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Abstract. We present a new proof of the following theorem of Benoist-
Quint: Let G := SO◦(d, 1), d ≥ 2 and ∆ < G a cocompact lattice. Any
orbit of a Zariski dense subgroup Γ of G is either finite or dense in
∆\G. While Benoist and Quint’s proof is based on the classification of
stationary measures, our proof is topological, using ideas from the study
of dynamics of unipotent flows on the infinite volume homogeneous space
Γ\G.
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1. Introduction

Let G = SO◦(d, 1) for d ≥ 2, and ∆ a cocompact lattice in G. Let Γ be a
Zariski dense subgroup of G, acting on the space ∆\G by right translations.

The aim of this paper is to present a new proof of the following theorem
of Benoist-Quint in [2], which was originally a question of Margulis [9] and
Shah [17]:

Theorem 1.1. Any Γ-invariant subset of ∆\G is either finite or dense.

The proof of Benoist-Quint is based on their classification of stationary
measures for random walks on Γ on the space ∆\G. Our proof is topological
and can be easily modified to all rank one simple Lie groups; for the sake of
concreteness, we opted to write it only for G = SO◦(d, 1). In the case when
G = SO◦(2, 1) and Γ < G is a convex cocompact Zariski dense subgroup,
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Benoist-Oh gave a topological proof of Theorem 1.1 when the Γ-invariant
subset is a single Γ-orbit [3].

Since a Zariski dense subgroup of G is either discrete or dense, it suffices
to consider the case when Γ is discrete. Our starting point is then the
observation that Theorem 1.1 can be translated into a problem on the orbit
closure of unipotent flows on a homogeneous space of infinite volume. If we
set H = {(g, g) : g ∈ G} to be the diagonal embedding of G into G × G,
Theorem 1.1 is equivalent to the following statement about the H-action
on the product space Γ\G × ∆\G, which has infinite volume unless Γ is a
lattice.

Theorem 1.2. Any H-invariant closed subset of (Γ×∆)\(G×G) is either a
union of finitely many closed H-orbits or dense. In particular, any H-orbit
is either closed or dense.

When Γ is a lattice inG, i.e., when the homogeneous space (Γ×∆)\(G×G)
has finite volume, Theorem 1.2 is a special case of Ratner’s orbit closure
theorem [15] and Mozes-Shah theorem [13].

On the proofs. Any Zariski dense discrete subgroup of G contains a Zariski
dense Schottky subgroup (Lemma 7.3). Hence in proving Theorem 1.1, we
may assume without loss of generality that Γ is a convex cocompact Zariski
dense subgroup.

Set Z := (Γ×∆)\(G×G). Let A = {at} be a one-parameter subgroup of
diagonalizable elements of G, and U the contracting horospherical subgroup
of G with respect to the choice of A. Let U < H denote the diagonal
embedding of U into G×G. Our proof is based on the study of the action of
U on Z. Let Ω denote the subset of Z consisting of all bounded A×A-orbits,
which is a compact subset. For x ∈ Ω, consider the return of xU to Ω:

T(x) := {u ∈ U : xu ∈ Ω}.
For any sequence λi →∞, we show that the renormalization

T∞ := lim sup
i

λ−1i T(x)

is locally Zariski dense at e, i.e., for any neighborhood O of e in U , T∞∩O is
Zariski dense in U (Lemma 3.2). This is the key recurrence property we use
in carrying out the unipotent dynamics for the U -action on Z. We remark
that this recurrence property is much weaker than the notion of thickness
used in ([11], [12], [4], [8]), where the thick return property was required for
any one-parameter subgroup of U ; the latter strong property does not hold
for a general convex cocompact subgroup.

We prove that any closed H-invariant subset X of Z, which is not a union
of finitely many closed H-orbits, contains a U -minimal subset Y with respect
to Ω such that

Y C ⊂ X
for some non-constant analytic curve C contained in {e} × U . We then
conclude X = Z using the density of translates xCa−t ⊂ ∆\G as t →
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+∞ (Theorem 6.1); this last ingredient was proved by Shah [18], using
Ratner’s measure classification theorem [14] and the linearization techniques
([5], [16]).

Acknowledgement We would like to thank the referee for a careful reading
and helpful comments.

