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Abstract. Let Γ < PSL2(C) ≃ Isom+(H3) be a finitely generated non-
Fuchsian Kleinian group whose ordinary set Ω = S2−Λ has at least two
components. Let ρ : Γ → PSL2(C) be a faithful discrete non-Fuchsian
representation with boundary map f : Λ → S2 on the limit set.

In this paper, we obtain a new rigidity theorem: if f is conformal on
Λ, in the sense that f maps every circular slice of Λ into a circle, then
f extends to a Möbius transformation g on S2 and ρ is the conjugation
by g. Moreover, unless ρ is a conjugation, the set of circles C such
that f(C ∩ Λ) is contained in a circle has empty interior in the space
of all circles meeting Λ. This answers a question asked by McMullen
on the rigidity of maps Λ → S2 sending vertices of every tetrahedron of
zero-volume to vertices of a tetrahedron of zero-volume.

The novelty of our proof is a new viewpoint of relating the rigidity
of Γ with the higher rank dynamics of the self-joining (id×ρ)(Γ) <
PSL2(C)× PSL2(C).

1. Introduction

Let Γ < PSL2(C) = Isom+(H3) be a finitely generated torsion-free Kleinian
group. Consider the following discreteness locus of Γ in the space of repre-
sentations of Γ into PSL2(C):

Rdisc(Γ) = {ρ : Γ → PSL2(C) : discrete, faithful};

each ρ ∈ Rdisc(Γ) gives rise to a hyperbolic manifold ρ(Γ)\H3 which is ho-
motopy equivalent to Γ\H3. Another commonly used notation for Rdisc(Γ)
is AH(Γ) where H stands for hyperbolic and A for the topology on this
space given by the algebraic convergence (cf. [27]).

We denote by Möb(S2) the group of all Möbius transformations on S2,
by which we mean the group generated by inversions with respect to cir-
cles in S2. As well-known, Möb(S2) is equal to the group of conformal
automorphisms of S2. The group PSL2(C) can be identified with the sub-
group consisting of compositions of even number of inversions with respect
to circles in S2; in particular, it is a normal subgroup of Möb(S2) of index
two. This means that conjugations by elements of Möb(S2) are contained in
Rdisc(Γ); we call them trivial elements of Rdisc(Γ). Note that ρ ∈ Rdisc(Γ)
is trivial if and only if Γ\H3 and ρ(Γ)\H3 are isometric to each other.
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The rigidity question on Γ concerns a criterion on when a given represen-
tation

ρ ∈ Rdisc(Γ)

is trivial. Denote by Λ ⊂ S2 the limit set of Γ, that is, the set of all
accumulation points of Γ(o), o ∈ H3. A ρ-equivariant continuous embedding

f : Λ → S2

is called a ρ-boundary map. There can be at most one ρ-boundary map.
Two important class of representations admitting boundary maps are as
follows. Firstly, if both Γ and ρ(Γ) are geometrically finite, and ρ is type-
preserving, then the ρ-boundary map always exists by Tukia [29]. Secondly,
if ρ is a quasiconformal deformation of Γ, i.e., there exists a quasiconformal
homeomorphism F : S2 → S2 such that for all γ ∈ Γ, ρ(γ) = F ◦ γ ◦ F−1,
then the restriction of F to Λ is the ρ-boundary map.

The fundamental role played by the boundary map in the study of rigidity
of Γ is well-understood, going back to the proofs of Mostow’s and Sullivan’s
rigidity theorems ([19], [20], [25]). By the Ahlfors measure conjecture ([2],
[3]) now confirmed by the works of Canary [7], Agol [1] and Calegari-Gabai
[6], the limit set Λ is either all of S2 or of Lebesgue measure zero. Mostow
rigidity theorem ([19], [20], [21]) says that if Γ is a lattice, that is, if Γ\H3 has
finite volume, then any ρ ∈ Rdisc(Γ) is trivial; he obtained this by showing
that the ρ-boundary map has to be conformal on S2. More generally, for any
finitely generated Kleinian group Γ with Λ = S2, Sullivan showed that any
quasiconformal deformation of Γ is trivial [25]. In fact, Sullivan’s original
theorem says that any ρ-equivariant quasiconformal homeomorphism of S2
which is conformal on the ordinary set Ω = S2 − Λ is a Möbius transforma-
tion. However Ahlfors measure conjecture implies that this is meaningful
only when Λ = S2 (cf. [14, Section 3.13]).

