HECKE OPERATORS AND EQUIDISTRIBUTION OF HECKE POINTS

LAURENT CLOZEL, HEE OH, EMMANUEL ULLMO

1. Statements of Main results

Let G be a connected almost simple simply connected linear algebraic group over \mathbb{Q} with $G(\mathbb{R})$ non-compact and $\Gamma \subset G(\mathbb{Q})$ a congruence subgroup. By the well known result of Borel and Harish-Chandra, Γ is a lattice in $G(\mathbb{R})$. We remark that $G(\mathbb{R})$ is connected since G is simply connected. We denote by $d\mu$ the normalized Haar measure on $\Gamma \setminus G(\mathbb{R})$.

We recall the definition of a Hecke operator:

Hecke operator T_a . Let $a \in G(\mathbb{Q})$. For $x \in \Gamma \setminus G(\mathbb{R})$, set $T_a x = \{ [\Gamma a \Gamma x] \in \Gamma \setminus G(\mathbb{R}) \}$. The Hecke operator T_a on $L^2(\Gamma \setminus G(\mathbb{R}))$ is defined as follows: for any $f \in L^2(\Gamma \setminus G(\mathbb{R}))$,

$$T_a(f)(x) = \frac{1}{|T_a x|} \sum_{y \in T_a x} f(y)$$

where $|T_a x|$ denotes the cardinality of the set $T_a x$.

Since Γ and $a^{-1}\Gamma a$ are commensurable with each other and $|\Gamma \setminus \Gamma a\Gamma| = [\Gamma : \Gamma \cap a^{-1}\Gamma a]$, the set $\Gamma \setminus \Gamma a\Gamma$ is finite for $a \in G(\mathbb{Q})$. The cardinality of this set will be denoted by deg(a). If $\Gamma a\Gamma = \coprod_{i=1}^{\deg(a)} \Gamma a_i$ for some $a_i \in G(\mathbb{Q})$, then

$$T_a(f)(x) = \frac{1}{\deg(a)} \sum_{i=1}^{\deg(a)} f(a_i x).$$

In particular, the above expression is independent of the choice of a_i 's. Note also that the operator norm of T_a is precisely 1 due to the normalization.

Denote by $L_2^0(\Gamma \setminus G(\mathbb{R}))$ the orthogonal complement in $L^2(\Gamma \setminus G(\mathbb{R}))$ to the subspace of constant functions, that is,

$$L_0^2(\Gamma \backslash G(\mathbb{R})) = \{ f \in L^2(\Gamma \backslash G(\mathbb{R})) \mid \int_{\Gamma \backslash G(\mathbb{R})} f \, d\mu = 0 \}.$$

Then T_a maps $L^2_0(\Gamma \setminus G(\mathbb{R}))$ into itself. We denote by $T^0_a : L^2_0(\Gamma \setminus G(\mathbb{R})) \to L^2_0(\Gamma \setminus G(\mathbb{R}))$ the restriction of T_a and set

$$||T_a^0|| = \sup\{|\langle T_a f, h\rangle| \mid f, h \in L^2_0(\Gamma \backslash G(\mathbb{R})), ||f|| = 1, ||h|| = 1\}$$

where ||f|| denotes the usual L^2 -norm of f. In particular, for any $f \in L^2(\Gamma \setminus G(\mathbb{R}))$,

$$\|T_a f - \int_{\Gamma \setminus G(\mathbb{R})} f(x) d\mu(x)\| \le \|T_a^0\| \cdot \|f - \int_{\Gamma \setminus G(\mathbb{R})} f(x) d\mu(x)\| \le \|T_a^0\| \cdot \|f\|.$$

The main goal of this paper is to present an L^2 -norm estimate of T_a^0 and, using that, to obtain an equidistribution of the sets $T_a x$ as deg(a) tends to ∞ with an estimate of equidistribution rate.