2. Notations and background

Let G = SO◦(d, 1), d ≥ 2. Let Hd denote the real hyperbolic space of
dimension d with boundary ∂Hd = Sd−1. Then G can be identified with the
group Isom+(Hd) of orientation preserving isometries of Hd. The isometric
action of G on Hd extends to a transitive action of G on the unit tangent
bundle T1(Hd). We identify Hd = G/K and T1(Hd) = G/M whereK andM
are respectively the stabilizers of a point o ∈ Hd and a vector vo ∈ T1

o(Hd).
The group G itself can be understood as the oriented frame bundle F(Hd).
Let A = {at : t ∈ R} be the one-parameter subgroup of diagonalizable
elements such that A centralizes M and the right translation action of at
on G/M corresponds to the geodesic flow on T1(Hd). For a tangent vector
v ∈ T1(Hd), we write v+ for the forward end point of the associated geodesic
in the boundary Sd−1 and v− for the backward end point. For g ∈ G, we
define

g+ := (gvo)
+ = gv+o and g− := (gvo)

− = gv−o .

We denote by U the contracting horospherical subgroup of G:

U = {u ∈ G : a−tuat → e, as t→ +∞}.

The group U is isomorphic to Rd−1; we write U = {ut : t ∈ Rd−1}.
We use the following notation in the rest of the paper:

• H = {(h, h) : h ∈ G};
• H1 = G× {e}, H2 = {e} ×G, and H = H1 ×H2;
• A = {(at, at) : t ∈ R};
• A1 = A× {e}, A2 = {e} × A;
• U = {(u, u) : u ∈ U};
• U1 = U × {e}, U2 = {e} × U ;
• M = {(m,m) : m ∈M};
• M1 =M×{e}, and M2 = {e} ×M.

Let Γ1 < H1 be a Zariski-dense discrete subgroup and Γ2 < H2 be a
cocompact lattice. We assume that both Γ1 and Γ2 are torsion-free. For
each i = 1, 2, let

Si := Γi\Hd

denote the associated real hyperbolic manifold, and Λi ⊂ Sd−1 the limit set
of Γi. As Γ2 is a lattice in H2, we have Λ2 = Sd−1. We assume that Γ1

is convex cocompact, that is, Γ1\ hull(Λ1) is compact where hull(Λ1) ⊂ Hd

denotes the convex hull of Λ1.
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Set

Z1 = Γ1\H1, Z2 = Γ2\H2, and Z = Z1 × Z2.

We define

RFS1 = {x1 ∈ Z1 : x1A1 bounded} = {[g] ∈ Z1 : g± ∈ Λ1};
and

RF+ S1 = {x1 ∈ Z1 : x1A
+
1 bounded} = {[g] ∈ Z1 : g+ ∈ Λ1}

where A+
1 = {(as, e) : s ≥ 0}.

Define

Ω = RFS1 × Z2 and Ω+ = RF+ S1 × Z2.

As Γ1 is convex cocompact, RFS1 is a compact A1M1-invariant subset.
Hence Ω is a compact subset of Z which is invariant under

∏2
i=1AiMi. The

set RF+ S1 is equal to RFS1 · U1, and hence Ω+ is a closed subset of Z
invariant under

∏2
i=1AiMiUi.

3. Local Zariski density of renormalization of U-recurrence

We often identify U with Rd−1 via the map (ut, ut) 7→ t, and the notation
‖t‖ means the Euclidean norm of t ∈ Rd−1. To ease the notation, we
sometimes write u ∈ U , identifying u with (u, u). Similarly we will write
a ∈ A, identifying a with (a, a).

For x ∈ Ω, we define the following recurrence time of x to Ω under U :

T(x) := {t ∈ Rd−1 : xut ∈ Ω}.
For x = (x1, x2) ∈ Ω, note that t ∈ T(x) if and only if x1ut ∈ RFS1. If

we choose g1 ∈ H1 so that x1 = [g1], then g±1 ∈ Λ1 since x1 ∈ RFS1. Since
(g1ut)

+ = g+1 , we have

(3.1) T(x) = {t ∈ Rd−1 : (g1ut)
− ∈ Λ1}.

Since (g1ut)
− → g+1 ∈ Λ1 as t → ∞ and Λ1 has no isolated point, it

follows that T(x) is unbounded.

Lemma 3.1. For x ∈ Ω, any non-empty open subset of T(x) is Zariski
dense in U .

Proof. The visual map U → Sd−1 − {g+1 } defined by u 7→ (g1u)− is a dif-
feomorphism. Hence by (3.1), the claim follows the well-known fact that no
non-empty open subset of Λ1 is contained in a smooth submanifold in Sd−1
of positive co-dimension (cf. [19, Corollary 3.10]). �

Lemma 3.2. Let x ∈ Ω. For any sequence λi → +∞, there exists z ∈ Ω
such that

T∞ := lim sup
i→∞

λ−1i T(x) ⊃ T(z).