In this paper, we concern the case when Λ ̸= S2. For example, any
geometrically finite Kleinian group which is not a lattice satisfies Λ ̸= S2
[26]. We prove that if the ρ-boundary map is conformal on Λ, then ρ is
trivial, provided the ordinary set Ω = S2 − Λ has at least two connected
components. By the “conformality of f on Λ”, we mean that f maps circles
in Λ into circles.

Circular slices. The main result of this paper is the following rigidity
theorem in terms of the behavior of f on circular slices of Λ: a circular slice
of Λ is a subset of the form C ∩Λ for some circle C ⊂ S2. We denote by CΛ
the space of all circles in S2 meeting Λ.

Theorem 1.1. Let Γ < PSL2(C) be a finitely generated Zariski dense
Kleinian group whose ordinary set Ω has at least two components. Let ρ ∈
Rdisc(Γ) be a Zariski dense representation with boundary map f : Λ → S2.

If f maps every circular slice of Λ into a circle, then ρ is a conjugation
by some g ∈ Möb(S2) and f = g|Λ.
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Moreover, unless ρ is a conjugation, the following subset of CΛ
{C ∈ CΛ : f(C ∩ Λ) is contained in a circle} (1.1)

has empty interior.

We call Λ doubly stable if for any ξ ∈ Λ, there exists a circle C ∋ ξ such
that for any sequence of circles Ci converging to C, # lim sup(Ci ∩ Λ) ≥ 2.
The assumption that Γ is finitely generated with Ω disconnected was used
only to ensure that Λ is doubly stable (Lemma 3.2, Theorem 4.3).

Remark 1.2. (1) This theorem holds rather trivially when Λ = S2, in
which case all circular slices of Λ are circles.

(2) If Γ < PSL2(C) is geometrically finite with connected limit set, then
Ω is disconnected (cf. [16, Chapter IX]); hence Theorem 1.1 applies.

Tetrahedra of zero-volume. A quadruple of points in S2 determines an
ideal tetrahedron of the hyperbolic 3-space H3. Gromov-Thurston’s proof of
Mostow rigidity theorem for closed hyperbolic 3-manifolds uses the fact that
a homeomorphism of S2 mapping vertices of a maximal volume tetrahedron
to vertices of a maximal volume tetrahedron is a Möbius transformation ([10]
[28, Chapter 6]). In view of this, Curtis McMullen asked us whether one can
consider the other extreme type of tetrahedra, namely, those of zero-volume
in the study of rigidity of Γ.

Noting that f : Λ → S2 maps every circular slice of Λ into a circle if and
only if f maps any quadruple of points in Λ lying in a circle into a circle,
the following is a reformulation of Theorem 1.1, which answers McMullen’s
question in the affirmative:

Theorem 1.3. Let Γ, ρ be as in Theorem 1.1. If the ρ-boundary map
f : Λ → S2 maps vertices of every tetrahedron of zero-volume to vertices
of a tetrahedron of zero-volume, then f is the restriction of a Möbius trans-
formation g and ρ is the conjugation by g.

Cross ratios. Theorem 1.3 can also be stated in terms of cross ratios: note
that for four distinct points ξ1, ξ2, ξ3, ξ4 ∈ Ĉ, the cross ratio [ξ1 : ξ2 : ξ3 : ξ4]
is a real number if and only if all ξ1, ξ2, ξ3, ξ4 lie in a circle.

