UNIQUENESS OF CONFORMAL MEASURES AND LOCAL MIXING FOR ANOSOV GROUPS

SAM EDWARDS, MINJU LEE, AND HEE OH

Abstract

In the late seventies, Sullivan showed that for a convex cocompact subgroup Γ of $\mathrm{SO}^{\circ}(n, 1)$ with critical exponent $\delta>0$, any Γ-conformal measure on $\partial \mathbb{H}^{n}$ of dimension δ is necessarily supported on the limit set Λ and that the conformal measure of dimension δ exists uniquely. We prove an analogue of this theorem for any Zariski dense Anosov subgroup Γ of a connected semisimple real algebraic group G of rank at most 3 . We also obtain the local mixing for generalized BMS measures on $\Gamma \backslash G$ including Haar measures.

Dedicated to Gopal Prasad on the occasion of his 75 th birthday with respect

1. Introduction

Let (X, d) be a Riemannian symmetric space of rank one and ∂X the geometric boundary of X. Let $G=\mathrm{Isom}^{+} X$ denote the group of orientation preserving isometries and $\Gamma<G$ a non-elementary discrete subgroup. Fixing $o \in X$, a Borel probability measure ν on ∂X is called a Γ-conformal measure of dimension $s>0$ if for all $\gamma \in \Gamma$ and $\xi \in \partial X$,

$$
\frac{d \gamma_{*} \nu}{d \nu}(\xi)=e^{s\left(\beta_{\xi}(o, \gamma o)\right)}
$$

where $\beta_{\xi}(x, y)=\lim _{z \rightarrow \xi} d(x, z)-d(y, z)$ denotes the Busemann function.
Let $\delta>0$ denote the critical exponent of Γ, i.e., the abscissa of the convergence of the Poincare series $\sum_{\gamma \in \Gamma} e^{-s d(\gamma o, o)}$. The well-known construction of Patterson and Sullivan (9 , [13]) provides a Γ-conformal measure of dimension δ supported on the limit set Λ, called the Patterson-Sullivan (PS) measure. A discrete subgroup $\Gamma<G$ is called convex cocompact if Γ acts cocompactly on some nonempty convex subset of X.

Theorem 1.1 (Sullivan). 13 If Γ is convex cocompact, then any Γ-conformal measure on ∂X of dimension δ is necessarily supported on Λ. Moreover, the PS-measure is the unique Γ-conformal measure of dimension δ.

In this paper, we extend this result to Anosov subgroups, which may be regarded as higher rank analogues of convex cocompact subgroups of rank

[^0]one groups. Let G be a connected semisimple real algebraic group and P a minimal parabolic subgroup of G. Let $\mathcal{F}:=G / P$ be the Furstenberg boundary, and $\mathcal{F}^{(2)}$ the unique open G-orbit in $\mathcal{F} \times \mathcal{F}$ under the diagonal action of G. In the whole paper, we let Γ be a Zariski dense Anosov subgroup of G with respect to P. This means that there exists a representation $\Phi: \Sigma \rightarrow G$ of a Gromov hyperbolic group Σ with $\Gamma=\Phi(\Sigma)$, which induces a continuous equivariant map ζ from the Gromov boundary $\partial \Sigma$ to \mathcal{F} such that $(\zeta(x), \zeta(y)) \in \mathcal{F}^{(2)}$ for all $x \neq y \in \partial \Sigma$. This definition is due to Guichard-Wienhard [5], generalizing that of Labourie [6].

Let $A<P$ be a maximal real split torus of G and $\mathfrak{a}:=\operatorname{Lie}(A)$. Given a linear form $\psi \in \mathfrak{a}^{*}$, a Borel probability measure ν on \mathcal{F} is called a (Γ, ψ) conformal measure if, for any $\gamma \in \Gamma$ and $\xi \in \mathcal{F}$,

$$
\begin{equation*}
\frac{d \gamma_{*} \nu}{d \nu}(\xi)=e^{\psi\left(\beta_{\xi}(e, \gamma)\right)} \tag{1.2}
\end{equation*}
$$

where β denotes the \mathfrak{a}-valued Busemann function (see (2.1) for the definition). Let $\Lambda \subset \mathcal{F}$ denote the limit set of Γ, which is the unique Γ-minimal subset (see [1], [7]). A (Γ, ψ)-conformal measure supported on Λ will be called a (Γ, ψ)-PS measure. Finally, a Γ-PS measure means a (Γ, ψ)-PS measure for some $\psi \in \mathfrak{a}^{*}$.

Fix a positive Weyl chamber $\mathfrak{a}^{+} \subset \mathfrak{a}$ and let $\mathcal{L}_{\Gamma} \subset \mathfrak{a}^{+}$denote the limit cone of Γ. Benoist [1] showed that \mathcal{L}_{Γ} is a convex cone with non-empty interior, using the well-known theorem of Prasad [10] on the existence of an \mathbb{R}-regular element in any Zariski dense subgroup of G. Let $\psi_{\Gamma}: \mathfrak{a} \rightarrow \mathbb{R} \cup\{-\infty\}$ denote the growth indicator function of Γ as defined in (2.2). Set

$$
\begin{equation*}
D_{\Gamma}^{\star}:=\left\{\psi \in \mathfrak{a}^{*}: \psi \geq \psi_{\Gamma}, \psi(u)=\psi_{\Gamma}(u) \text { for some } u \in \mathcal{L}_{\Gamma} \cap \operatorname{int} \mathfrak{a}^{+}\right\} . \tag{1.3}
\end{equation*}
$$

As Γ is Anosov, for any $\psi \in D_{\Gamma}^{\star}$, there exist a unique unit vector $u \in \operatorname{int} \mathcal{L}_{\Gamma}$, such that $\psi(u)=\psi_{\Gamma}(u)$, and a unique (Γ, ψ)-PS measure ν_{ψ}. Moreover, this gives bijections among

$$
D_{\Gamma}^{\star} \simeq\left\{u \in \operatorname{int} \mathcal{L}_{\Gamma}:\|u\|=1\right\} \simeq\{\Gamma \text {-PS measures on } \Lambda\}
$$

(see [4], [7). When G has rank one, $D_{\Gamma}^{\star}=\{\delta\}$. Therefore the following generalizes Sullivan's theorem 1.1. We denote the real rank of G by $\operatorname{rank} G$, i.e., $\operatorname{rank} G=\operatorname{dim} \mathfrak{a}$.

Theorem 1.4. Let $\operatorname{rank} G \leq 3$. For any $\psi \in D_{\Gamma}^{\star}$, any (Γ, ψ)-conformal measure on \mathcal{F} is necessarily supported on Λ. Moreover, the PS measure ν_{ψ} is the unique (Γ, ψ)-conformal measure on \mathcal{F}.

Our proof of Theorem 1.4 is obtained by combining the rank dichotomy theorem established by Burger, Landesberg, Lee, and Oh [2] and the local mixing property of a generalized Bowen-Margulis-Sullivan measure (Theorem (3.1), which generalizes our earlier work [4]. Indeed, our proof yields that under the hypothesis of Theorem 1.4 , any (Γ, ψ)-conformal measure on \mathcal{F} is supported on the u-directional radial limit set Λ_{u} (see (4.3)) where $\psi(u)=\psi_{\Gamma}(u)$.

We end the introduction by the following:
Open problem: Is Theorem 1.4 true without the hypothesis rank $G \leq 3$?

2. Local mixing of Generalized Bowen-Margulis-Sullivan MEASURES

Let G be a connected semisimple real algebraic group and $\Gamma<G$ a Zariski dense discrete subgroup. Let $P=M A N$ be a minimal parabolic subgroup of G with fixed Langlands decomposition so that A is a maximal real split torus, M is the centralizer of A and N is the unipotent radical of P.

In 4, Prop. 6.8], we proved that local mixing of a BMS-measure on $\Gamma \backslash G / M$ implies local mixing of the Haar measure on $\Gamma \backslash G / M$. In this section, we provide a generalized version of this statement, where we replace the Haar measure by any generalized BMS-measure and also work on the space $\Gamma \backslash G$, rather than on $\Gamma \backslash G / M$. We refer to $[4$ for a more detailed description of a generalized BMS-measure, while only briefly recalling its definition here.

Let $\mathfrak{a}=\operatorname{Lie}(A)$ and fix a positive Weyl chamber $\mathfrak{a}^{+}<\mathfrak{a}$ so that $\log N$ consists of positive root subspaces. We also fix a maximal compact subgroup $K<G$ so that the Cartan decomposition $G=K\left(\exp \mathfrak{a}^{+}\right) K$ holds. Denote by $\mu: G \rightarrow \mathfrak{a}^{+}$the Cartan projection, i.e., for $g \in G, \mu(g) \in \mathfrak{a}^{+}$is the unique element such that $g \in K \exp \mu(g) K$. Denote by $\mathcal{L}_{\Gamma} \subset \mathfrak{a}^{+}$the limit cone of Γ, which is the asymptotic cone of $\mu(\Gamma)$, i.e., $\mathcal{L}_{\Gamma}=\left\{\lim t_{i} \mu\left(\gamma_{i}\right) \in \mathfrak{a}^{+}: t_{i} \rightarrow\right.$ $\left.0, \gamma_{i} \in \Gamma\right\}$. The Furstenberg boundary $\mathcal{F}=G / P$ is isomorphic to K / M as K acts on \mathcal{F} transitively with $K \cap P=M$.

The \mathfrak{a}-valued Busemann function $\beta: \mathcal{F} \times G \times G \rightarrow \mathfrak{a}$ is defined as follows: for $\xi \in \mathcal{F}$ and $g, h \in G$,

$$
\begin{equation*}
\beta_{\xi}(g, h):=\sigma\left(g^{-1}, \xi\right)-\sigma\left(h^{-1}, \xi\right) \tag{2.1}
\end{equation*}
$$

where the Iwasawa cocycle $\sigma\left(g^{-1}, \xi\right) \in \mathfrak{a}$ is defined by the relation $g^{-1} k \in$ $K \exp \left(\sigma\left(g^{-1}, \xi\right)\right) N$ for $\xi=k P, k \in K$.