In particular, for any neighborhood O ⊂ U of e, T∞ ∩O is Zariski dense in
U .
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Proof. Note that λ−1i T(x) = {t ∈ Rd−1 : xuλit ∈ Ω}. Let si = 1
2 log λi so

that asiuta
−1
si = uλit. Since Ω is A-invariant,

λ−1i T(x) = {t ∈ Rd−1 : xasiut ∈ Ω} = T(xasi).

Since Ω is a compact A-invariant subset, passing to a subsequence, xasi
converges to some z ∈ Ω as i→∞.

We claim that

lim sup
i→∞

λ−1i T(x) ⊃ T(z).

Let x = (x1, x2), z = (z1, z2), and choose g1, g
′
1 ∈ G so that x1 = [g1] and

z1 = [g′1]. Since x1asi → z1 as i → ∞, there exists γi ∈ Γ1 such that
γig1asi → g′1 as i → ∞. Let t ∈ T(z). For each i, choose ri ∈ Rd−1 of
minimal Euclidean norm in the set {r ∈ Rd−1 : (γig1asiut+r)

− ∈ Λ1}. We
claim that ri → 0 as i → ∞. Suppose not. Then there exists c > 0 such
that Bi(c) ∩ Λ1 = ∅ for infinitely many i, where B(t, c) ⊂ Rd−1 denotes
the closed ball of radius c centered at t, uB(t,c) = {us : s ∈ B(t, c)} and

Bi(c) := (γig1asiuB(t,c))
−. Since Bi(c) converges to B(c) := (g′1uB(t,c))

−

in the Hausdorff topology of closed subsets of Sd−1 and B(c) contains a
neighborhood of (g′1ut)

−, Bi(c) must contain (g′1ut)
− for all sufficiently large

i. Since (g′1ut)
− ∈ Λ1 (because t ∈ T(z)), we get a contradiction to the

hypothesis that Bi(c) ∩ Λ1 = ∅ for infinitely many i’s. Therefore ti :=
t + ri → t as i→∞.

On the other hand, ti ∈ λ−1i T(x) since

(γig1uλiti)
− = (γig1asiutia−si)

− = (γig1asiuti)
− ∈ Λ1.

This shows that t ∈ lim supλ−1i T(x), proving the first claim. The second
claim follows from the first claim together with Lemma 3.1. �

4. Unipotent blowup

For a subgroup S < H, we denote by N(S) the normalizer of S in H. For
a subgroup Si ⊂ Hi, CHi(Si) denotes the centralizer of Si in Hi.

Lemma 4.1. We have N(U) = AMU1U2.

Proof. The inclusion⊃ is clear. To show the reverse inclusion⊂, let (g1, g2) ∈
N(U). Then for all (u, u) ∈ U , (g1ug

−1
1 , g2ug

−1
2 ) ∈ U and hence g−12 g1ug

−1
1 g2 =

u. This implies (g−12 g1, e) ∈ CH1(U1). Since CH1(U1) ⊂ N(U), and

(g1, g2) = (g2, g2) · (g−12 g1, e) ∈ N(U),

it follows (g2, g2) ∈ N(U) ∩ H = AMU . As both (g2, g2) and (g−12 g1, e)
belong to AMU1U2, so does (g1, g2). �

Lemma 4.2. Let gi → e in H − N(U) as i → ∞, and x ∈ Ω. Then
for any neighborhood O ⊂ H of e, there exist sequences u′i ∈ U and ui ∈
T(x) such that, as i → ∞, the sequence u′igiui converges to an element in
(AMU2 −M) ∩ O.
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Proof. Following [10], we will construct a quasi-regular map

ψ : Rd−1 → AMU2

associated to the given sequence gi. Since U is a real algebraic subgroup of
H, by Chevalley’s theorem, there exists an R-regular representation H →
GL(W ) with a distinguished point p ∈W such that U = Stab(p). Then pH
is locally closed, and N(U) is equal to the set

(4.1) {g ∈ H : pgu = pg for all u ∈ U}.
Set L := A1M1U

+
1 ×A2M2U

+
2 U2 where U+

i is the expanding horospherical
subgroup of Hi for i = 1, 2. Note that

N(U) ∩ L = AMU2

and that the product map from U × L to H is a diffeomorphism onto a
Zariski open neighborhood of e.

Since pH is open in its closure and pL is a open neighborhood of p in pH,
we can choose an M -invariant norm on W such that

(4.2) B(p, 1) ∩ pH ⊂ pL
where B(p, r) ⊂W denotes the norm ball of radius r centered at p.

For each i, we define φ̃i : Rd−1 →W by

φ̃i(t) = pgiut

which is a polynomial map in d−1-variables with degree uniformly bounded
for all i. Note that φ̃i(0) converges to p as i → ∞. As gi 6∈ N(U), φ̃i is
non-constant.