Corollary 1.4. Let Γ, f be as in Theorem 1.1. If [f(ξ1) : f(ξ2) : f(ξ3) :
f(ξ4)] ∈ R for any distinct ξ1, ξ2, ξ3, ξ4 ∈ Λ with [ξ1 : ξ2 : ξ3 : ξ4] ∈ R, then
f extends to a Möbius transformation on Ĉ.

On the proof of Theorem 1.1. The novelty of our approach is to relate
the rigidity question for a Kleinian group Γ < PSL2(C) with the dynam-
ics of one parameter diagonal subgroups on the quotient of a higher rank
semisimple real algebraic group G = PSL2(C) × PSL2(C) by a self-joining
discrete subgroup.

For a given ρ ∈ Rdisc(Γ), we consider the following self-joining of Γ via ρ:

Γρ = (id× ρ)(Γ) = {(γ, ρ(γ)) : γ ∈ Γ},
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which is a discrete subgroup of G. A basic but crucial observation is that ρ is
trivial if and only if Γρ is not Zariski dense in G (Lemma 4.1). Our strategy
is then to prove that if f maps too many circular slices of Λ into circles,
then Γρ cannot be Zariski dense in G. We achieve this by considering the
action of Γρ on the space Tρ of all tori in the Furstenberg boundary S2 × S2
intersecting the limit set Λρ = {(ξ, f(ξ)) ∈ S2 × S2 : ξ ∈ Λ}. Here a torus
means an ordered pair of circles in S2.

(1) On one hand, using the Koebe-Maskit theorem ([15], [23], see The-
orem 3.4) and the hypothesis that the ordinary set Ω has at least 2
components, we show the existence of a torus T ∈ Tρ such that

T /∈ ΓρT0

for any torus T0 = (C0, D0) with f(C0 ∩ Λ) ⊂ D0; in particular
ΓρT0 ̸= Tρ.

(2) On the other hand, we prove in Theorem 2.1 that the Zariski den-

sity of Γρ implies the existence of a dense subset Λ̃ρ of Λρ such that

ΓρT0 = Tρ for any torus T0 meeting Λ̃ρ. Denoting by A the two di-
mensional diagonal subgroup of G, the main ingredients for this step
are the existence of a dense orbit of some regular one-parameter di-
agonal semigroup in the non-wandering set of the A-action on Γρ\G
(Theorem 2.2) as well as a theorem of Prasad-Rapinchuk [22] on the
existence of R-regular elements (Theorem 2.4). Therefore, if the sub-
set (1.1) has non-empty interior, we can find a torus T0 = (C0, D0)
satisfying that f(C0 ∩ Λ) ⊂ D0 and ΓρT0 = Tρ.

The incompatibility of (1) and (2) implies that either the subset (1.1) has
empty interior or Γρ is not Zariski dense in G, as desired.

Question. There are several different proofs of Mostow rigidity theorem
([19], [20], [21]). By the viewpoint suggested in this paper, it will be inter-
esting to find yet another proof, which directly shows the following reformu-
lation: for any lattice Γ < PSL2(C) and ρ ∈ Rdisc(Γ), the self-joining Γρ is
not Zariski dense in PSL2(C)× PSL2(C).

Acknowledgements. We would like to thank Curt McMullen for asking
the question formulated as Theorem 1.3 as well as for useful comments on
the preliminary version. We would also like to thank Yair Minsky for useful
conversations.

2. Dense orbits in the space of Tori

Let G = PSL2(C) × PSL2(C) and let X = H3 × H3 be the Riemannian
product of two hyperbolic 3-spaces. It follows from PSL2(C) ≃ Isom+(H3)
that G ≃ Isom◦(X). In the whole paper, we regard G as a real algebraic
group and the Zariski density of a subset of G is to be understood ac-
cordingly. The action of PSL2(C) on H3 extends continuously to the com-
pactification H3 ∪ ∂H3 and its action on ∂H3 ≃ S2 is given by the Möbius
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transformation action of PSL2(C) on S2. We set F = S2 × S2, which coin-
cides with the so-called Furstenberg boundary of G. Note that F is not the
geometric boundary of X. Clearly, the action of G extends continuously to
the compact space X ∪ F .