To formulate our main theorems, we now set up some notation. Let R_f be the set of all finite primes. For each $p \in R_f$, let A_p be a maximal \mathbb{Q}_p -split torus of $G(\mathbb{Q}_p)$ and B_p a minimal \mathbb{Q}_p -parabolic subgroup of $G(\mathbb{Q}_p)$ containing A_p . Consider the set Φ_p of non-multipliable roots in the relative \mathbb{Q}_p -root system $\Phi(G, A_p)$ with the ordering given by B_p . If G is quasi-split over \mathbb{Q}_p and split over an unramified extension field over \mathbb{Q}_p , which is the case for almost all $p \in R_f$ [Ti1], let $K_p = G(\mathbb{Z}_p)$. Otherwise, we take K_p to be a special subgroup of $G(\mathbb{Q}_p)$ associated to A_p [Ti1]. Then K_p is a good maximal compact subgroup of $G(\mathbb{Q}_p)$ for each $p \in R_f$. Hence we have the Cartan decomposition: $G(\mathbb{Q}_p) = K_p A_p^+ \Omega_p K_p$ where A_p^+ is the closed positive Weyl chamber. Here Ω_p is a finite subset of the centralizer of A_p , and $\Omega_p = \{e\}$ whenever G is quasi-split and split over an unramified extension field over \mathbb{Q}_p . In particular, $\Omega_p = \{e\}$ for almost all $p \in R_f$.

A subset $S_p \subset \Phi_p^+$ is called a *strongly orthogonal system* if for any two distinct α and β in S_p , neither of $\alpha \pm \beta$ belongs to Φ_p .

We now recall the bi- K_p -invariant functions ξ_{S_p} :

Definition [Oh2, Definition 4.10]. For a strongly orthogonal system $S_p \subset \Phi_p^+$, the bi- K_p -invariant function ξ_{S_p} on $G(\mathbb{Q}_p)$ is defined by

$$\xi_{\mathcal{S}_p}(g) = \prod_{\alpha_p \in \mathcal{S}_p} \Xi_{PGL_2(\mathbb{Q}_p)} \begin{pmatrix} \alpha_p(g) & 0\\ 0 & 1 \end{pmatrix}$$

where each root $\alpha_p \in S_p$ is considered as a bi- K_p -invariant function on $G(\mathbb{Q}_p)$ by $\alpha_p(g) = \alpha_p(a)$ if $g = k_1 a d k_2$ for $k_1, k_2 \in K_p$, $a \in A_p^+$ and $d \in \Omega_p$, and $\Xi_{PGL_2(\mathbb{Q}_p)}$ denotes the Harish-Chandra function of $PGL_2(\mathbb{Q}_p)$ ([Ha], or see [Oh2, 2.2]).

Explicitly, $\Xi_{PGL_2(\mathbb{Q}_p)}$ is the bi- $PGL_2(\mathbb{Z}_p)$ -function given by

$$\Xi_{PGL_2(\mathbb{Q}_p)} \begin{pmatrix} x & 0\\ 0 & 1 \end{pmatrix} = \frac{1}{\sqrt{p^n}} \left(\frac{n(p-1) + (p+1)}{p+1} \right) \text{ for } |x|_p = p^{\pm n}, n \in \mathbb{N}$$

where $|\cdot|_p$ denotes the *p*-adic valuation on \mathbb{Q}_p (cf. [Oh2, 3.7]).

We now state the following norm estimate of Hecke operators.