Now define
λi := sup{λ ≥ 0 : φ̃i(B(λ)) ⊂ B(p, 1)}

where B(λ) denotes the norm ball of radius λ centered at 0 in Rd−1. Note

that λi <∞ as φ̃i is nonconstant, and that λi →∞ as gi → e. Reparametriz-
ing φ̃i by λi, we define φi : Rd−1 →W :

φi(t) := φ̃i(λit).

Note that sup{‖φi(t) − p‖ : t ∈ B(1)} = 1, and limi→∞ φi(0) = p.
Since the polynomials φi have uniformly bounded degree, it follows that
after passing to a subsequence, φi converges to a non-constant polynomial
φ : Rd−1 →W uniformly on every compact subset of Rd−1.

Since pL is a Zariski open neighborhood of p in pH, the following map ψ
defines a non-constant rational map on a Zariski open neighborhood of 0 in
Rd−1:

ψ := ρ−1L ◦ φ
where ρL is the restriction to L of the orbit map g 7→ pg.

Since gi → e, without loss of generality, we may assume that gi ∈ UL for
all i. Except for a Zariski closed subset of Rd−1, the product giut can be
written as an element of UL in a unique way. We denote by ψi(t) ∈ L its
L-component so that giut ∈ Uψi(t).
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We have ψ(0) = e and

ψ(t) = lim
i→∞

ψi(λit)

where the convergence is uniform on compact subsets of Rd−1. It is easy to
check that Imψ ⊂ N(U) ∩ L = AMU2 using (4.1). Set

T∞ := lim sup
i→∞

λ−1i T(x).

Given a neighborhood O ⊂ H of e, let O′ be a neighborhood of 0 in Rd−1
such that φ(O′) ⊂ pO. Since φ is a nonconstant polynomial, it follows from
Lemma 3.2 that there exists t ∈ O′ ∩ T∞ such that ‖φ(t)‖2 6= ‖p‖2.

Let ti ∈ T(x) be a sequence such that λ−1i ti → t as i → ∞ (by passing
to a subsequence). Since ψi ◦ λi → ψ uniformly on compact subsets,

ψ(t) = lim
i→∞

(ψi ◦ λi)
Ä
λ−1i ti

ä
= lim

i→∞
ψi(ti) = lim

i→∞
usigiuti

for some sequence si ∈ Rd−1. Note that φ(t) = pψ(t) with ψ(t) ∈ AMU2∩O.
Since ‖φ(t)‖2 6= ‖p‖2 and ‖ · ‖ is M -invariant, we have ψ(t) 6∈ M . Hence
this finishes the proof. �

Lemma 4.3. Let ri → e in H2 − N(U). For any x ∈ Ω, there exists a
sequence ti ∈ T(x) such that the sequence u−tiriuti converges to a non-
trivial element of U2.

Proof. Write ri = exp qi for qi ∈ h = Lie(H2). We write U2 = {ut : t ∈
Rd−1}. Define a polynomial map ψi : Rd−1 → h by

ψi(t) = u−1t qiut for all t ∈ Rd−1.

Since H2∩N(U) = U2 = CH2(U2), it follows that ri ∈ H2−CH2(U2). Hence
ψi is a nonconstant polynomial. Let λi be the supremum of λ > 0 such
that supt∈B(λ) ‖ψi(t)‖ ≤ 1 where B(λ) denotes the ball in Rd−1 of radius λ
centered at 0. Then 0 < λi <∞ and λi →∞.

Now the rescaled polynomials φi := ψi ◦ λi : Rd−1 → h are uniformly
bounded on the unit ball with uniformly bounded degree and limi→∞ φi(0) =
0. Therefore, by passing to a subsequence, φi converges to a polynomial
φ : Rd−1 → h uniformly on compact subsets. Since supt∈B(1) ‖φ(t)‖ = 1, φ
is not a constant.

We claim that Im(φ) ⊂ Lie(U2). For any fixed s ∈ Rd−1, we have λ−1i s→
0, and hence for any t ∈ Rd−1,

u−1s φ(t)us = lim
i→∞

u−λit−sqiuλit+s

= lim
i→∞

u−λi(t+λ−1
i s)qiuλi(t+λ−1

i s)

= lim
i→∞

u−λitqiuλit = φ(t).

Hence φ(t) belongs to the centralizer of U2. Since the centralizer of U2 in
h is equal to LieU2, the claim follows.
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Set

T∞ := lim sup
i→∞

λ−1i T(x).