For a Zariski dense subgroup ∆ of G, its limit set Λ∆ ⊂ F is defined as
all possible accumulation points of ∆(o), o ∈ X, on F . It is a non-empty
∆-minimal subset of F ([4, Section 3.6], [13, Lemma 2.13]).

By a torus T , we mean an ordered pair T = (C1, C2) ⊂ F of circles in S2.
The group G acts on the space of tori by extending the action of PSL2(C)
on the space of circles componentwise. The main goal of this section is to
prove the following: denote by T∆ the space of all tori in F intersecting Λ∆.

Theorem 2.1. Let ∆ be a Zariski dense subgroup of G. There exists a
dense subset Λ̃∆ of Λ∆ such that for any torus T with T ∩ Λ̃∆ ̸= ∅, the orbit
∆T is dense in T∆.

This theorem may be viewed as a higher rank analogue of [18, Theorem
4.1]. The rest of this section is devoted to its proof. It is convenient to
use the upper half-space model of H3 so that ∂H3 = C ∪ {∞}. The visual
maps G → F , g 7→ g±, are defined as follows: for g = (g1, g2) ∈ G with
gi ∈ PSL2(C),

g+ = (g1(∞), g2(∞)) and g− = (g1(0), g2(0)).

For t ∈ C, we set at = diag(et/2, e−t/2) and define the following subgroups
of G:

A = {(at1 , at2) : t1, t2 ∈ R} and M = {(at1 , at2) : t1, t2 ∈ iR}.
For u = (u1, u2) ∈ R2, we write au = (au1 , au2) and consider the following

one-parameter semisubgroup

A+
u = {atu : t ≥ 0}.

A loxodromic element h ∈ PSL2(C) is of the form h = φathmhφ
−1 where

th > 0 and mh ∈ PSO(2) are uniquely determined and φ ∈ PSL2(C). We
call th > 0 the Jordan projection of h and mh the rotational component of h.
The attracting and repelling fixed points of h on S2 are given by yh = φ(∞)
and yh−1 = φ(0), respectively.

For a loxodromic element g = (g1, g2) ∈ G, that is, each gi is loxodromic,
its Jordan projection λ(g) and the rotational component τ(g) are defined
componentwise: λ(g) = (tg1 , tg2) ∈ R2

>0 and τ(g) = (mg1 ,mg2) ∈ M .

Dense A+
u -orbit. For a Zariski dense subgroup ∆ of G, we consider the

following AM -invariant subset

R∆ = {[g] ∈ ∆\G : g+, g− ∈ Λ∆}.
Let L = L∆ ⊂ R2

≥0 denote the limit cone of ∆, which is the smallest

closed cone containing the Jordan projection λ(∆) = {λ(δ) : δ ∈ ∆}. The
Zariski density of ∆ implies that L has non-empty interior [4, Section 1.2].
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We use the following theorem which is an immediate consequence of the
result of Dang [9] (this also follows from [8] and [5]):

Theorem 2.2. For any Zariski dense subgroup ∆ < G and any u ∈ intL∆,
there exists a dense A+

u -orbit in R∆.