The growth indicator function $\psi_{\Gamma}: \mathfrak{a}^{+} \rightarrow \mathbb{R} \cup\{-\infty\}$ is defined as a homogeneous function, i.e., $\psi_{\Gamma}(t u)=t \psi_{\Gamma}(u)$ for all $t>0$, such that for any unit vector $u \in \mathfrak{a}^{+}$,

$$
\begin{equation*}
\psi_{\Gamma}(u):=\inf _{u \in \mathcal{C}, \text { open cones } \mathcal{C} \subset \mathfrak{a}^{+}} \tau_{\mathcal{C}} \tag{2.2}
\end{equation*}
$$

where $\tau_{\mathcal{C}}$ is the abscissa of convergence of $\sum_{\gamma \in \Gamma, \mu(\gamma) \in \mathcal{C}} e^{-t\|\mu(\gamma)\|}$ and the norm $\|\cdot\|$ on \mathfrak{a} is the one induced from the Killing form on \mathfrak{g}.

Denote by $w_{0} \in K$ a representative of the unique element of the Weyl group $N_{K}(A) / M$ such that $\operatorname{Ad}_{w_{0}} \mathfrak{a}^{+}=-\mathfrak{a}^{+}$. The opposition involution $\mathrm{i}: \mathfrak{a} \rightarrow \mathfrak{a}$ is defined by

$$
\mathrm{i}(u)=-\operatorname{Ad}_{w_{0}}(u) .
$$

Note that i preserves int \mathcal{L}_{Γ}.

The generalized BMS-measures $m_{\nu_{1}, \nu_{2}}$. For $g \in G$, we consider the following visual images:

$$
g^{+}=g P \in \mathcal{F} \quad \text { and } \quad g^{-}=g w_{0} P \in \mathcal{F} .
$$

Then the map

$$
g M \mapsto\left(g^{+}, g^{-}, b=\beta_{g^{-}}(e, g)\right)
$$

gives a homeomorphism $G / M \simeq \mathcal{F}^{(2)} \times \mathfrak{a}$, called the Hopf parametrization of G / M.

For a pair of linear forms $\psi_{1}, \psi_{2} \in \mathfrak{a}^{*}$ and a pair of $\left(\Gamma, \psi_{1}\right)$ and $\left(\Gamma, \psi_{2}\right)$ conformal measures ν_{1} and ν_{2} respectively, define a locally finite Borel measure $\tilde{m}_{\nu_{1}, \nu_{2}}$ on G / M as follows: for $g=\left(g^{+}, g^{-}, b\right) \in \mathcal{F}^{(2)} \times \mathfrak{a}$,

$$
\begin{equation*}
d \tilde{m}_{\nu_{1}, \nu_{2}}(g)=e^{\psi_{1}\left(\beta_{g^{+}}(e, g)\right)+\psi_{2}\left(\beta_{g^{-}}(e, g)\right)} d \nu_{1}\left(g^{+}\right) d \nu_{2}\left(g^{-}\right) d b, \tag{2.3}
\end{equation*}
$$

where $d b=d \ell(b)$ is the Lebesgue measure on \mathfrak{a}. By abuse of notation, we also denote by $\tilde{m}_{\nu_{1}, \nu_{2}}$ the M-invariant measure on G induced by $\tilde{m}_{\nu_{1}, \nu_{2}}$. This is always left Γ-invariant and we denote by $m_{\nu_{1}, \nu_{2}}$ the M-invariant measure on $\Gamma \backslash G$ induced by $\tilde{m}_{\nu_{1}, \nu_{2}}$.

The generalized BMS*-measures $m_{\nu_{1}, \nu_{2}}^{*}$. Similarly, with a different Hopf parametrization

$$
g M \mapsto\left(g^{+}, g^{-}, b=\beta_{g^{+}}(e, g)\right)
$$

(that is, g^{-}replaced by g^{+}in the subscript for β), we define the following measure

$$
\begin{equation*}
d \tilde{m}_{\nu_{1}, \nu_{2}}^{*}(g)=e^{\psi_{1}\left(\beta_{g^{+}}+(e, g)\right)+\psi_{2}\left(\beta_{g^{-}}(e, g)\right)} d \nu_{1}\left(g^{+}\right) d \nu_{2}\left(g^{-}\right) d b \tag{2.4}
\end{equation*}
$$

first on G / M and then the M-invariant measure $d m_{\nu_{1}, \nu_{2}}^{*}$ on $\Gamma \backslash G$. One can check

$$
\begin{equation*}
m_{\nu_{1}, \nu_{2}}^{*}=m_{\nu_{2}, \nu_{1}} \cdot w_{0} . \tag{2.5}
\end{equation*}
$$

Lemma 2.6. If $\psi_{2}=\psi_{1} \circ \mathrm{i}$, then $m_{\nu_{1}, \nu_{2}}=m_{\nu_{1}, \nu_{2}}^{*}$.
Proof. When $\psi_{2}=\psi_{1} \circ \mathrm{i}$, we can check that $m_{\nu_{2}, \nu_{1}} \cdot w_{0}=m_{\nu_{1}, \nu_{2}}$, which implies the claim by (2.5).

PS-measures on $g N^{ \pm}$. Let $N^{-}=N$ and $N^{+}=w_{0} N w_{0}^{-1}$. To a given (Γ, ψ)-conformal measure ν and $g \in G$, we define the following associated measures on $g N^{ \pm}$: for $n \in N^{+}$and $h \in N^{-}$,

$$
\begin{aligned}
d \mu_{g N^{+}, \nu}(n) & :=e^{\psi\left(\beta_{(g n)^{+}}(e, g n)\right)} d \nu\left((g n)^{+}\right), \text {and } \\
d \mu_{g N^{-}, \nu}(h) & :=e^{\psi\left(\beta_{(g h)^{-}}(e, g h)\right)} d \nu\left((g h)^{-}\right) .
\end{aligned}
$$

Note that these are left Γ-invariant; for any $\gamma \in \Gamma$ and $g \in G, \mu_{\gamma g N^{ \pm}, \nu}=$ $\mu_{g N^{ \pm}, \nu}$. For a given Borel subset $X \subset \Gamma \backslash G$, define the measure $\left.\mu_{g N^{+}, \nu}\right|_{X}$ on N^{+}by

$$
d \mu_{g N^{+}, \nu} \mid X(n)=\mathbb{1}_{X}([g] n) d \mu_{g N^{+}, \nu}(n) ;
$$

note that here the notation $\left.\right|_{X}$ is purely symbolic, as $\left.\mu_{g N^{+}, \nu}\right|_{X}$ is not a measure on X. Set $P^{ \pm}:=M A N^{ \pm}$. For $\varepsilon>0$ and $\star=N, N^{+}, A, M$, let \star_{ε} denote the ε-neighborhood of e in \star. We then set $P_{\varepsilon}^{ \pm}=N_{\varepsilon}^{ \pm} A_{\varepsilon} M_{\varepsilon}$.

We recall the following lemmas from [4]:
Lemma 2.7. 4, Lem. 5.6, Cor. 5.7] We have:
(1) For any fixed $\rho \in C_{c}\left(N^{ \pm}\right)$and $g \in G$, the map $N^{\mp} \rightarrow \mathbb{R}$ given by $n \mapsto \mu_{g n N^{ \pm}, \nu}(\rho)$ is continuous.
(2) Given $\varepsilon>0$ and $g \in G$, there exist $R>1$ and a non-negative $\rho_{g, \varepsilon} \in C_{c}\left(N_{R}\right)$ such that $\mu_{g n N, \nu}\left(\rho_{g, \varepsilon}\right)>0$ for all $n \in N_{\varepsilon}^{+}$.

Lemma 2.8. [4, Lem. 4.2] For any $g \in G, a \in A, n_{0}, n \in N^{+}$, we have

$$
d\left(\theta_{*}^{-1} \mu_{g N^{+}, \nu}\right)(n)=e^{-\psi(\log a)} d \mu_{g a n_{0} N^{+}, \nu}(n)
$$

where $\theta: N^{+} \rightarrow N^{+}$is given by $\theta(n)=a n_{0} n a^{-1}$.
Lemma 2.9. [4, Lem. 4.4 and 4.5] For $i=1,2$, let $\psi_{i} \in \mathfrak{a}^{*}$ and $\nu_{i} a$ $\left(\Gamma, \psi_{i}\right)$-conformal measure. Then
(1) For $g \in G, f \in C_{c}\left(g N^{+} P\right)$, and $n h a m \in N^{+} N A M$,

$$
\begin{aligned}
& \tilde{m}_{\nu_{1}, \nu_{2}}(f)= \\
& \int_{N^{+}}\left(\int_{N A M} f(\text { gnham }) e^{\left(\psi_{1}-\psi_{2} \circ \mathrm{i}\right)(\log a)} d m d a d \mu_{g n N, \nu_{2}}(h)\right) d \mu_{g N^{+}, \nu_{1}}(n) . \\
& \quad(2) \text { For } g \in G, f \in C_{c}\left(g P N^{+}\right), \text {and hamn } \in N A M N^{+} \\
& \tilde{m}_{\nu_{1}, \nu_{2}}^{*}(f)= \\
& \quad \int_{N A M}\left(\int_{N^{+}} f(\text { ghamn }) d \mu_{g h a m N^{+}, \nu_{1}}(n)\right) e^{-\psi_{2} \circ \mathrm{i}(\log a)} d m d a d \mu_{g N, \nu_{2}}(h) .
\end{aligned}
$$

Local mixing. Let P° denote the identity component of P and \mathfrak{Y}_{Γ} denote the set of all P°-minimal subsets of $\Gamma \backslash G$. While there exists a unique P minimal subset of $\Gamma \backslash G$ given by $\left\{[g] \in \Gamma \backslash G: g^{+} \in \Lambda\right\}$, there may be more than one P°-minimal subset. Note that $\# \mathfrak{Y}{ }_{\Gamma} \leq\left[P: P^{\circ}\right]=\left[M: M^{\circ}\right]$. Set $\Omega=\left\{[g] \in \Gamma \backslash G: g^{ \pm} \in \Lambda\right\}$ and write

$$
\mathfrak{Z}_{\Gamma}=\{Y \cap \Omega \subset \Gamma \backslash G: Y \in \mathfrak{Y} \Gamma\} .
$$

Note that for each $Y \in \mathfrak{Y}_{\Gamma}$, we have $Y=(Y \cap \Omega) N$ and the collection $\left\{(Y \cap \Omega) N^{+}: Y \in \mathfrak{Y}_{\Gamma}\right\}$ is in one-to-one correspondence with the set of $\left(M^{\circ} A N^{+}\right)$-minimal subsets of $\Gamma \backslash G$.