Fix t ∈ T∞ such that φ(t) 6= 0; this exists by Lemma 3.2. Let ti ∈ T(x) be
a sequence such that λ−1i ti → t as i→∞. As φi → φ uniformly on compact
subsets, it follows that

φ(t) = lim
i→∞

(ψi ◦ λi)(λ−1i ti) = lim
i→∞

ψi(ti) = lim
i→∞

u−1ti
qiuti .

Hence, by exponentiating, we obtain that u−1ti
riuti converges to a non-trivial

element of U2. �

5. Relative minimal subsets and additional invariance

Let X be a closed H-invariant subset of Z. A closed U -invariant subset Y
of X is called U -minimal with respect to Ω if Y ∩Ω 6= ∅ and for any y ∈ Y ∩Ω,
yU is dense in Y . Since every H-orbit in Z intersects Ω, X ∩ Ω 6= ∅. By
Zorn’s lemma, there exists a U -minimal subset Y of X with respect Ω, which
we fix in the following.

Lemma 5.1. If πi : Z → Zi denotes the canonical projection for i = 1, 2,
we have

π1(Y ) = RF+ S1 and π2(Y ) = Z2.

Proof. The claim follows since U1 and U2 act minimally on RF+ S1 and Z2

respectively [19]. �

Lemma 5.2. Let S be a closed subgroup of N(U) containing U . For any
y ∈ Y ∩ Ω, the orbit yS is not locally closed.

Proof. Suppose that yS is locally closed for some y ∈ Y ∩Ω. We claim that
there exists a sequence ui →∞ in U such that yui → y as i→∞. Let

Q := {z ∈ Y : z = lim
i→∞

yui for some ui →∞ in U}.

Since T(y) is unbounded, there exists ui →∞ in U such that yui ∈ Y ∩ Ω.
Since any limit of the sequence yui belongs to Q ∩ Ω, we have Q ∩ Ω 6= ∅.
Since Q is a closed U -invariant set, Q = Y by the relative U -minimality of
Y . In particular, y ∈ Q, proving the claim. We may assume that y = [e]
without loss of generality. Let Γ := Γ1×Γ2. Since yS is locally closed, yS is
homeomorphic to the quotient (S ∩ Γ)\S. Therefore there exists δi ∈ S ∩ Γ
such that δiui → e as i→∞.

Since N(U) = AMU1U2, writing δi = airi for ai ∈ A and ri ∈ MU1U2, it
follows that ai → e as i → ∞. Write δi = (δ1i , δ

2
i ) ∈ Γ1 × Γ2. In the case

when ai = e for all sufficiently large i, it follows from ui →∞ in U that δ1i
must be a parabolic element of Γ1, yielding a contradiction to the convex
cocompactness of Γ1. In the case when ai 6= e for an infinite subsequence, we
again get a contradiction, because there is a uniform positive lower bound
for all translation lengths of elements of Γ1. This finishes the proof. �
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Lemma 5.3. For any y ∈ Y ∩Ω, there exists a sequence gi → e in H−N(U)
such that ygi ∈ Y .

Proof. Suppose not. Then there is an open neighborhood O ⊂ H of e such
that

(5.1) yO ∩ Y ⊂ yN(U).

We may assume the map g 7→ yg ∈ X is injective on O by shrinking O if
necessary. Set

S := {g ∈ N(U) : Y g = Y }
which is a closed subgroup of N(U) containing U . We will show that yS is
locally closed; this contradicts Lemma 5.2. We first claim that

(5.2) yO ∩ Y ⊂ yS.

If g ∈ O such that yg ∈ Y , then g ∈ N(U) by (5.1). Therefore Y g =
yUg = ygU ⊂ Y . Moreover, since Y g ⊂ Y ⊂ Ω+ and Ω+ = ΩU , we have
Y g ∩ Ω 6= ∅. By the minimality assumption on Y , Y g = Y , proving that
g ∈ S, and hence (5.2).

Therefore yS is an open U -invariant subset of Y . Since Y = yS, it follows
that yS is locally closed. �

By a one-parameter semigroup of H, we mean a subset of the form
{exp(tξ) : t ≥ 0} for some non-zero ξ in the Lie algebra of H.

Proposition 5.4 (Translate of Y inside of Y ). There exists a one-parameter
subsemigroup S < AMU2 such that S 6⊂M and

Y S ⊂ Y.