Proof. As shown in [9, Theorem 7.1 and its proof], the semigroup S+ :=
{anu : n ∈ N∪{0}} acts on R∆ topologically transitively: for any non-empty
open subsets O1,O2 of R∆, O1a

n
u ∩ O2 ̸= ∅ for some n ∈ N. This implies

the existence of a dense S+-orbit on R∆ (cf. [24, Proposition 1.1]). Since
S+ ⊂ A+

u , this proves the claim. □

In the following, we fix u ∈ intL∆ and a dense A+
u -orbit, say [g0]A

+
u , in

R∆, provided by Theorem 2.2. Set

Λ̃∆ = ∆g+0 =
{
δg+0 ∈ Λ∆ : δ ∈ ∆

}
; (2.1)

note that this is a dense subset of Λ∆, as Λ∆ is a ∆-minimal subset.
Denote by T ♠

∆ the space of all tori T with #T ∩ Λ∆ ≥ 2.

Corollary 2.3. For any torus T meeting Λ̃∆, the closure of ∆T contains
T ♠
∆ .

Proof. Note thatH = PGL2(R)×PGL2(R) is a subgroup ofG, as PSL2(C) =
PGL2(C). The space T of all tori in F can be identified with the quotient

space G/H. Let T be a torus containing δ0g
+
0 ∈ Λ̃∆ for some δ0 ∈ ∆. By

the identification of T = G/H, we may write T = gH for some g ∈ G.
Then for some h ∈ H, (gh)+ = δ0g

+
0 . If we denote by P the stabilizer

subgroup of (∞,∞) in G, which is equal to the product of two upper trian-
gular subgroups of PSL2(C), this implies that for some p ∈ P , gh = δ0g0p.
Write p = nam where n belongs to the strict upper triangular subgroup,

a ∈ A and m ∈ M . We claim that [g]hA+
u ⊃ (R∆ − [g0]A

+
u )ma. Let

x ∈ R∆ − [g0]A
+
u . Since [g0]A

+
u = R∆, there exists a sequence ti → +∞

such that x = limi→∞[g0]atiu. Since u = (u1, u2) ∈ intL∆, we have
u1 > 0, u2 > 0, and hence a−tiunatiu → e as i → ∞.

Therefore

lim
i→∞

[g]hatiu = lim
i→∞

[g0]namatiu = lim
i→∞

[g0]atiu(a−tiunatiu)am = xam;

so xam ∈ [g]hA+
u . This proves the claim. Since R∆ is AM -invariant, and

R∆ − [g0]AM is dense in R∆ (as Λ∆ is a perfect set), it follows that

[g]hA+
u ⊃ R∆.

Since A+
u ⊂ H, this implies that [g]H ⊃ R∆H. Since R∆H = ∆\T ♠

∆ and

T = gH, we get ∆T ⊃ T ♠
∆ , as desired. □
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Loxodromic element δ ∈ ∆ with τ(δ) generating M . We use the fol-
lowing special case of a theorem of Prasad and Rapinchuk [22]:

Theorem 2.4. [22, Theorem 1, Remark 1] Any Zariski dense subgroup
∆ < G contains a loxodromic element δ such that τ(δ) generates a dense
subgroup of M .

Corollary 2.5. If ∆ is Zariski dense in G, then T ♠
∆ is dense in T∆.

Proof. Let δ = (δ1, δ2) ∈ ∆ be as given by Theorem 2.4. Since M has no
isolated point, there exists a sequence mj , which we may assume tends to
+∞, by replacing δ by δ−1 if necessary, that τ(δ)mj converges to e. It follows
that the semigroup generated by τ(δ) is also dense in M . Let T = (C1, C2) ∈
T∆ be any torus. It suffices to construct a sequence Tn = (C1,n, C2,n) ∈ T ♠

∆
which converges to T . We begin by fixing a point ξ = (ξ1, ξ2) ∈ T ∩ Λ∆.
Since ∆ acts minimally on Λ∆, there exists a sequence δn = (δ1,n, δ2,n) ∈ ∆
such that that δnyδ converges to ξ as n → ∞; recall that yδ ∈ F denotes
the attracting fixed point of δ. Fix a point η = (η1, η2) ∈ Λ∆ − {yδ, yδ−1}.