Theorem 1.1. Let G be a connected almost simple simply connected linear algebraic group over \mathbb{Q} with $G(\mathbb{R})$ non-compact. Let $\Gamma \subset G(\mathbb{Q})$ be a congruence subgroup. Set $R_1 = \{p \in R_f \mid \operatorname{rank}_{\mathbb{Q}_p} G = 1\}$ and $R_2 = \{p \in R_f \mid \operatorname{rank}_{\mathbb{Q}_p} G \geq 2\}$. Then there exists a constant C such that for any $a \in G(\mathbb{Q})$

$$||T_a^0|| \le \begin{cases} C\left(\prod_{p \in R_1} \xi_{\mathcal{S}_p}^{1/2}(a)\right) \left(\prod_{p \in R_2} \xi_{\mathcal{S}_p}(a)\right) & \text{if } rank_{\mathbb{Q}}G \ge 1; \\ C\left(\prod_{p \in R_2} \xi_{\mathcal{S}_p}(a)\right) & \text{if } rank_{\mathbb{Q}}G = 0 \end{cases}$$

where S_p is a strongly orthogonal system of Φ_p for each $p \in R_1 \cup R_2$.

Remark. If G is Q-split and $\Gamma = G(\mathbb{Z})$, then C = 1 and we can let $S_p = S$, $p \in R_f$ for any strongly orthogonal system S of Φ where Φ is the set of non-multipliable roots in the relative root system with respect to a maximal Q-split torus A. See the remark in 4.1 and 4.2 for a detailed account for C in general cases. In particular, Theorem 4.2 presents a stronger version of Theorem 1.1 for a family of congruence subgroups.

In fact, for $p \in R_2$, the appearance of ξ_{S_p} in the above theorem is due to the result that ξ_{S_p} is a uniform pointwise bound for the matrix coefficients of all non-trivial unitary representations of $G(\mathbb{Q}_p)$ with respect to K_p -finite vectors [Oh2]. For $p \in R_1$, such a uniform bound does not exist since the group $G(\mathbb{Q}_p)$ does not have Kazhdan property (T). The presence of the function $\xi_{S_p}^{1/2}$ in the above theorem for $p \in R_1$ is then due to a known bound towards the Ramanujan conjecture for SL_2 by Gelbart and Jacquet [GJ]. We note that the Gelbart-Jacquet estimate has been improved by Luo-Rudnick-Sarnak [LRS], by Shahidi [Sh] and most recently by Kim-Shahidi [KS] (also see the appendix by Kim and Sarnak in [KS] for a slightly better estimate). At the unramified primes, this gives a better estimate of the spherical function on SL_2 than the one we use. It is likely that the estimate could be extended to all matrix coefficients, thus reinforcing the second inequality in section 3.2 and hence Theorem 1.1 for $p \in R_1$.

If the Ramanujan conjecture for SL_2 is assumed, then we can replace $\xi_{S_p}^{1/2}$ by ξ_{S_p} .

Theorem 1.2. Keeping the same notation as in Theorem 1.1, if we assume that $\operatorname{rank}_{\mathbb{Q}}G \geq 1$ and that the Ramanujan conjecture holds at every finite prime p for SL_2 , then there exists a constant C such that for any $a \in G(\mathbb{Q})$

$$||T_a^0|| \le C \prod_{p \in R_f} \xi_{\mathcal{S}_p}(a).$$

We note that if G is Q-anisotropic and $p \in R_1$, the Q-embedding of a form of $SL_2 \hookrightarrow G$ having the properties used in the proof of Theorem 3.4 does not necessarily exist. By using known cases of Langlands functoriality as well as restriction to other

more complicated embeddings $H \hookrightarrow G$ of some Q-subgroup H, we think that a nontrivial estimate on matrix coefficients can be obtained also at these primes. Thus if $\operatorname{rank}_{\mathbb{Q}}G = 0$, a suitable form of Theorem 1.1 could be proved controlling $||T_a^0||$ also at primes $p \in R_1$, but possibly with a weaker estimate. We thank the referee for this comment.