Proof. It suffices to prove that there exists a sequence βk → e in AMU2−M
such that Y βk ⊂ Y (cf. [8, Lemma 10.5]). Choose y ∈ Y ∩ Ω. By Lemma
5.3, there exists gi → e in H − N(U) such that ygi ∈ Y . Let Ok be a
decreasing sequence of neighborhoods of e in G so that

⋂
kOk = {e}. Fix

k. Applying Lemma 4.2 to the sequence g−1i , we get u′i ∈ U and ui ∈
T(y) = {u ∈ U : yu ∈ Ω} such that u′ig

−1
i ui converges to some element

αk ∈ (AMU2 −M) ∩ Ok.
Since Y ∩ Ω is compact, by passing to a subsequence, yui converges to

some yk ∈ Y ∩ Ω as i→∞. Hence as i→∞,

ygi(u
′
i)
−1 = (yui)(u

′
ig
−1
i ui)

−1 → ykα
−1
k ∈ Y.

Since yk ∈ Y ∩ Ω and αk ∈ N(U), it follows that Y α−1k ⊂ Y . It remains

to set βk := α−1k . �

Proposition 5.5 (Translate of Y inside of X). Suppose that there exists
y ∈ Y ∩ Ω such that X − yH is not closed. Then there exists a non-trivial
element v ∈ U2 such that

Y v ⊂ X.
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Proof. By the hypothesis, there exists a sequence gi → e in H − H such
that ygi ∈ X. Since X is H-invariant, we may assume gi ∈ H2. Note that
N(U) ∩H2 = U2. Hence if gi ∈ N(U) for some i, then we can simply take
v := gi.

Now suppose that gi /∈ N(U) for all i. By Lemma 4.3, there exists ui ∈
T(y) such that u−1i giui → v for some non-trivial v ∈ U2. Observe

(yui)(u
−1
i giui) = ygiui ∈ X.

By passing to a subsequence, yui converges to some y0 ∈ Y ∩ Ω. Since
y0v ∈ X, it follows that Y v ⊂ X by the relative minimality of Y . �

6. Expansion of an analytic curve inside a horospherical
subgroup

For 1 ≤ k ≤ d−2, let Sk denote the collection of all k-dimensional spheres
S ⊂ Sd−1 such that Γ2S is closed in the space of all k-dimensional spheres
of Sd−1, and set

S :=
⋃

1≤k≤d−2
Sk.

For each 1 ≤ k ≤ d − 2, there exists a connected reductive subgroup
Lk ' SO◦(k + 1, 1) such that the convex hull of any sphere S ⊂ Sd−1 of
dimension k is equal to π(gSLk) = π(gS N(Lk)) for some gS ∈ H2, where
π : H2 = F(Hd) → Hd is the base-point projection. Moreover the space
of k-dimensional spheres of Sd−1 is homeomorphic to the quotient space
H2/N(Lk). It follows that S ∈ Sk if and only if [gS ] N(Lk) is closed. We
note that S consists of countably many spheres (cf. [8, Coro. 5.8]).

We deduce the following density statement from the equidistribution re-
sult [18, Theorem 1.5]:

Theorem 6.1. Let C : [0, 1] → U2 be a non-constant analytic curve. Let
g2 ∈ H2 be such that (g2C(0))− ∈ Sd−1 is not contained in any sphere in S .
Then for any sequence ti → +∞,

lim sup
i→∞

[g2]Ca−ti = Z2.

Proof. Let S be the smallest sphere of Sd−1 which contains the subset
(g2 Im(C))− = {(g2C(s))− : s ∈ [0, 1]}. As C is non-constant, the dimen-
sion k of S is at least 1. Since (g2C(0))− ∈ S, S is not contained in any
sphere in S by the hypothesis on (g2C(0))−. Since C is non-constant an-
alytic, {s ∈ [0, 1] : C′(s) = 0} is a finite set. Similarly, it follows from the
hypothesis on C that for any S0 ∈ S , the set {s ∈ [0, 1] : (g2C(s))− ∈ S0} is
finite. Now the claim follows from the equidistribution theorem [18, Theo-
rem 1.5]. �
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7. Invariance by analytic curves and conclusion

Theorem 7.1. Let X be a closed H-invariant subset of Z. Let Y ⊂ X be a
U -minimal subset with respect to Ω. Suppose that there exists y ∈ Y ∩Ω such
that X−yH is not closed. Then there exists an analytic curve C : [0, 1]→ U2

such that C′(0) 6= 0 and
Y C ⊂ X.

Proof. By Proposition 5.4, there exists a one-parameter subsemigroup S ⊂
MAU2 such that S 6⊂ M and Y S ⊂ Y . Now S is either an unbounded
subsemigroup of w−1MAw for some w ∈ U2, or contained in MU2 but not
in M .