In the rest of the section, we fix a unit vector $u \in \mathcal{L}_{\Gamma} \cap$ int \mathfrak{a}^{+}, and set

$$
a_{t}=\exp (t u) \quad \text { for } t \in \mathbb{R}
$$

We also fix

$$
\psi_{1} \in \mathfrak{a}^{*} \quad \text { and } \quad \psi_{2}:=\psi_{1} \circ \mathrm{i} \in \mathfrak{a}^{*}
$$

For each $i=1$, 2, we fix a $\left(\Gamma, \psi_{i}\right)$-PS measure ν_{i} on \mathcal{F}. We will assume that the associated BMS-measure $\mathrm{m}=m_{\nu_{1}, \nu_{2}}$ satisfies the local mixing property for the $\left\{a_{t}: t \in \mathbb{R}\right\}$-action in the following sense:
Hypothesis on $\mathrm{m}=m_{\nu_{1}, \nu_{2}}$: there exists a proper continuous function $\Psi:(0, \infty) \rightarrow(0, \infty)$ such that for all $f_{1}, f_{2} \in C_{c}(\Gamma \backslash G)$,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \Psi(t) \int_{\Gamma \backslash G} f_{1}\left(x a_{t}\right) f_{2}(x) d \mathrm{~m}(x)=\left.\left.\sum_{Z \in \mathfrak{Z}_{\Gamma}} \mathrm{m}\right|_{Z}\left(f_{1}\right) \mathrm{m}\right|_{Z}\left(f_{2}\right) \tag{2.10}
\end{equation*}
$$

The main goal in this section is to obtain the following local mixing property for a generalized BMS-measure $m_{\lambda_{1}, \lambda_{2}}$ from that of m (note that λ_{1} and λ_{2} are not assumed to be supported on Λ):

Theorem 2.11. For $i=1,2$, let $\varphi_{i} \in \mathfrak{a}^{*}$ and λ_{i} be a $\left(\Gamma, \varphi_{i}\right)$-conformal measure on \mathcal{F}. Then for all $f_{1}, f_{2} \in C_{c}(\Gamma \backslash G)$, we have

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \Psi(t) e^{\left(\varphi_{1}-\psi_{1}\right)(t u)} \int_{\Gamma \backslash G} f_{1}\left(x a_{t}\right) & f_{2}(x) d m_{\lambda_{1}, \lambda_{2}}^{*}(x) \\
& =\left.\sum_{Z \in \mathcal{Z}_{\Gamma}} m_{\lambda_{1}, \nu_{2}}\right|_{Z N^{+}}\left(f_{1}\right) m_{\nu_{1}, \lambda_{2}}^{*} \mid Z N\left(f_{2}\right) .
\end{aligned}
$$

Remark 2.12. If $\varphi_{2}=\varphi_{1} \circ \mathrm{i}$, we may replace $m_{\lambda_{1}, \lambda_{2}}^{*}$ by $m_{\lambda_{1}, \lambda_{2}}$ in Theorem 2.11 by Lemma 2.6. For general φ_{1}, φ_{2}, we get, using the identity (2.5): for all $f_{1}, f_{2} \in C_{c}(\Gamma \backslash G)$, we have

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \Psi(t) e^{\left(\varphi_{1}-\psi_{1}\right)(t u)} \int_{\Gamma \backslash G} f_{1}\left(x a_{-t}\right) & f_{2}(x) d m_{\lambda_{2}, \lambda_{1}}(x) \\
& =\left.\left.\sum_{Z \in \mathfrak{Z}_{\Gamma}} m_{\nu_{2}, \lambda_{1}}^{*}\right|_{Z N^{+}}\left(f_{1}\right) m_{\lambda_{2}, \nu_{1}}\right|_{Z N}\left(f_{2}\right) .
\end{aligned}
$$

In order to prove Theorem 2.11, we first deduce equidistribution of translates of $\mu_{g N^{+}, \nu_{1}}$ from the local mixing property of m (Proposition 2.13), and then convert this into equidistribution of translates of $\mu_{g N^{+}, \lambda_{1}}$ (Proposition 2.17).

Proposition 2.13. For any $x=[g] \in \Gamma \backslash G, f \in C_{c}(\Gamma \backslash G)$, and $\phi \in C_{c}\left(N^{+}\right)$,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \Psi(t) \int_{N^{+}} f\left(x n a_{t}\right) \phi(n) d \mu_{g N^{+}, \nu_{1}}(n)=\left.\left.\sum_{Z \in \mathcal{J}_{\Gamma}} \mathrm{m}\right|_{Z}(f) \mu_{g N^{+}, \nu_{1}}\right|_{Z N}(\phi) \tag{2.14}
\end{equation*}
$$

Proof. Let $x=[g]$, and $\varepsilon_{0}>0$ be such that $\phi \in C_{c}\left(N_{\varepsilon_{0}}^{+}\right)$. For simplicity of notation, we write $d \mu_{\nu_{1}}=d \mu_{g N^{+}, \nu_{1}}$ throughout the proof. By Lemma 2.7. we can choose $R>0$ and a nonnegative $\rho_{g, \varepsilon_{0}} \in C_{c}\left(N_{R}\right)$ such that

$$
\mu_{g n N, \nu_{2}}\left(\rho_{g, \varepsilon_{0}}\right)>0 \quad \text { for all } n \in N_{\varepsilon_{0}}^{+} .
$$

Given any $\varepsilon>0$, choose a non-negative function $q_{\varepsilon} \in C_{c}\left(A_{\varepsilon} M_{\varepsilon}\right)$ satisfying $\int_{A M} q_{\varepsilon}(a m) d a d m=1$. Then

$$
\begin{align*}
& \int_{N^{+}} f\left(x n a_{t}\right) \phi(n) d \mu_{\nu_{1}}(n)= \tag{2.15}\\
& \int_{N^{+}} f\left(x n a_{t}\right) \phi(n)\left(\frac{1}{\mu_{g n N, \nu_{2}}\left(\rho_{\left.g, \varepsilon_{0}\right)}\right)} \int_{N A} \rho_{g, \varepsilon_{0}}(h) q_{\varepsilon}(a m) d a d m d \mu_{g n N, \nu_{2}}(h)\right) d \mu_{\nu_{1}}(n) \\
& =\int_{N^{+}}\left(\int_{N A} f\left(x n a_{t}\right) \frac{\phi(n) \rho_{g, \varepsilon_{0}}(h) q_{\varepsilon}(a m)}{\mu_{g n N, \nu_{2}}\left(\rho_{g, \varepsilon_{0}}\right)} d a d m d \mu_{g n N, \nu_{2}}(h)\right) d \mu_{\nu_{1}}(n) .
\end{align*}
$$

We now define $\tilde{\Phi}_{\varepsilon} \in C_{c}\left(g N_{\varepsilon_{0}}^{+} N_{R} A_{\varepsilon} M_{\varepsilon}\right) \subset C_{c}(G)$ and $\Phi_{\varepsilon} \in C_{c}(\Gamma \backslash G)$ by

$$
\tilde{\Phi}_{\varepsilon}\left(g_{0}\right):= \begin{cases}\frac{\phi(n) \rho_{g, \varepsilon_{0}}(h) q_{\varepsilon}(a m)}{\mu_{g n N, \nu_{2}}\left(\rho_{g, \varepsilon_{0}}\right)} & \text { if } g_{0}=\text { gnham }, \\ 0 & \text { otherwise },\end{cases}
$$

and $\Phi_{\varepsilon}\left(\left[g_{0}\right]\right):=\sum_{\gamma \in \Gamma} \tilde{\Phi}_{\varepsilon}\left(\gamma g_{0}\right)$. Note that the continuity of $\tilde{\Phi}_{\varepsilon}$ follows from Lemma 2.7. We now assume without loss of generality that $f \geq 0$ and define, for all $\varepsilon>0$, functions $f_{\varepsilon}^{ \pm}$as follows: for all $z \in \Gamma \backslash G$,

$$
f_{\varepsilon}^{+}(z):=\sup _{b \in N_{\varepsilon}^{+} P_{\varepsilon}} f(z b) \text { and } f_{\varepsilon}^{-}(z):=\inf _{b \in N_{\varepsilon}^{+} P_{\varepsilon}} f(z b) .
$$

Since $u \in$ int \mathfrak{a}^{+}, for every $\varepsilon>0$, there exists $t_{0}(R, \varepsilon)>0$ such that

$$
a_{t}^{-1} N_{R} a_{t} \subset N_{\varepsilon} \quad \text { for all } t \geq t_{0}(R, \varepsilon) .
$$

Then, as $\operatorname{supp}\left(\tilde{\Phi}_{\varepsilon}\right) \subset g N_{\varepsilon_{0}}^{+} N_{R} A_{\varepsilon} M_{\varepsilon}$, we have

$$
\begin{equation*}
f\left(x n a_{t}\right) \tilde{\Phi}_{\varepsilon}(\text { gnham }) \leq f_{3 \varepsilon}^{+}\left(\text {xnhama }_{t}\right) \tilde{\Phi}_{\varepsilon}(\text { gnham }) \tag{2.16}
\end{equation*}
$$

for all nham $\in N^{+} N A M$ and $t \geq t_{0}(R, \varepsilon)$. We now use $f_{3 \varepsilon}^{+}$to give an upper bound on the limit we are interested in; $f_{3 \varepsilon}^{-}$is used in an analogous way to provide a lower bound. Entering the definition of Φ_{ε} and the above inequality (2.16) into (2.15) gives