The only case where Theorem 1.1 has no content is when the absolute rank of G is 1 while rank $_{\mathbb{Q}}G = 0$ (if rank $_{\mathbb{Q}}G = 0$ and rank $G \ge 2$, then there exists infinitely many primes p such that rank $_{\mathbb{Q}_p}G \ge 2$). This happens only for the group $G = SL_1(D)$ where D is a quaternion algebra over \mathbb{Q} [Ti2]. The following is then a well known consequence of the Jacquet-Langlands correspondence [JL] based on the Gelbart-Jacquet estimate for a bound of the Ramanujan conjecture. Note that $R_1 = \{p \in R_f \mid D \text{ is split over } \mathbb{Q}_p\}$.

Theorem 1.3. Let $G = SL_1(D)$ where D is a quaternion algebra over \mathbb{Q} such that D is split over \mathbb{R} and $\Gamma \subset G(\mathbb{Q})$ a congruence subgroup. Then there exists a constant C such that for any $a \in G(\mathbb{Q})$,

$$||T_a^0|| \le C \prod_{p \in R_1} \xi_{\mathcal{S}_p}^{1/2}(a)$$

where S_p is a strongly orthogonal system of Φ_p for each $p \in R_f$ where D splits over \mathbb{Q}_p (in fact, $S_p = \{\alpha_p\}$ for the simple root α_p of Φ_p).

A strongly orthogonal system \mathcal{S} in a reduced root system Φ is said to be *large* if every simple root of Φ has a non-zero coefficient in the formal sum $\sum_{\alpha \in \mathcal{S}} \alpha$; and *maximal* if the coefficient of each simple root in the formal sum $\sum_{\alpha \in \mathcal{S}} \alpha$ is not less than the one in $\sum_{\alpha \in \mathcal{O}} \alpha$ for any strongly orthogonal system \mathcal{O} of Φ (cf. [Oh2]).

We obtain a direct corollary of Theorem 1.1 just by considering large strongly orthogonal systems S_p , $p \in R_f$ (see 4.4).

Corollary 1.4. Let G and Γ be as in Theorem 1.1. Let $\{a_n \in G(\mathbb{Q}) \mid n \in \mathbb{N}\}$ be any sequence with $deg(a_n)$ tending to infinity. If $rank_{\mathbb{Q}}G = 0$, assume that the diagonal embedding of the sequence $\{a_n\}$ into the direct product $\prod_{p \in R_2} G(\mathbb{Q}_p)$ is unbounded in $\prod_{p \in R_2} G(\mathbb{Q}_p)$. Then

$$\lim_{n \to \infty} \|T_{a_n}^0\| = 0.$$

Clearly the convergence rate $\left(\prod_{p \in R_1} \xi_{\mathcal{S}_p}^{1/2}(a)\right) \left(\prod_{p \in R_2} \xi_{\mathcal{S}_p}(a)\right)$ in Theorem 1.1 is sharpest when maximal strongly orthogonal systems \mathcal{S}_p are used for all $p \in R_1 \cup R_2$. A maximal strong orthogonal system for each irreducible reduced root system has been constructed in [Oh1]. In fact, it turns out that Theorem 1.1 yields the optimal convergence rate for the Hecke operator norms for the groups SL_n , $(n \geq 3)$ and Sp_{2n} , $(n \geq 2)$. Write G for SL_n or Sp_{2n} . The group Sp_{2n} will be defined by the bi-linear from $\begin{pmatrix} 0 & \bar{I}_n \\ -\bar{I}_n & 0 \end{pmatrix}$ where \bar{I}_n denotes the skew diagonal $n \times n$ -identity matrix. We write s|t if $\frac{t}{s}$ is an integer. Let A be the diagonal subgroup of G and set

$$A^{+} = \{ \text{diag}(a_{1}, \cdots, a_{n}) \mid a_{i} \in \mathbb{Q}, a_{i} > 0, a_{i+1} \mid a_{i} \text{ for all } 1 \le i \le n-1 \}$$

if $G = SL_n$ and

$$A^{+} = \{ \operatorname{diag}(a_{1}, \cdots, a_{n}, a_{n}^{-1}, \cdots, a_{1}^{-1}) \mid a_{i} \in \mathbb{N}, a_{i} \ge 1, a_{i+1} \mid a_{i} \text{ for all } 1 \le i \le n \}$$

if $G = Sp_{2n}$.