For each fixed n ∈ N, note that, as k → ∞, the sequence δnδ
kη converges

to δnyδ, while rotating around δnyδ by the amount given by τ(δ)k. Since
τ(δ) generates a dense semigroup of M , we can find a sequence kn → ∞
such that for each i = 1, 2,

d(δi,nyδi , δi,nδ
kn
i ηi) <

1
n and π

2 − 1
n < θi,n < π

2 + 1
n

where θi,n is the angle at δi,nyδi of the triangle determined by the cen-

ter of Ci, δi,nyδi and δi,nδ
kn
i ηi. For each i = 1, 2, we now choose pi ∈

Ci −
⋃

n{δi,nyδi , δi,nδ
kn
i ηi} and set Ci,n to be the circle passing through

δi,nyδi , δi,nδ
kn
i ηi and pi.

From the construction, each sequence Ci,n converges to the circle tangent
to Ci at ξi and passing through pi ∈ Ci, which must be equal to Ci itself;
therefore if we set Tn = (C1,n, C2,n),

Tn → T as n → ∞.

Since Tn ∩ Λ∆ contains both δnyδ and δnδ
knη, we have Tn ∈ T ♠

∆ . This
completes the proof. □

Proof of Theorem 2.1. It suffices to consider the set Λ̃∆ defined in (2.1)
by Corollary 2.3 and Corollary 2.5.

3. Limits of circular slices and Koebe-Maskit theorem

Let Γ < PSL2(C) be a non-elementary Kleinian group and Ω = S2 − Λ
its ordinary set, i.e., Λ ⊂ S2 denotes the limit set of Γ. We refer to [14] and
[17] for general facts on the theory of Kleinian groups.

Definition 3.1. (1) We call a circle C doubly stable for Λ if for any
sequence of circles Ci converging to C, # lim sup(Ci ∩ Λ) ≥ 2.
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(2) We call Λ doubly stable if for any ξ ∈ Λ, there exists a circle C ∋ ξ,
which is doubly stable for Λ.

The main goal of this section is to prove the following lemma:

Lemma 3.2. If Γ is finitely generated and Ω is not connected, then Λ is
doubly stable.

In the rest of this section, we assume Γ is finitely generated. Lemma
3.2 is an immediate consequence of the following lemma, since, if ξ1, ξ2 ∈ Ω
belong to different components of Ω, then for any ξ ∈ Λ, the circle C passing
through ξ, ξ1, ξ2 is not contained in the closure of any component of Ω.

Lemma 3.3. Let C ⊂ S2 be a circle such that C ̸⊂ Ω0 for any component
Ω0 of Ω. If Cn is a sequence of circles converging to C, then1

# lim sup(Cn ∩ Λ) ≥ 2.

The main ingredient is the following formulation of the Koebe-Maskit
theorem ([15, Theorem 6], [23, Theorem 1]):

Theorem 3.4. Let {Ωi} be the collection of all components of the ordinary
set Ω. Then for any α > 2,

∑
iDiam(Ωi)

α < ∞ where Diam(Ωi) is the
diameter of Ωi in the spherical metric on S2.

We will only need the following immediate corollary of Theorem 3.4:

Corollary 3.5. For any ε > 0, there are only finitely many components of
the ordinary set of Γ with diameter bigger than ε.

Proof of Lemma 3.3. Given Corollary 3.5, the proof is similar to the proof
of [12, Lemma 8.1], which deals with the case when all components of Ω are
round disks.

Let C and Cn → C be as in the statement of the lemma. It suffices
to show that there exists ε0 > 0 such that Cni ∩ Λ contains two points of
distance at least ε0 for some infinite sequence ni → ∞. Suppose not. Then,
letting In be the minimal connected subset of Cn containing Cn∩Λ, we have
Diam(In) → 0 as n → ∞.