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} \Psi(t) \int_{N^{+}} f\left(x n a_{t}\right) \phi(n) d \mu_{\nu_{1}}(n) \\
& \quad \leq \limsup _{t \rightarrow+\infty} \Psi(t) \\
& \int_{N^{+}} \int_{N A M} f_{3 \varepsilon}^{+}\left(x n h a m a_{t}\right) \tilde{\Phi}_{\varepsilon}(g n h a m) d m d a d \mu_{g n N, \nu_{2}}(h) d \mu_{\nu_{1}}(n) \\
& \leq \limsup _{t \rightarrow+\infty} \Psi(t) e^{\varepsilon\left\|\psi_{1}-\psi_{2} \circ \mathrm{i}\right\|} \int_{N^{+}} \int_{N A M} f_{3 \varepsilon}^{+}\left(x n h a m a_{t}\right) \tilde{\Phi}_{\varepsilon}(\text { gnham }) \\
& \quad e^{\left(\psi_{1}-\psi_{2} \circ \mathrm{i}\right)(\log a)} d m d a d \mu_{g n N, \nu_{2}}(h) d \mu_{\nu_{1}}(n) \\
& \quad=\limsup _{t \rightarrow+\infty} \Psi(t) e^{\varepsilon\left\|\psi_{1}-\psi_{2} \mathrm{oi}\right\|} \int_{G} f_{3 \varepsilon}^{+}\left(\left[g_{0}\right] a_{t}\right) \tilde{\Phi}_{\varepsilon}\left(g_{0}\right) d \tilde{\mathrm{~m}}\left(g_{0}\right) \\
& \quad=\limsup _{t \rightarrow+\infty} \Psi(t) e^{\varepsilon\left\|\psi_{1}-\psi_{2} \mathrm{oi}\right\|} \int_{\Gamma \backslash G} f_{3 \varepsilon}^{+}\left(\left[g_{0}\right] a_{t}\right) \Phi_{\varepsilon}\left(\left[g_{0}\right]\right) d \mathrm{~m}\left(\left[g_{0}\right]\right)
\end{aligned}
$$

where $\|\cdot\|$ is the operator norm on \mathfrak{a}^{*} and Lemma 2.9 was used in the second to last line of the above calculation. By the standing assumption 2.10, we have

$$
\begin{aligned}
\limsup _{t \rightarrow+\infty} & \Psi(t) \int_{N} f\left(x n a_{t}\right) \phi(n) d \mu_{g N, \nu_{2}}(n) \\
& \leq\left.\left. e^{\varepsilon\left\|\psi_{1}-\psi_{2} \circ \mathrm{i}\right\|} \sum_{Z \in \mathfrak{Z}_{\Gamma}} \mathrm{m}\right|_{Z}\left(f_{3 \varepsilon}^{+}\right) \mathrm{m}\right|_{Z}\left(\Phi_{\varepsilon}\right) \\
& =\left.\left.e^{\varepsilon\left\|\psi_{1}-\psi_{2} \circ \mathrm{i}\right\|} \sum_{Z \in \mathfrak{Z}_{\Gamma}} \mathrm{m}\right|_{Z}\left(f_{3 \varepsilon}^{+}\right) \tilde{\mathrm{m}}\right|_{\tilde{Z}}\left(\tilde{\Phi}_{\varepsilon}\right),
\end{aligned}
$$

where $\tilde{Z} \subset G$ is a Γ-invariant lift of Z. Using Lemma 2.9, for all $0<\varepsilon \ll 1$,

$$
\begin{aligned}
& \left.\tilde{\mathrm{m}}\right|_{\tilde{Z}}\left(\tilde{\Phi}_{\varepsilon}\right) \\
& =\int_{N^{+}}\left(\int_{N A M} \tilde{\Phi}_{\varepsilon} \mathbb{1}_{\tilde{Z}}(\text { gnham }) e^{\left(\psi_{1}-\psi_{2} \circ \mathrm{i}\right)(\log a)} d a d m d \mu_{g n N, \nu_{2}}(h)\right) d \mu_{\nu_{1}}(n) \leq \\
& e^{\varepsilon\left\|\psi_{1}-\psi_{2} \circ \mathrm{i}\right\|} \int_{N^{+}} \frac{\phi(n) \mathbb{1}_{\tilde{Z} N}(g n)}{\mu_{g n N, \nu_{2}}\left(\rho_{g, \varepsilon_{0}}\right)}\left(\int_{N A M} \rho_{g, \varepsilon_{0}}(h) q_{\varepsilon}(a m) d a d m d \mu_{g n N, \nu_{2}}(h)\right) d \mu_{\nu_{1}}(n) \\
& \leq e^{\varepsilon\left\|\psi_{1}-\psi_{2} \circ \mathrm{i}\right\|} \mu_{\nu_{1}} \mid Z N(\phi),
\end{aligned}
$$

where we have used the facts that \tilde{Z} is invariant under the right translation of identity component M° of M, and $\operatorname{supp} \nu_{2}=\Lambda$ as well as the identity $\mathbb{1}_{\tilde{Z}}(g n h a)=\mathbb{1}_{\tilde{Z} N}(g n) \mathbb{1}_{\Lambda}\left(g n h^{+}\right)\left(\right.$we remark that $\operatorname{supp} \nu_{2}=\Lambda$ is not necessary for the upper bound as $\mathbb{1}_{\tilde{Z}}(g n h a) \leq \mathbb{1}_{\tilde{Z} N}(g n)$, but needed for the lower bound). Since $\varepsilon>0$ was arbitrary, taking $\varepsilon \rightarrow 0$ gives

$$
\limsup _{t \rightarrow+\infty} \Psi(t) \int_{N^{+}} f\left(x n a_{t}\right) \phi(n) d \mu_{\nu_{1}}(n) \leq\left.\left.\sum_{Z \in \mathfrak{Z}_{\Gamma}} \mathrm{m}\right|_{Z}(f) \mu_{\nu_{1}}\right|_{Z N}(\phi)
$$

The lower bound given by replacing $f_{3 \varepsilon}^{+}$with $f_{3 \varepsilon}^{-}$in the above calculations completes the proof.

Proposition 2.17. For any $x=[g] \in \Gamma \backslash G, f \in C_{c}(\Gamma \backslash G)$ and $\phi \in C_{c}\left(N^{+}\right)$,

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \Psi(t) e^{\left(\varphi_{1}-\psi_{1}\right)(t u)} \int_{N^{+}} f\left(x n a_{t}\right) & \phi(n) d \mu_{g N^{+}, \lambda_{1}}(n) \\
= & \left.\sum_{Z \in \mathfrak{Z}_{\Gamma}} m_{\lambda_{1}, \nu_{2}}\right|_{Z N^{+}}(f) \mu_{g N^{+}, \nu_{1}} \mid Z N_{N}(\phi)
\end{aligned}
$$

Proof. For $\varepsilon_{0}>0$, set $\mathcal{B}_{\varepsilon_{0}}=P_{\varepsilon_{0}} N_{\varepsilon_{0}}^{+}$. Given $x_{0} \in \Gamma \backslash G$, let $\varepsilon_{0}\left(x_{0}\right)$ denote the maximum number r such that the map $G \rightarrow \Gamma \backslash G$ given by $h \mapsto x_{0} h$ for $h \in G$ is injective on \mathcal{B}_{r}. By using a partition of unity if necessary, it suffices to prove that for any $x_{0} \in \Gamma \backslash G$ and $\varepsilon_{0}=\varepsilon_{0}\left(x_{0}\right)$, the claims of the proposition hold for any non-negative $f \in C\left(x_{0} \mathcal{B}_{\varepsilon_{0}}\right)$, non-negative $\phi \in C\left(N_{\varepsilon_{0}}^{+}\right)$, and $x=[g] \in x_{0} \mathcal{B}_{\varepsilon_{0}}$. Moreover, we may assume that f is given
as

$$
f([g])=\sum_{\gamma \in \Gamma} \tilde{f}(\gamma g) \quad \text { for all } g \in G
$$

for some non-negative $\tilde{f} \in C_{c}\left(g_{0} \mathcal{B}_{\varepsilon_{0}}\right)$. For simplicity of notation, we write $\mu_{\lambda_{1}}=\mu_{g N^{+}, \lambda_{1}}$. Note that for $x=[g] \in\left[g_{0}\right] \mathcal{B}_{\varepsilon_{0}}$,

$$
\begin{equation*}
\int_{N^{+}} f\left([g] n a_{t}\right) \phi(n) d \mu_{\lambda_{1}}(n)=\sum_{\gamma \in \Gamma} \int_{N^{+}} \tilde{f}\left(\gamma g n a_{t}\right) \phi(n) d \mu_{\lambda_{1}}(n) \tag{2.18}
\end{equation*}
$$

Note that $\tilde{f}\left(\gamma g n a_{t}\right)=0$ unless $\gamma g n a_{t} \in g_{0} \mathcal{B}_{\varepsilon_{0}}$. Together with the fact that $\operatorname{supp}(\phi) \subset N_{\varepsilon_{0}}^{+}$, it follows that the summands in (2.18) are non-zero only for finitely many elements $\gamma \in \Gamma \cap g_{0} \mathcal{B}_{\varepsilon_{0}} a_{-t} N_{\varepsilon_{0}}^{+} g^{-1}$.