Theorem 1.5. (cf. 5.1 and 5.3 below) Let $G = SL_n$ $(n \ge 3)$ or Sp_{2n} $(n \ge 2)$, and $\Gamma = G(\mathbb{Z})$. Let S be a maximal strongly orthogonal system of $\Phi(G, A)$. Then there exists a function $f \in L^2_0(\Gamma \setminus G(\mathbb{R}))$ with ||f|| = 1 such that for any $\epsilon > 0$, one can find a constant C (depending on ϵ) such that

$$C \prod_{p \in R_f} \xi_{\mathcal{S}}^{1+\epsilon}(a) \le \|T_a^0 f\| \le \prod_{p \in R_f} \xi_{\mathcal{S}}(a)$$

for any $a \in A^+$.

We remark that in [Oh2] the function $\xi_{\mathcal{S}}$ in Theorem 1.5 was shown to achieve the slowest decay in the spherical unitary dual of G. It is worthwhile to note that the same function $\xi_{\mathcal{S}}$ indeed comes from the spectrum of $L^2(\Gamma \setminus G(\mathbb{R}))$ (see 5.4 below).

We can easily deduce the following equidistribution statements from Theorem 1.1 (see 4.5):

Theorem 1.6. Let G, Γ and $\{a_n\}$ be as in Corollary 1.4. Then for any $x \in \Gamma \setminus G(\mathbb{R})$, the sets $T_{a_n}x$ are equidistributed with respect to $d\mu$, in the sense that

$$\lim_{n \to \infty} T_{a_n} f(x) = \int_{\Gamma \setminus G(\mathbb{R})} f(g) d\mu(g)$$

for any continuous function f on $\Gamma \setminus G(\mathbb{R})$ with compact support.

Under suitable differentiability assumption on f, the L^2 -convergence rate obtained in Theorem 1.1 does survive in the equidistribution statement (see [CU, Corollary 8.3], or Theorem 4.6 below). For instance, we have the following: **Theorem 1.7.** Keeping the same notation from Theorem 1.1, let f be a smooth function on $\Gamma \setminus G(\mathbb{R})$ with a compact support. Then for any $a \in G(\mathbb{Q})$ and for any $x \in \Gamma \setminus G(\mathbb{R})$,

$$\begin{aligned} \left| T_a f(x) - \int_{\Gamma \setminus G(\mathbb{R})} f(g) d\mu(g) \right| &\leq \\ & \begin{cases} C \left(\prod_{p \in R_1} \xi_{\mathcal{S}_p}^{1/2}(a) \right) \left(\prod_{p \in R_2} \xi_{\mathcal{S}_p}(a) \right) & \text{ if } \operatorname{rank}_{\mathbb{Q}} G \geq 1; \\ C \left(\prod_{p \in R_2} \xi_{\mathcal{S}_p}(a) \right) & \text{ if } \operatorname{rank}_{\mathbb{Q}} G = 0 \end{cases} \end{aligned}$$

where the constant C (depending on f) can be taken uniformly over compact subsets.

Remark. The above results can be generalized in the following cases:

- (1) Let G be a connected almost simple simply connected \mathbb{Q} -group. Let S be a finite set of primes including the archimedean one ∞ . Assume that $G(\mathbb{Q}_p)$ is non-compact for some prime $p \in S$ (here we set $\mathbb{Q}_{\infty} = \mathbb{R}$). Let $\Gamma \subset G(\mathbb{Q})$ be an S-congruence subgroup, that is, $\Gamma = G(\mathbb{Q}) \cap U^S$ for some compact open subgroup U^S of $G(\mathbb{A}_S)$ where $G(\mathbb{A}_S)$ denotes the subgroup of the adele group $G(\mathbb{A})$ consisting of elements with trivial components for all primes in S. Let $G_S = \prod_{p \in S} G(\mathbb{Q}_p)$. Then the diagonal embedding of Γ into G_S , which will be identified with Γ , is a lattice in G_S . For each $a \in G(\mathbb{Q})$, we can consider the Hecke operator T_a on $L^2(\Gamma \setminus G_S)$ acting in a diagonal way. It will be clear from our methods that all the results stated above remain valid for T_a provided we replace R_1 and R_2 by $R_1 - S$ and $R_2 - S$ respectively.
- (2) If G is almost \mathbb{Q} -simple, then there exist a number field K and a connected almost simple simply connected K-group H such that $G = \text{Rest}_{K/\mathbb{Q}}H$. The same statements as the above theorems are true if we replace R_f , R_1 and R_2 by the corresponding set of valuations of K relative to H.
- (3) Let G be GL_n or GSp_{2n} (the group GSp_{2n} is defined similarly as Sp_{2n} except for allowing scalar multiplications). Let $\Gamma = G(\mathbb{Z})$. If we replace $\Gamma \setminus G(\mathbb{R})$ by $Z(\mathbb{R})\Gamma \setminus G(\mathbb{R})$ where Z denotes the center of G, all the above theorems hold for those G and Γ where R_1 and R_2 are defined with respect to the semisimple ranks of $G(\mathbb{Q}_p)$'s (see 4.7).

We now discuss some applications of the above results on equidistribution of lattices in \mathbb{R}^n with some properties. Via the natural isomorphism of the space $GL_n(\mathbb{Z})\backslash GL_n(\mathbb{R})$ with the space of lattices in \mathbb{R}^n by $GL_n(\mathbb{Z})g \mapsto g^T\mathbb{Z}^n$, the space $Z(\mathbb{R})GL_n(\mathbb{Z})\backslash GL_n(\mathbb{R})$ is identified with the space X of equivalence classes of lattices where $\Lambda \sim \Lambda'$ if and only if $\Lambda = c\Lambda'$ for some scalar c. We write $\overline{\Lambda}$ for the class in X represented by a lattice Λ in \mathbb{R}^n . For any n positive integers a_1, \dots, a_n with $a_{i+1}|a_i$ for all $1 \leq i \leq n-1$ and $a_n = 1$, set

$$X_{\bar{\Lambda}}(a_1,\cdots,a_n) = \{\bar{\Lambda'} \in X \mid \Lambda' \subset \Lambda, \, \Lambda/\Lambda' \approx \sum_{i=1}^{n-1} \mathbb{Z}/a_i \mathbb{Z}\}.$$

Then

$$X_{\bar{\Lambda}}(a_1,\cdots,a_n) = T_{\operatorname{diag}(a_1,\cdots,a_n)}(\bar{\Lambda}).$$

Hence the following easily follows from Theorem 1.7 (see 3.1 below):

Corollary 1.8.

(1) For any $\overline{\Lambda} \in X$, the sets $X_{\overline{\Lambda}}(a_1, \cdots, a_n)$ are equidistributed, that is, for any *(nice)* compact subset $\Omega \subset X$

$$\frac{|\Omega \cap X_{\bar{\Lambda}}(a_1, \cdots, a_n)|}{|X_{\bar{\Lambda}}(a_1, \cdots, a_n)|} \sim \mu(\Omega)$$

as $diag(a_1, \dots, a_n)$ goes to infinity in $GL_n(\mathbb{Z})$ modulo its center.

(2) Let n ≥ 3. For any smooth function f on X with compact support, we have that for any ε > 0, there exists a constant C (depending on ε and f) such that for any such (a₁, · · · , a_n) as above,

$$\left|\frac{\sum_{\bar{\Lambda'}\in X_{\bar{\Lambda}}(a_1,\cdots,a_n)}f(\bar{\Lambda'})}{|X_{\bar{\Lambda}}(a_1,\cdots,a_n)|} - \int_X fd\mu\right| \le C \prod_{i=1}^{[n/2]} \left(\frac{a_i}{a_{n+1-i}}\right)^{-1/2+\epsilon}$$

for any $\overline{\Lambda} \in X$.