Setting η = Diam(C)/2, we have Diam(Cn) > η for all sufficiently large n.
Let 0 < ε < η/4 be arbitrary. Since Diam(In) → 0, we have Diam(In) < ε
for all large n. Noting that Cn − In is a connected subset of Ω, let Ωn be
the connected component of Ω containing Cn − In. Then Cn is contained in
the ε-neighborhood of Ωn, which implies

Diam(Ωn) ≥ Diam(Cn)− 2ε > η/2.

By Corollary 3.5, the collection {Ωn : Diam(Ωn) > η/2} must be a finite set,
say, {Ω1, · · · ,ΩN}. Therefore, for some 1 ≤ j ≤ N , there exists an infinite
sequence Cni contained in the ε-neighborhood of Ωj . Hence C is contained
in the 2ε-neighborhood of Ωj . Since the collection {Ω1, · · · ,ΩN} does not

1For a sequence of subsets Sn in a topological space, we define lim supSn =
⋂

n

⋃
i≥n Si.
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depend on ε, we can find a sequence εk → 0 and a fixed 1 ≤ j ≤ N such
that C is contained in the 2εk-neighborhood of Ωj . It follows that C ⊂ Ωj ,
contradicting the hypothesis on C. This finishes the proof.

4. Self-joinings of Kleinian groups and Proof of Theorem 1.1.

Let Γ < PSL2(C) be a Zariski dense discrete subgroup with limit set Λ.
As before, we denote by Ω = S2 − Λ its ordinary set.

We fix a discrete faithful representation ρ : Γ → PSL2(C) such that ρ(Γ)
is Zariski dense.

We now define the self-joining of Γ via ρ as

Γρ := (id×ρ)(Γ) = {(γ, ρ(γ)) : γ ∈ Γ},

which is a discrete subgroup of G.
We begin by recalling two standard facts:

Lemma 4.1. The subgroup Γρ is Zariski dense in G if and only if ρ is not
a conjugation by an element of Möb(S2).

Proof. It is clear that if ρ is a conjugation by an element of Möb(S2), then
Γρ is not Zariski dense in G. To see the converse, let G0 < G be the
Zariski closure of Γρ and suppose that G0 ̸= G. Denote by πi : G =
PSL2(C)× PSL2(C) → PSL2(C) the projection onto the i-th component.

We now claim that π1|G0 is an isomorphism. Since Γ is Zariski dense, π1|G0

is surjective. Hence, it suffices to show that π1|G0 is injective. Note that
G0∩kerπ1 = G0∩({e}×PSL2(C)) is a normal subgroup of G0. Hence, G0∩
kerπ1 is normalized by {e} × PSL2(C) since ρ(Γ) is Zariski dense PSL2(C).
Thus, G0 ∩ kerπ1 is a normal subgroup of kerπ1. As kerπ1 ∼= PSL2(C) is
simple, G0 ∩ kerπ1 is either trivial or {e} × PSL2(C). In the latter case,
note that {e} × PSL2(C) < G0. Since π1|G0 is surjective, it follows that
G0 = G, yielding contradiction. Therefore π1|G0 is injective, and hence an
isomorphism. Similarly, π2|G0 is an isomorphism. Hence, π2|G0 ◦ π1|−1

G0
is a

Lie group automorphism of PSL2(C). Hence it is a conjugation by a Möbius
transformation (cf. [11]). Since this map restricts to ρ on Γ, it finishes the
proof. □

Since ρ gives an isomorphism from Γ to ρ(Γ) and f is an equivariant em-
bedding, it follows that ρ maps every loxodromic element γ to a loxodromic
element ρ(γ) and f sends the attracting fixed point of γ ∈ Γ to the attract-
ing fixed point of ρ(γ). Since the set of attracting fixed points of loxodromic
elements of Γ is dense in Λ, this implies the following.

Lemma 4.2. There can be at most one ρ-boundary map f : Λ → S2. In
particular, if ρ is a conjugation by g ∈ Möb(S2), then f = g|Λ.