Suppose $\gamma g N_{\varepsilon_{0}}^{+} a_{t} \cap g_{0} \mathcal{B}_{\varepsilon_{0}} \neq \emptyset$. Then $\gamma g a_{t} \in g_{0} P_{\varepsilon_{0}} N^{+}$, and there are unique elements $p_{t, \gamma} \in P_{\varepsilon_{0}}$ and $n_{t, \gamma} \in N^{+}$such that

$$
\gamma g a_{t}=g_{0} p_{t, \gamma} n_{t, \gamma} \in g_{0} P_{\varepsilon_{0}} N^{+}
$$

Let Γ_{t} denote the subset $\Gamma \cap g_{0}\left(P_{\varepsilon_{0}} N^{+}\right) a_{t}^{-1} g^{-1}$. Note that although Γ_{t} may possibly be infinite, only finitely many of the terms in the sums we consider will be non-zero. This together with Lemma 2.8 gives

$$
\begin{aligned}
& \int_{N^{+}} f\left([g] n a_{t}\right) \phi(n) d \mu_{\lambda_{1}}(n)=\sum_{\gamma \in \Gamma} \int_{N^{+}} \tilde{f}\left(\gamma g n a_{t}\right) \phi(n) d \mu_{\lambda_{1}}(n) \\
& =\sum_{\gamma \in \Gamma_{t}} \int_{N^{+}} \tilde{f}\left(\gamma g a_{t}\left(a_{t}^{-1} n a_{t}\right)\right) \phi(n) d \mu_{\lambda_{1}}(n) \\
& =e^{-\varphi_{1}\left(\log a_{t}\right)} \sum_{\gamma \in \Gamma_{t}} \int_{N^{+}} \tilde{f}\left(\gamma g a_{t} n\right) \phi\left(a_{t} n a_{t}^{-1}\right) d \mu_{g a_{t} N^{+}, \lambda_{1}}(n) \\
& =e^{-\varphi_{1}\left(\log a_{t}\right)} \sum_{\gamma \in \Gamma_{t}} \int_{N^{+}} \tilde{f}\left(g_{0} p_{t, \gamma} n_{t, \gamma} n\right) \phi\left(a_{t} n a_{t}^{-1}\right) d \mu_{g a_{t} N^{+}, \lambda_{1}}(n) \\
& =e^{-\varphi_{1}\left(\log a_{t}\right)} \sum_{\gamma \in \Gamma_{t}} \int_{N^{+}} \tilde{f}\left(g_{0} p_{t, \gamma} n\right) \phi\left(a_{t} n_{t, \gamma}^{-1} n a_{t}^{-1}\right) d \mu_{g_{0} p_{t, \gamma} N^{+}, \lambda_{1}}(n) .
\end{aligned}
$$

Since $\operatorname{supp}(\tilde{f}) \subset g_{0} \mathcal{B}_{\varepsilon_{0}}$, we have

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma_{t}} \int_{N^{+}} \tilde{f}\left(g_{0} p_{t, \gamma} n\right) \phi\left(a_{t} n_{t, \gamma}^{-1} n a_{t}^{-1}\right) d \mu_{g_{0} p_{t, \gamma} N^{+}, \lambda_{1}}(n) \\
& \quad \leq \sum_{\gamma \in \Gamma_{t}}\left(\sup _{n \in N_{\varepsilon_{0}}^{+}} \phi\left(a_{t} n_{t, \gamma}^{-1} a_{t}^{-1}\left(a_{t} n a_{t}^{-1}\right)\right)\right) \cdot \int_{N^{+}} \tilde{f}\left(g_{0} p_{t, \gamma} n\right) d \mu_{g_{0} p_{t, \gamma} N^{+}, \lambda_{1}}(n)
\end{aligned}
$$

Since u belongs to int \mathcal{L}_{Γ}, there exist $t_{0}>0$ and $\alpha>0$ such that

$$
a_{t} N_{r}^{+} a_{t}^{-1} \subset N_{r e^{-\alpha t}}^{+} \quad \text { for all } r>0 \text { and } t>t_{0}
$$

Therefore, for all $n \in N_{\varepsilon_{0}}^{+}$and $t>t_{0}$, we have

$$
\begin{equation*}
\phi\left(a_{t} n_{t, \gamma}^{-1} a_{t}^{-1}\left(a_{t} n a_{t}^{-1}\right)\right) \leq \phi_{\varepsilon_{0} e^{-\alpha t}}^{+}\left(a_{t} n_{t, \gamma}^{-1} a_{t}^{-1}\right), \tag{2.19}
\end{equation*}
$$

where

$$
\phi_{\varepsilon}^{+}(n):=\sup _{b \in N_{\varepsilon}^{+}} \phi(n b) \quad \text { for all } n \in N^{+}, \varepsilon>0 \text {. }
$$

We now have the following inequality for $t>t_{0}$:

$$
\begin{align*}
& e^{\varphi_{1}\left(\log a_{t}\right)} \int_{N^{+}} f\left([g] n a_{t}\right) \phi(n) d \mu_{\lambda_{1}}(n) \\
& \leq \sum_{\gamma \in \Gamma_{t}} \phi_{\varepsilon_{0} e^{-\alpha t}}^{+}\left(a_{t} n_{t, \gamma}^{-1} a_{t}^{-1}\right) \int_{N_{\varepsilon_{0}}^{+}} \tilde{f}\left(g_{0} p_{t, \gamma} n\right) d \mu_{g_{0} p_{t, \gamma} N^{+}, \lambda_{1}}(n) \tag{2.20}
\end{align*}
$$

By Lemma 2.7, we can now choose $R>0$ and $\rho \in C_{c}\left(N_{R}^{+}\right)$such that $\rho(n) \geq 0$ for all $n \in N^{+}$, and $\mu_{g_{0} N^{+}, \nu_{1}}(\rho)>0$ for all $p \in P_{\varepsilon_{0}}$. Define $\tilde{F} \in C_{c}\left(g_{0} P_{\varepsilon_{0}} N_{R}^{+}\right)$by

$$
\tilde{F}(g)= \begin{cases}\frac{\rho(n)}{\mu_{g_{0} p N^{+}, \nu_{1}}(\rho)} \int_{N_{\varepsilon_{0}}^{+}} \tilde{f}\left(g_{0} p v\right) d \mu_{g_{0} p N^{+}, \lambda_{1}}(v) & \text { if } g=g_{0} p n \in g_{0} P_{\varepsilon_{0}} N_{R}^{+} \\ 0 & \text { if } g \notin g_{0} P_{\varepsilon_{0}} N_{R}^{+}\end{cases}
$$

We claim that for all $p \in P_{\varepsilon_{0}}$ and $Z \in \mathfrak{Z}_{\Gamma}$ such that $g_{0} p^{-} \in \Lambda$,

$$
\begin{align*}
\int_{N^{+}} \tilde{F}\left(g_{0} p n\right) d \mu_{g 0 p N^{+}, \nu_{1}} \mid Z(n) & =\int_{N_{R}^{+}} \tilde{F}\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \nu_{1}} \mid Z(n) \\
& =\int_{N_{\varepsilon_{0}^{+}}^{+}}\left(\tilde{f} \mathbb{1}_{Z N^{+}}\right)\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \lambda_{1}}(n) . \tag{2.21}
\end{align*}
$$

Indeed, by the assumption $\operatorname{supp} \nu_{1}=\Lambda$ and the fact $\Omega \cap Z N^{+}=Z$, we have the identity $\mathbb{1}_{Z}\left(g_{0} p n\right) d \mu_{g o p N^{+}, \nu_{1}}(n)=\mathbb{1}_{Z N^{+}}\left(g_{0} p\right) d \mu_{g_{0} p N^{+}, \nu_{1}}(n)$ and hence

$$
\begin{aligned}
& \int_{N^{+}} \tilde{F}\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \nu_{1}} \mid Z(n) \\
& =\int_{N^{+}} \tilde{F}\left(g_{0} p n\right) \mathbb{1}_{Z}\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \nu_{1}}(n) \\
& =\int_{N^{+}} \frac{\rho(n) \mathbb{1}_{Z N^{+}}\left(g_{0} p\right)}{\mu_{g 0} p N^{+}, \nu_{1}}(\rho) \\
& \left.=\int_{N^{+}} \frac{\rho(n)}{} \tilde{f}\left(g_{0} p v\right) d \mu_{g_{0} p N^{+}, \lambda_{1}}(v)\right) d \mu_{g_{0} p N^{+}, \nu_{1}}(n) \\
& =\int_{N_{\varepsilon_{0}}^{+}}\left(\tilde{f} \mathbb{1}_{Z N^{+}}\right)\left(\int _ { N _ { 0 } } \left(\tilde{\varepsilon_{0}}\right.\right. \\
& \left.\left(\tilde{f} \mathbb{1}_{Z N^{+}}\right)\left(g_{0} p v\right) d \mu_{g_{0} p N^{+}, \lambda_{1}}(v)\right) d \mu_{g_{0} p N^{+}, \nu_{1}}(n) \\
&
\end{aligned}
$$

Summing up 2.21 for all $Z \in \mathfrak{Z}_{\Gamma}$ and using $\operatorname{supp} \nu_{1}=\Lambda$, we get

$$
\begin{aligned}
& \int_{N^{+}} \tilde{F}\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \nu_{1}}(n) \\
& =\left.\sum_{Z \in \mathfrak{Z}_{\Gamma}} \int_{N^{+}} \tilde{F}\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \nu_{1}}\right|_{Z}(n) \\
& =\sum_{Z \in \mathfrak{Z}_{\Gamma}} \int_{N_{\varepsilon_{0}}^{+}}\left(\tilde{f} \mathbb{1}_{Z N^{+}}\right)\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \lambda_{1}}(n)
\end{aligned}
$$

