1 implies the following
when the second measure cannot be taken to the same as the first measure:

Theorem 4.3. Let Γ < G be a Zariski dense torsion-free discrete sub-
group acting on Λθ as a convergence group. Let ν be a non-atomic Γ-quasi-
invariant measure on Λθ. Suppose that the diagonal Γ-action on (Λθ×Λθ, ν×
ν ′) is ergodic for some Γ-quasi-invariant measure ν ′ on Λθ. Then for any
proper algebraic subset S of Fθ, we have

ν(S) = 0.

Proof. Since Γ acts ergodically on the entire product space (Λθ×Λθ, ν× ν ′),
the first part of the proof of Proposition 4.1 is not relevant. Suppose that S
is an irreducible proper subvariety of Fθ and of minimal dimension among
all subvarieties with positive ν-measure. Then setting W = S ∩ Λθ, as in
the proof of Proposition 4.1, we can find non-empty open subsets V ⊂ U ⊂
Λθ −W such that γU ∩ U = ∅ for all non-trivial γ ∈ Γ with γW = W , and
γ0V ⊂ U and γ0V ∩ V = ∅ for some γ0 ∈ Γ. Using (ν × ν ′)(S × V ) > 0, we
then get a contradiction by the same argument in loc. cit. □
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