Case 1: S ⊂ w−1MAw for some w ∈ U2 and S is unbounded.
Case 1.a: w = e. In this case, we have S = {(mtat,mtat) : t ≥ 0} ⊂ MA.
By Proposition 5.5, there exists a nontrivial v ∈ U2 such that Y v ⊂ X.
Observe Y SvAM ⊂ Y vAM ⊂ X. Define C : [0, 1]→ U2 by

C(t) = (e,mtatva
−1
t m−1t ).

Since C ⊂ SvAM , we have Y C ⊂ X. If ξ ∈ Lie(AM) such that mtat =
exp tξ, then C(t) is given by Adexp tξ v in the additive notation. Hence C is
analytic and C′(0) = adξ(v) 6= 0, since ξ /∈ Lie(M).
Case 1.b: w 6= e. We write S = {(mtat, w

−1mtatw) : t ≥ 0}. Observe that
Y SAM ⊂ X, and define C : [0, 1]→ U2 by

C(t) = (e, w−1mtatwa
−1
t m−1t ).

Since C ⊂ SAM , we have Y C ⊂ X. If ξ ∈ Lie(AM) such that mtat = exp tξ,
then C(t) is given by (Adetξ w) − w in the additive notation. Hence C is
analytic and C′(0) = adξ(w) 6= 0, since ξ /∈ Lie(M).

Case 2: S ⊂MU2. Write S = {exp(t(ξ + η)) : t ≥ 0} where ξ ∈ LieM and
η ∈ LieU2 − {0}. Define C : [0, 1]→ U2 so that C(t) is the U2-component of

exp(t(ξ + η)), which is explicitly given by
∑∞
n=1

(−ξ)n−1η
n! tn in the additive

notation. So C(t) is analytic and C′(0) = η 6= 0. Since C ⊂ SM , we have
Y C ⊂ X. �

Proposition 7.2. Let E be an H-invariant subset of Z which is not closed.
Then E is dense in Z.

Proof. Let X denote the closure of E. By the assumption that E is not
closed, there exists x ∈ X −E. Since any H-orbit meets Ω, we may assume
x ∈ (X − E) ∩ Ω, by modifying x using an element of H.

We claim that there exists a U -minimal subset Y of X with respect to Ω
such that for some y ∈ Y ∩ Ω, X − yH is not closed.

If E is locally closed, then X−E is a closed subset. Let Y be a U -minimal
subset of X −E with respect to Ω. Choose y ∈ Y ∩Ω. Then X − yH is not
closed, since y ∈ X − E.

If E is not locally closed, then X−E is not closed. Let Y be a U -minimal
closed subset of xH with respect to Ω. If Y ∩ Ω ⊂ xH, choose y ∈ Y ∩ Ω.
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If Y ∩ Ω 6⊂ xH, then choose y ∈ (Y ∩ Ω) − xH. We can then check that
X − yH is not closed.

Therefore, by Theorem 7.1, there exists a non-constant analytic curve
C : [0, 1]→ U2 such that

Y C ⊂ X.
By Theorem 6.1, there exists y2 ∈ Z2 such that for any sequence ti → +∞,

(7.1) lim sup
i→∞

y2Ca−ti = Z2.

By Lemma 5.1, we can choose y1 ∈ RF+ S1 such that (y1, y2) ∈ Y . Choose
gi ∈ Hi so that yi = [gi].

We claim that we can choose t ∈ Rd−1 so that (g1ut)
− ∈ Λ1 and (g2utC(0))−

does not belong to any sphere contained in S . It is convenient to use the
upper-half space model of Hd in which we have ∂Hd = Rd−1 ∪ {∞}, and
can take vo ∈ T1(Hd) to be the upward normal vector at o = (0, · · · , 0, 1)
so that v+o = ∞ and v−o = 0. Then for all t ∈ Rd−1, we have (ut)

+ = {∞}
and (ut)

− = ut(0) = t. Suppose that the claim does not hold. Then for any
t ∈ Rd−1 such that t ∈ g−11 Λ1 ∩ Rd−1, we have t + C(0) ∈ g−12 S ∩ Rd−1 for

some sphere S ∈ S . Therefore, Λ1 − g1(∞) ⊂ ⋃
S∈S g1C(0)−1g−12 S. This is

a contradiction, since Λ1, being the limit set of a Zariski dense subgroup of
G, cannot be contained in the union of countably many proper sub-spheres
of Sd−1 by [7, Coro. 1.4].

By replacing (y1, y2) with (y1ut, y2ut), we may now assume that y1 ∈
RFS1, as (7.1) holds for y2ut as well by Theorem 6.1.

Since y1 belongs to the compact A1-invariant subset RFS1, there exists
ti → +∞ such that y1a−ti converges to some z1 ∈ RFS1. As (y1, y2) ∈ Y
and X is A-invariant, it follows

(y1a−ti , y2Ca−ti) ⊂ X.