Hence we can write

$$
\begin{aligned}
& \int_{N_{\varepsilon_{0}}^{+}} \tilde{f}\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \lambda_{1}}(n) \\
& =\int_{N^{+}} \tilde{F}\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \nu_{1}}(n)+\int_{N_{\varepsilon_{0}}^{+}} \tilde{h}\left(g_{0} p n\right) d \mu_{g_{0} p N^{+}, \lambda_{1}}(n)
\end{aligned}
$$

for some \tilde{h} that vanishes on $\bigcup_{Z \in \mathfrak{J}_{\Gamma}} Z N^{+}$. Returning to 2.20 , we now give an upper bound. We observe:

$$
\begin{aligned}
& e^{\varphi_{1}\left(\log a_{t}\right)} \int_{N^{+}} f\left([g] n a_{t}\right) \phi(n) d \mu_{\lambda_{1}}(n) \\
\leq & \sum_{\gamma \in \Gamma_{t}} \phi_{\varepsilon_{0} e^{-\alpha t}}^{+}\left(a_{t} n_{t, \gamma}^{-1} a_{t}^{-1}\right) \int_{N_{\varepsilon_{0}}^{+}} \tilde{f}\left(g_{0} p_{t, \gamma} n\right) d \mu_{\lambda_{1}}(n) \\
= & \sum_{\gamma \in \Gamma_{t}} \phi_{\varepsilon_{0} e^{-\alpha t}}^{+}\left(a_{t} n_{t, \gamma}^{-1} a_{t}^{-1}\right) \int_{N_{R}^{+}}(\tilde{F}+\tilde{h})\left(g_{0} p_{t, \gamma} n\right) d \mu_{g_{0} p_{t, \gamma} N^{+}, \nu_{1}}(n) \\
= & \sum_{\gamma \in \Gamma_{t}} \int_{N_{R}^{+}}(\tilde{F}+\tilde{h})\left(g_{0} p_{t, \gamma} n\right) \phi_{\varepsilon_{0} e^{-\alpha t}}^{+}\left(a_{t} n_{t, \gamma}^{-1} a_{t}^{-1}\right) d \mu_{g_{0} p_{t, \gamma} N^{+}, \nu_{1}}(n) .
\end{aligned}
$$

Similarly as before, we have, for all $t>t_{0}$ and $n \in N_{R}^{+}$,

$$
\begin{align*}
\phi_{\varepsilon_{0} e^{-\alpha t}}^{+}\left(a_{t} n_{t, \gamma}^{-1} a_{t}^{-1}\right) & =\phi_{\varepsilon_{0} e^{-\alpha t}}^{+}\left(a_{t} n_{t, \gamma}^{-1} n(n)^{-1} a_{t}^{-1}\right) \\
& \leq \phi_{\left(R+\varepsilon_{0}\right) e^{-\alpha t}}^{+}\left(a_{t} n_{t, \gamma}^{-1} n a_{t}^{-1}\right) \tag{2.22}
\end{align*}
$$

Hence 2.20 is bounded above by

$$
\begin{aligned}
& \leq \sum_{\gamma \in \Gamma_{t}} \int_{N_{R}^{+}}(\tilde{F}+\tilde{h})\left(g_{0} p_{t, \gamma} n\right) \phi_{\left(R+\varepsilon_{0}\right) e^{-\alpha t}}^{+}\left(a_{t} n_{t, \gamma}^{-1} n a_{t}^{-1}\right) d \mu_{g_{0} p_{t, \gamma} N^{+}, \nu_{1}}(n) \\
& =\sum_{\gamma \in \Gamma_{t}} \int_{N^{+}}(\tilde{F}+\tilde{h})\left(g_{0} p_{t, \gamma} n_{t, \gamma} a_{t}^{-1} n a_{t}\right) \phi_{\left(R+\varepsilon_{0}\right) e^{-\alpha t}}^{+}(n) d\left(\left(\theta_{t, \gamma}\right)_{*}^{-1} \mu_{g_{0} p_{t, \gamma} N^{+}, \nu_{1}}\right)(n)
\end{aligned}
$$

where $\theta_{t, \gamma}(n)=n_{t, \gamma} a_{t}^{-1} n a_{t}$. By Lemma 2.8,

$$
d\left(\left(\theta_{t, \gamma}\right)_{*}^{-1} \mu_{g_{0} p_{t, \gamma} N^{+}, \nu_{1}}\right)(n)=e^{\psi_{1}\left(\log a_{t}\right)} d \mu_{g_{0} p_{t, \gamma} n_{t, \gamma} a_{t}^{-1} N^{+}, \nu_{1}}(n)
$$

Since $g_{0} p_{t, \gamma} n_{t, \gamma} a_{t}^{-1}=\gamma g$, it follows that for all $t>t_{0}$,

$$
\begin{aligned}
& e^{\left(\varphi_{1}-\psi_{1}\right)\left(\log a_{t}\right)} \int_{N^{+}} f\left([g] n a_{t}\right) \phi(n) d \mu_{\lambda_{1}}(n) \\
\leq & \sum_{\gamma \in \Gamma_{t}} \int_{N^{+}}(\tilde{F}+\tilde{h})\left(\gamma g n a_{t}\right) \phi_{\left(R+\varepsilon_{0}\right) e^{-\alpha t}}^{+}(n) d \mu_{\gamma g N^{+}, \nu_{1}}(n) \\
\leq & \int_{N^{+}}\left(\sum_{\gamma \in \Gamma}(\tilde{F}+\tilde{h})\left(\gamma g n a_{t}\right)\right) \phi_{\left(R+\varepsilon_{0}\right) e^{-\alpha t}}^{+}(n) d \mu_{\nu_{1}}(n) .
\end{aligned}
$$

Define functions F and h on $\Gamma \backslash G$ by

$$
F([g]):=\sum_{\gamma \in \Gamma} \tilde{F}(\gamma g) \quad \text { and } \quad h([g]):=\sum_{\gamma \in \Gamma} \tilde{h}(\gamma g) .
$$

Then for any $\varepsilon>0$ and for all $t>t_{0}$ such that $\left(R+\varepsilon_{0}\right) e^{-\alpha t} \leq \varepsilon$,

$$
\begin{aligned}
& \Psi(t) e^{\left(\varphi_{1}-\psi_{1}\right)\left(\log a_{t}\right)} \int_{N^{+}} f\left([g] n a_{t}\right) \phi(n) d \mu_{\lambda_{1}}(n) \\
& \leq \Psi(t) \int_{N^{+}}(F+h)\left([g] n a_{t}\right) \phi_{\varepsilon}^{+}(n) d \mu_{\nu_{1}}(n) .
\end{aligned}
$$

By Proposition 2.13, letting $\varepsilon \rightarrow 0$ gives

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} \Psi(t) e^{\left(\varphi_{1}-\psi_{1}\right)\left(\log a_{t}\right)} \int_{N^{+}} f\left([g] n a_{t}\right) \phi(n) d \mu_{\lambda_{1}}(n) \\
& \leq\left.\sum_{Z \in \mathcal{Z}_{\Gamma}} \mathrm{m}\right|_{Z}(F+h) \mu_{\nu_{1}} \mid Z_{N}(\phi)
\end{aligned}
$$

Note that $\mathrm{m}^{*}=\mathrm{m}$ by Lemma 2.6. Now, by Lemma 2.9 and the fact $\tilde{\mathbf{m}}(\tilde{h})=0$, we have

$$
\begin{aligned}
& \left.\mathrm{m}\right|_{Z}(F+h)=\left.\tilde{\mathrm{m}}\right|_{\tilde{Z}}(\tilde{F}+\tilde{h})=\left.\tilde{\mathrm{m}}\right|_{\tilde{Z}}(\tilde{F})=\left.\tilde{\mathrm{m}}^{*}\right|_{\tilde{Z}}(\tilde{F}) \\
& =\int_{P}\left(\int_{N^{+}} \tilde{F} \mathbb{1}_{\tilde{Z}}\left(g_{0} h a m n\right) d \mu_{g_{0} h a m N^{+}, \nu_{1}}(n)\right) e^{-\psi_{2} \mathrm{oi}(\log a)} d m d a d \mu_{g_{0} N, \nu_{2}}(h) \\
& =\int_{P}\left(\int_{N^{+}}\left(\tilde{f} \mathbb{1}_{Z N^{+}}\right)\left(g_{0} h a m n\right) d \mu_{g_{0} h a m N^{+}, \lambda_{1}}(n)\right) e^{-\psi_{2} \mathrm{oi}(\log a)} d m d a d \mu_{g_{0} N, \nu_{2}}(h) \\
& =\left.\tilde{m}_{\lambda_{1}, \nu_{2}}\right|_{\tilde{Z} N^{+}}(\tilde{f})=\left.m_{\lambda_{1}, \nu_{2}}\right|_{Z N^{+}}(f) .
\end{aligned}
$$

This gives the desired upper bound. Note that we have used the assumption $\operatorname{supp} \nu_{2}=\Lambda$ in the fourth equality above to apply (2.21). The lower bound can be obtained similarly, finishing the proof.

With the help of Proposition 2.13, we are now ready to give:
Proof of Theorem 2.11 By the compactness hypothesis on the supports of f_{i}, we can find $\varepsilon_{0}>0$ and $x_{i} \in \Gamma \backslash G, i=1, \cdots, \ell$ such that the map $G \rightarrow \Gamma \backslash G$ given by $g \rightarrow x_{i} g$ is injective on $R_{\varepsilon_{0}}=P_{\varepsilon_{0}} N_{\varepsilon_{0}}^{+}$, and $\bigcup_{i=1}^{\ell} x_{i} R_{\varepsilon_{0} / 2}$ contains both $\operatorname{supp} f_{1}$ and $\operatorname{supp} f_{2}$. We use continuous partitions of unity
to write f_{1} and f_{2} as finite sums $f_{1}=\sum_{i=1}^{\ell} f_{1, i}$ and $f_{2}=\sum_{j=1}^{\ell} f_{2, j}$ with $\operatorname{supp} f_{1, i} \subset x_{i} R_{\varepsilon_{0} / 2}$ and $\operatorname{supp} f_{2, j} \subset x_{j} R_{\varepsilon_{0} / 2}$. Writing $p=h a m \in N A M$ and using Lemma 2.9.

$$
d m_{\lambda_{1}, \lambda_{2}}^{*}(\text { hamn })=d \mu_{h a m N^{+}, \lambda_{1}}(n) e^{-\psi_{2} \mathrm{i}(\log a)} d m d a d \mu_{N, \lambda_{2}}(h) .
$$