Proof of Theorem 1.1. By Lemma 3.2, Theorem 1.1 follows from the
following:
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Theorem 4.3. Let Γ < PSL2(C) be a Zariski dense Kleinian group such
that Λ is doubly stable. Let ρ ∈ Rdisc(Γ) be a Zariski dense representation
with boundary map f : Λ → S2. Unless ρ is a conjugation, the subset

Λf :=
⋃

{C ∩ Λ : f(C ∩ Λ) is contained in a circle} (4.1)

has empty interior in Λ; hence

{C ∈ CΛ : f(C ∩ Λ) is contained in a circle}
has empty interior in CΛ.

Proof. If Λ = S2, it is easy to prove this. So we assume below that Λ ̸= S2.
Suppose that ρ is not a conjugation, so that Γρ is Zariski dense by Lemma
4.1. It follows easily from the minimality of the limit set Λρ of Γρ that

Λρ = {(ξ, f(ξ)) ∈ S2 × S2 : ξ ∈ Λ}. (4.2)

Let Λ̃Γρ be as in Theorem 2.1, which must be of the form {(ξ, f(ξ)) : ξ ∈
Λ̃} for some dense subset Λ̃ of Λ.

Suppose on the contrary that Λf has non-empty interior. Then Λf∩Λ̃ ̸= ∅.
It follows that there exists C0 ∈ CΛ such that C0 ∩ Λ̃ ̸= ∅ and f(C0 ∩ Λ) is

contained in some circle, say, D0. Set T0 = (C0, D0). Since C0 ∩ Λ̃ ̸= ∅, it
follows from Theorem 2.1 that

ΓρT0 = Tρ (4.3)

where Tρ = TΓρ is the space of all tori intersecting Λρ. On the other hand,
we now show that the condition f(C0 ∩ Λ) ⊂ D0 implies that ΓρT0 cannot
be dense in Tρ, using Lemma 3.3.

Step 1: There exists a circle D which intersects Λρ(Γ) precisely at one point,
say f(ξ0). To show this, fix any f(ξ) ∈ Λρ(Γ) and let D′ be the boundary
of the minimal disk B′ centered at f(ξ) which contains all of Λρ(Γ). By the
minimality of B′, D′ ∩ Λρ(Γ) ̸= ∅. Choose f(ξ0) ∈ D′ ∩ Λρ(Γ), and let D be
a circle tangent to D′ at f(ξ0) which does not intersect the interior of B′.

Step 2: By the hypothesis that Λ is doubly stable, we can find a circle C
containing ξ0 which is doubly stable for Λ.

Step 3: Setting T = (C,D), we have T /∈ ΓρT1 for any torus T1 = (C1, D1)

with f(C1 ∩ Λ) ⊂ D1. In particular, T /∈ ΓρT0.
Suppose on the contrary that there exists a sequence γn ∈ Γ such that

γnC1 converges to C and ρ(γn)D1 converges to D. Since C is doubly stable
for Λ, we have

# lim sup(γnC1 ∩ Λ) ≥ 2. (4.4)

By the ρ-equivariance of f , we have

f(γnC1 ∩ Λ) = f(γn(C1 ∩ Λ)) = ρ(γn)f(C1 ∩ Λ) ⊂ ρ(γn)D1 ∩ Λρ(Γ).

Hence

lim sup f(γnC1 ∩ Λ) ⊂ lim sup(ρ(γn)D1 ∩ Λρ(Γ)) ⊂ D ∩ Λρ(Γ).
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It now follows from (4.4) and the injectivity of f that

#D ∩ Λρ(Γ) ≥ 2.

This contradicts the choice of D made in Step (1), hence proving Step (3).

Since (ξ0, f(ξ0)) ∈ T ∩ Λρ, we have T ∈ Tρ. Hence we obtained a contra-
diction to (4.3). Therefore Λf has empty interior, completing the proof. □
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