By (7.1), we obtain {z1} × Z2 ⊂ X. Since X is H-invariant, this implies
X = Z. �

A collection of elements g1, · · · , gk ∈ SO◦(d, 1), k ≥ 2, is called a Schottky
generating set if there exist mutually disjoint closed round balls B1, · · · , Bk
and B′1, · · · , B′k in Sd−1 such that gi maps the exterior of Bi onto the interior
of B′i for each i = 1, · · · , k. A subgroup of SO◦(d, 1) is called a (classical)
Schottky subgroup if it is generated by some Schottky generating set. It is
easy to see that a Schottky subgroup is a convex cocompact subgroup.

The following lemma is well-known (e.g., [1, Proposition 4.3]). We give a
short elementary proof.

Lemma 7.3. Any Zariski dense discrete subgroup Γ of SO◦(d, 1) contains
a Zariski dense Schottky subgroup.

Proof. Let Λ denote the limit set of Γ. For each hyperbolic element γ ∈ Γ,
γ+ and γ− are respectively the attracting and repelling fixed points of γ.
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As Γ is non-elementary, it follows from [6, Proposition 2.7] that the set
{(γ+, γ−) : γ is a hyperbolic element of Γ} is a dense subset of Λ× Λ.

Choose two hyperbolic elements γ1, γ2 ∈ Γ such that {γ±1 } and {γ±2 } are
disjoint from each other. Let S1 be the smallest sub-sphere of Sd−1 which
contains {γ±i : i = 1, 2}. If S1 6= Sd−1, then we choose a hyperbolic element
γ3 ∈ Γ so that {γ±3 } ∩ S1 = ∅. Let S2 be the smallest sub-sphere of Sd−1
which contains {γ±i : i = 1, 2, 3}. Then dimS2 > dimS1. Continuing in this
fashion, we can find a sequence of hyperbolic elements γ1, · · · , γm of Γ with
m ≤ d− 1 such that the sets {γ±i } are all mutually disjoint and their union
is not contained in any proper sub-sphere of Sd−1. Now for a sufficiently
large k, we can find pairwise disjoint round balls B±i in Sd−1 such that γki
maps the exterior of B−i to the interior of B+

i for each i; this is possible as
γ±i are all distinct and for each i, B±i can be chosen arbitrarily close to γ±i
as we make k large. Hence they form a Schottky generating set. Let Γ0 be
the subgroup generated by them. Since the limit set of Γ0 contains all fixed
points of γki , that is, {γ±i : i = 1, · · · ,m}, it is not contained in any proper
sub-sphere of Sd−1. Hence Γ0 is Zariski dense. �

Proof of Theorems 1.1 and 1.2. In order to use the notations introduced
in sections 2-6, let Γ1 < H1 be a Zariski dense discrete subgroup and Γ2 be
a cocompact lattice in H2. Since Γ1 is countable and Γ2\H2 is compact, a
closed Γ1-orbit in Γ2\H2 is necessarily finite.

For any (g1, g2) ∈ H1 ×H2, observe that the following are all equivalent
to each other:

(1) The orbit [(g1, g2)]H is closed (resp. dense) in (Γ1×Γ2)\(H1×H2);
(2) The orbit (Γ1×Γ2)[(g1, g2)] is closed (resp. dense) in (H1×H2)/H;
(3) The product Γ2g2g

−1
1 Γ1 is closed (resp. dense) in G;

(4) The orbit [g2g
−1
1 ]Γ1 is finite (resp. dense) in Γ2\H2.

We first claim Theorem 1.2 when Γ1 is convex cocompact. Suppose that
X is a closed H-invariant subset of Z = Γ1\H1 × Γ2\H2, and suppose that
X 6= Z. If X consists of finitely many H-orbits, then each of them must
be closed by Proposition 7.2. Now suppose that X contains infinitely many
H-orbits, say xiH. Each xiH should be closed again by Proposition 7.2.
Consider the set E :=

⋃
xiH. Recalling that every H-orbit meets Ω, we

may assume that xi ∈ Ω and it converges to some x ∈ Ω − E; if x ∈ xjH,
then we replace E by

⋃
i>j xiH. Since E is not closed, by Proposition 7.2,

E is dense in Z. This proves the claim. In view of the above equivalence,
Theorem 1.1 follows when Γ1 is convex cocompact.

Since any Zariski dense discrete subgroup of H1 contains a Zariski dense
convex cocompact subgroup by Lemma 7.3, Theorem 1.1 follows. This im-
plies Theorem 1.2 for a general Zariski dense discrete subgroup again in view
of the above equivalence.
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