We have

$$
\begin{align*}
& \int_{\Gamma \backslash G} f_{1}\left(x a_{t}\right) f_{2}(x) d m_{\lambda_{1}, \lambda_{2}}^{*}(x)= \tag{2.23}\\
& \sum_{i, j} \int_{R_{\varepsilon_{0}}} f_{1, i}\left(x_{j} p n a_{t}\right) f_{2, j}\left(x_{j} p n\right) d \mu_{h a m N^{+}, \lambda_{1}}(n) e^{-\psi_{2} \mathrm{oi}(\log a)} d m d a d \mu_{N, \lambda_{2}}(h) \\
& =\sum_{i, j} \int_{N_{\varepsilon_{0}} A_{\varepsilon_{0}} M_{\varepsilon_{0}}}\left(\int_{N_{\varepsilon_{0}}^{+}} f_{1, i}\left(x_{j} p n a_{t}\right) f_{2, j}\left(x_{j} p n\right) d \mu_{h a m N^{+}, \lambda_{1}}(n)\right) \\
& \quad \times e^{-\psi_{2} \mathrm{ii}(\log a)} d m d a d \mu_{N, \lambda_{2}}(h) .
\end{align*}
$$

Applying Proposition 2.17, it follows:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \Psi(t) e^{\left(\varphi_{1}-\psi_{1}\right)\left(\log a_{t}\right)} \int_{\Gamma \backslash G} f_{1}\left(x a_{t}\right) f_{2}(x) d m_{\lambda_{1}, \lambda_{2}}^{*}(x) \\
& =\left.\left.\sum_{j} \sum_{Z \in \mathfrak{Z}_{\Gamma}} m_{\lambda_{1}, \nu_{2}}\right|_{Z N^{+}}\left(f_{1, j}\right) \sum_{i} \int_{N_{\varepsilon_{0}} A_{\varepsilon_{0}} M_{\varepsilon_{0}}} \mu_{x_{i} p N^{+}, \nu_{1}}\right|_{Z N}\left(f_{2, i}\left(x_{j} p \cdot\right)\right) \\
& \quad e^{-\psi_{2} \mathrm{oi}(\log a)} d m d a d \mu_{N, \lambda_{2}}(h) \\
& =\left.\sum_{Z \in \mathfrak{Z}_{\Gamma}} m_{\lambda_{1}, \nu_{2}}\right|_{Z N^{+}}\left(f_{1}\right) \sum_{i} \int_{N_{\varepsilon_{0}} A_{\varepsilon_{0} M_{\varepsilon_{0}}}} \mu_{x_{i} p N^{+}, \nu_{1}}\left(f_{2, i} \mathbb{1}_{Z N}\left(x_{j} p \cdot\right)\right) \\
& =\left.e_{Z \in \mathfrak{Z}_{\Gamma}} m_{\lambda_{1}, \nu_{2}}\right|_{Z N^{+}}\left(f_{1}\right) \sum_{i} m_{\nu_{1}, \lambda_{2}(\log a)}^{*} d m d a d \mu_{N, \lambda_{2}}(h) \\
& \left(f_{2, i} \mathbb{1}_{Z N}\right)=\left.\left.\sum_{Z \in \mathfrak{Z}_{\Gamma}} m_{\lambda_{1}, \nu_{2}}\right|_{Z N^{+}}\left(f_{1}\right) m_{\nu_{1}, \lambda_{2}}^{*}\right|_{Z N}\left(f_{2}\right)
\end{aligned}
$$

where the second last equality is valid by Lemma 2.9. This completes the proof.

3. Local mixing for Anosov groups

Let $\Gamma<G$ be a Zariski dense Anosov subgroup with respect to P. For any $u \in \operatorname{int} \mathcal{L}_{\Gamma}$, there exists a unique

$$
\psi=\psi_{u} \in D_{\Gamma}^{\star}
$$

such that $\psi(u)=\psi_{\Gamma}(u)$ [7, Prop. 4.4]. Let ν_{ψ} denote the unique (Γ, ψ)-PS measure [7, Thm. 1.3]. Similarly, $\nu_{\psi \circ \mathrm{oi}}$ denotes the unique ($\left.\Gamma, \psi \circ \mathrm{i}\right)$-PSmeasure.

In this section, we deduce $(r:=\operatorname{dim} \mathfrak{a})$:

Theorem 3.1 (Local mixing). For $i=1,2$, let $\varphi_{i} \in \mathfrak{a}^{*}$ and $\lambda_{\varphi_{i}}$ be any $\left(\Gamma, \varphi_{i}\right)$-conformal measure on \mathcal{F}. For any $u \in \operatorname{int} \mathcal{L}_{\Gamma}$, there exists $\kappa_{u}>0$ such that for any $f_{1}, f_{2} \in C_{c}(\Gamma \backslash G)$, we have

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} t^{(r-1) / 2} e^{\left(\varphi_{1}-\psi_{u}\right)(t u)} & \int_{\Gamma \backslash G} f_{1}(x \exp (t u)) f_{2}(x) d m_{\lambda_{\varphi_{1}, \lambda_{\varphi_{2}}}^{*}}^{*}(x) \\
& =\left.\kappa_{u} \sum_{Z \in \mathfrak{J}_{\Gamma}} m_{\lambda_{\varphi_{1}}, \nu_{\psi_{u} \circ \mathrm{i}}}\right|_{Z N^{+}}\left(f_{1}\right) m_{\nu_{\psi_{u}}, \lambda_{\varphi_{2}}}^{*} \mid Z N\left(f_{2}\right) .
\end{aligned}
$$

Theorem 3.1 is a consequence of Theorem 2.11, since the measure $\mathrm{m}=$ $m_{\nu_{\psi_{u}}, \nu_{\psi_{u} \text { oi }}}$ satisfies the Hypothesis 2.10 by the following theorem of Chow and Sarkar.

Theorem 3.2. [3] Let $u \in \operatorname{int} \mathcal{L}_{\Gamma}$. There exists $\kappa_{u}>0$ such that for any $f_{1}, f_{2} \in C_{c}(\Gamma \backslash G)$, we have

$$
\begin{aligned}
& \lim _{t \rightarrow+\infty} t^{(r-1) / 2} \int_{\Gamma \backslash G} f_{1}(x \exp (t u)) f_{2}(x) d m_{\nu_{\psi_{u}}, \nu_{\psi_{u} \mathrm{\circ}}}(x) \\
&=\kappa_{u} \sum_{Z \in \mathcal{Z}_{\Gamma}} m_{\nu_{\psi_{u}}, \nu_{\psi_{u} \circ \mathrm{i}}}\left|Z\left(f_{1}\right) m_{\nu_{\psi_{u}}, \nu_{\psi_{u} \mathrm{i}}}\right| Z\left(f_{2}\right) .
\end{aligned}
$$

Let m_{o} denote the K-invariant probability measure on $\mathcal{F}=G / P$. Then m_{o} coincides with the $(G, 2 \rho)$-conformal measure on \mathcal{F} where 2ρ denotes the sum of positive roots for $\left(\mathfrak{g}, \mathfrak{a}^{+}\right)$. The corresponding BMS measure $d x=$ $d m_{m_{o}, m_{o}}$ is a G-invariant measure on $\Gamma \backslash G$. The measure $d m_{\nu_{\psi o \mathrm{i}}}^{\mathrm{BR}}=d m_{m_{o}, \nu_{\psi o \mathrm{i}}}$ was defined and called the $N^{+} M$-invariant Burger-Roblin measure in 4]. Similarly, the $N M$-invariant Burger-Roblin measure was defined as $d m_{\nu_{\psi}}^{\mathrm{BR} *}$. In these terminologies, the following is a special case of Theorem 3.1.

Corollary 3.3 (Local mixing for the Haar measure). For any $u \in \operatorname{int} \mathcal{L}_{\Gamma}$, and for any $f_{1}, f_{2} \in C_{c}(\Gamma \backslash G)$, we have

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} t^{(r-1) / 2} e^{\left(2 \rho-\psi_{u}\right)(t u)} \int_{\Gamma \backslash G} & f_{1}(x \exp (t u)) f_{2}(x) d x \\
& =\left.\left.\kappa_{u} \sum_{Z \in \mathfrak{Z}_{\Gamma}} m_{\nu_{\psi_{u} \text { oi }}}^{\mathrm{BR}}\right|_{Z N^{+}}\left(f_{1}\right) m_{\nu_{\psi_{u}}}^{\mathrm{BR} *}\right|_{Z N}\left(f_{2}\right)
\end{aligned}
$$

where κ_{u} is as in Theorem 3.2.
In fact, we get the following more elaborate version of the above corollary by combining the proof of [4, Theorem 7.12] and the proof of Corollary 3.3 .

Theorem 3.4. Let $u \in \operatorname{int} \mathcal{L}_{\Gamma}$. For any $f_{1}, f_{2} \in C_{c}(\Gamma \backslash G)$ and $v \in \operatorname{ker} \psi_{u}$,

$$
\begin{array}{r}
\lim _{t \rightarrow+\infty} t^{(r-1) / 2} e^{\left(2 \rho-\psi_{u}\right)(t u+\sqrt{t} v)} \int_{\Gamma \backslash G} f_{1}(x \exp (t u+\sqrt{t} v)) f_{2}(x) d x \\
=\kappa_{u} e^{-I(v) / 2} \sum_{Z \in \mathfrak{Z}_{\Gamma}} m_{\nu_{\psi_{u} \circ \mathrm{i}}}^{\mathrm{BR}}\left|Z N^{+}\left(f_{1}\right) m_{\nu_{\psi_{u}}}^{\mathrm{BR} *}\right|_{Z N}\left(f_{2}\right)
\end{array}
$$

where $I: \operatorname{ker} \psi_{u} \rightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
I(v):=c \cdot \frac{\|v\|_{*}^{2}\|u\|_{*}^{2}-\langle v, u\rangle_{*}^{2}}{\|u\|_{*}^{2}} \tag{3.5}
\end{equation*}
$$

for some inner product $\langle\cdot, \cdot\rangle_{*}$ and some $c>0$. Moreover the left-hand sides of the above equalities are uniformly bounded for all $(t, v) \in(0, \infty) \times \operatorname{ker} \psi_{u}$ with $t u+\sqrt{t} v \in \mathfrak{a}^{+}$.

4. Proof of Theorem 1.4

Let $\Gamma<G$ be a Zariski dense Anosov subgroup with respect to P.
The u-balanced measures. Let $\Omega=\left\{[g] \in \Gamma \backslash G: g^{ \pm} \in \Lambda\right\}$. Following [2], given $u \in \operatorname{int} \mathcal{L}_{\Gamma}$, we say that a locally finite Borel measure m_{0} on $\Gamma \backslash G$ is u-balanced if

$$
\limsup _{T \rightarrow+\infty} \frac{\int_{0}^{T} \mathrm{~m}_{0}\left(\mathcal{O}_{1} \cap \mathcal{O}_{1} \exp (t u)\right) d t}{\int_{0}^{T} \mathrm{~m}_{0}\left(\mathcal{O}_{2} \cap \mathcal{O}_{2} \exp (t u)\right) d t}<\infty
$$

for all bounded M-invariant Borel subsets $\mathcal{O}_{i} \subset \Gamma \backslash G$ with $\Omega \cap \operatorname{int} \mathcal{O}_{i} \neq \emptyset$, $i=1,2$.

As an immediate corollary of Theorem 3.1, we get
Corollary 4.1. Let $\varphi \in \mathfrak{a}^{*}$. For any pair $\left(\lambda_{\varphi}, \lambda_{\varphi \circ \mathrm{i}}\right)$ of (Γ, φ) and $(\Gamma, \varphi \circ$ i)-conformal measures on \mathcal{F} respectively, the corresponding BMS-measure $m_{\lambda_{\varphi}, \lambda_{\varphi \rho \mathrm{i}}}$ is u-balanced for any $u \in \operatorname{int} \mathcal{L}_{\Gamma}$.
Proof. Let $\mathcal{O}_{1}, \mathcal{O}_{2}$ be M-invariant Borel subsets such that $\Omega \cap \operatorname{int} \mathcal{O}_{i} \neq \emptyset$ for each $i=1,2$. Let $f_{1}, f_{2} \in C_{c}(\Gamma \backslash G)$ be non-negative functions such that $f_{1} \geq 1$ on \mathcal{O}_{1} and $f_{2} \leq 1$ on \mathcal{O}_{2} and 0 outside \mathcal{O}_{2}. Since int $\mathcal{O}_{2} \cap \Omega \neq \emptyset$, we may choose f_{2} so that $m_{\nu \psi_{u}, \lambda_{\varphi \mathrm{C}_{\mathrm{i}}}}^{*}\left(f_{2}\right)>0$. For simplicity, we set $\mathrm{m}_{0}=$ $m_{\lambda_{\varphi}, \lambda_{\varphi i}}$. By Theorem 3.1 and using the fact that m_{0} is A-quasi-invariant, we obtain that for any $u \in \operatorname{int} \mathcal{L}_{\Gamma}$,

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} \frac{\mathrm{m}_{0}\left(\mathcal{O}_{1} \cap \mathcal{O}_{1} \exp (t u)\right)}{\mathrm{m}_{0}\left(\mathcal{O}_{2} \cap \mathcal{O}_{2} \exp (t u)\right)} \\
& \leq \limsup _{t \rightarrow+\infty} \frac{\int f_{1}(x) f_{1}(x \exp (-t u)) d \mathrm{~m}_{0}(x)}{\int f_{2}(x) f_{2}(x \exp (-t u)) d \mathrm{~m}_{0}(x)} \\
& =\limsup _{t \rightarrow+\infty} \frac{\int f_{1}(x) f_{1}(x \exp (t u)) d \mathrm{~m}_{0}(x)}{\int f_{2}(x) f_{2}(x \exp (t u)) d \mathrm{~m}_{0}(x)} \\
& =\limsup _{t \rightarrow+\infty} \frac{t^{(r-1) / 2} e^{\left(\varphi-\psi_{u}\right)(t u)} \int f_{1}(x) f_{1}(x \exp (t u)) d \mathrm{~m}_{0}(x)}{t^{(r-1) / 2} e^{\left(\varphi-\psi_{u}\right)(t u)} \int f_{2}(x) f_{2}(x \exp (t u)) d \mathrm{~m}_{0}(x)} \\
& =\frac{m_{\lambda_{\varphi}, \nu_{\psi_{u} \mathrm{i}}}\left(f_{1}\right)}{m_{\nu_{\psi_{u}}, \lambda_{\varphi \text { oi }}}^{*}\left(f_{2}\right)}<\infty .
\end{aligned}
$$

This shows that m_{0} is u-balanced.
Recall Theorem 1.4 from the introduction:

Theorem 4.2. Let $\operatorname{rank} G \leq 3$. For any $\psi \in D_{\Gamma}^{\star}$, any (Γ, ψ)-conformal measure on \mathcal{F} is necessarily supported on Λ. Moreover, the PS measure ν_{ψ} is the unique (Γ, ψ)-conformal measure on \mathcal{F}.

Proof. Let $u \in \operatorname{int} \mathcal{L}_{\Gamma}$ denote the unique unit vector such that $\psi(u)=\psi_{\Gamma}(u)$, that is, $\psi=\psi_{u}$. Let λ_{ψ} be any (Γ, ψ)-conformal measure on \mathcal{F}. We claim that λ_{ψ} is supported on Λ. The main ingredient is the higher rank Hopf-Tsuji-Sullivan dichotomy established in [2]. The main point is that all seven conditions of Theorem 1.4 of [2] are equivalent to each other for Anosov groups and $u \in \operatorname{int} \mathcal{L}_{\Gamma}$, since all the measures considered there are u-balanced by Corollary 4.1. In this proof, we only need the equivalence of (6) and (7), which we now recall.

Consider the following u-directional conical limit set of Γ :

$$
\begin{equation*}
\Lambda_{u}:=\left\{g^{+} \in \Lambda: \gamma_{i} \exp \left(t_{i} u\right) \text { is bounded for some } t_{i} \rightarrow+\infty \text { and } \gamma_{i} \in \Gamma\right\} . \tag{4.3}
\end{equation*}
$$

Note that $\Lambda_{u} \subset \Lambda$. For $R>0$, we set $\Gamma_{u, R}:=\{\gamma \in \Gamma:\|\mu(\gamma)-\mathbb{R} u\|<R\}$. Applying the dichotomy [2, Thm. 1.4] to a u-balanced measure $m_{\lambda_{\psi}, \nu_{\psi o \mathrm{oi}}}$, we deduce

Proposition 4.4. The following conditions are equivalent for λ_{ψ} :
(1) $\lambda_{\psi}\left(\Lambda_{u}\right)=1$;
(2) $\sum_{\gamma \in \Gamma_{u, R}} e^{-\psi(\mu(\gamma))}=\infty$ for some $R>0$.

On the other hand, if $\operatorname{rank} G \leq 3$, we have

$$
\sum_{\gamma \in \Gamma_{u, R}} e^{-\psi(\mu(\gamma))}=\infty
$$

for some $R>0$ [2, Thm. 6.3]. Therefore, by Proposition 4.4 we have $\lambda_{\psi}\left(\Lambda_{u}\right)=1$ and hence λ_{ψ} is supported on Λ in this case. This finishes the proof of the first part of Theorem 1.4. The second claim follows from the first one by [7, Thm. 1.3].

References

[1] Y. Benoist. Propriétés asymptotiques des groupes lináires. Geom. Funct. Anal. 7 (1997), no. 1, 1-47.
[2] M. Burger, O. Landesberg, M. Lee and H. Oh. The Hopf-Tsuji-Sullivan dichotomy for Anosov groups in low and high rank. Preprint, arXiv:2105.13930.
[3] M. Chow and P. Sarkar. Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces. Preprint, arXiv:2105.11377.
[4] S. Edwards, M. Lee and H. Oh. Anosov groups: local mixing, counting, and equidistribution. Preprint, arXiv:2003.14277, to appear in Geometry \& Topology.
[5] O. Guichard and A. Wienhard. Anosov representations: Domains of discontinuity and applications. Inventiones Math., Volume 190, Issue 2 (2012), 357-438.
[6] F. Labourie. Anosov flows, surface groups and curves in projective space. Invent. Math. 165 (2006), no. 1, 51-114.
[7] M. Lee and H. Oh. Invariant measures for horospherical actions and Anosov groups. Preprint, arXiv:2008.05296.
[8] M. Lee and H. Oh. Ergodic decompositions of geometric measures on Anosov homogeneous spaces. Preprint, arXiv:2010.11337.
[9] S. Patterson. The limit set of a Fuchsian group. Acta Math. 136 (1976), 241-273.
[10] G. Prasad. \mathbb{R}-regular elements in Zariski dense subgroups. Oxford quaterly journal of of mathematics 45 (1994), 541-545.
[11] J.-F. Quint. Divergence exponentielle des sous-groupes discrets en rang supérieur. Comment. Math. Helv. 77 (2002), no. 3, 563-608.
[12] J.-F. Quint. Mesures de Patterson-Sullivan en rang supérieur. Geom. Funct. Anal. 12 (2002), no. 4, 776-809.
[13] D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Publ. IHES. No. 50 (1979), 171-202.

School of Mathematics, University of Bristol, BS8 1QU, Bristol
School of mathematics, Institute for Advanced Study, Princeton, NJ 08540
Mathematics department, Yale university, New Haven, CT 06520

Email address: samuel.edwards@bristol.ac.uk
Email address: minju@ias.edu
Email address: hee.oh@yale.edu

[^0]: Edwards, Lee and Oh respectively supported by funding from the Heilbronn Institute for Mathematical Research, and the NSF grant No. DMS-1926686 (via the Institute for Advanced Study), and the NSF grant No. DMS-1900101.