Here the notation $[\alpha]$ denotes the largest integer not bigger than α .

On the other hand, if we set

$$X_{\bar{\Lambda}}(m) = \{ \bar{\Lambda}' \in X \mid \Lambda' \subset \Lambda, \, \det(\Lambda') = m \},\$$

 $X_{\overline{\Lambda}}(m)$ is equal to the finite union of the sets $T_{\text{diag}(a_1,\dots,a_n)}\overline{\Lambda}$ where (a_1,\dots,a_n) reads through all *n*-tuples of positive integers such that $a_i \in \mathbb{N}$, $a_{i+1}|a_i$ for all $1 \leq i \leq n-1$, $a_n = 1$ and $\prod_{i=1}^n a_i = m$.

The following will be deduced from Theorem 1.7 in section 5.2:

Corollary 1.9.

(1) For any $\overline{\Lambda} \in X$ and for any (nice) compact subset $\Omega \subset X$,

$$\frac{|\Omega \cap X_{\bar{\Lambda}}(m)|}{|X_{\bar{\Lambda}}(m)|} \sim \mu(\Omega) \quad \text{ as } m \to \infty \ .$$

(2) Let $n \geq 3$. Let f be a smooth function on X with compact support and $\overline{\Lambda}$ any element in X. Then for any $\epsilon > 0$, we have

$$\frac{\sum_{\bar{\Lambda}' \in X_{\bar{\Lambda}}(m)} f(\bar{\Lambda}')}{|X_{\bar{\Lambda}}(m)|} = \int_X f d\mu + O(m^{-1/2 + \epsilon}) \quad \text{as } m \to \infty$$

The condition of compact support for f is unnecessary in the above corollaries, for example, the Gaussian function for the Riemannian structure on X will do (see 4.6). Again, if the Ramanujan conjecture for SL_2 is assumed, the rate in the second part in the above Corollaries is valid for n = 2 as well. In view of Theorem 1.5, the rate $m^{-1/2+\epsilon}$ is an optimal one.

The first claim in Corollary 1.9 was in fact considered by Linnik and Skubenko [LS] in a slightly different form. With the use of ergodic method, they showed the equidistribution of the sets $R(m) = \{x \in M_{n \times n}(\mathbb{Z}) \mid \det x = m\}$, when projected to $SL_n(\mathbb{R})$, as $m \to \infty$ (without obtaining any rate of convergence). This problem was interpreted in terms of Hecke operators first by Sarnak who also deduced the equidistribution of $X_{\overline{\Lambda}}(m)$, or equivalently R(m), from convergence of the norms of Hecke operators (see [Sa] for details).

Let $K = Sp_{2n}(\mathbb{R}) \cap SU_{2n}$ be the maximal compact subgroup of $Sp_{2n}(\mathbb{R})$. Then the space $Sp_{2n}(\mathbb{Z}) \backslash Sp_{2n}(\mathbb{R})/K$ is the moduli space of principally polarized abelian varieties. We think that our results on Hecke operators may yield to an equidistribution theorem for the set of points with complex multiplication by a given number field F. For n = 1, this has been explained in [CU]. Using the results of Duke [Du], this gives the equidistribution of the set of elliptic curves with complex multiplication by an order $\mathcal{O}_{F,f}$ (f a conductor) in the ring of integers \mathcal{O}_F of an imaginary quadratic extension field F of \mathbb{Q} when the discriminant $d_{F,f}$ of $\mathcal{O}_{F,f}$ tends to infinity. Some motivations for such results related to the André-Oort conjecture are given in the introduction of [CU].

Our results may also be used to generalize the work of Lubotzky, Phillips and Sarnak [LPS, I, II] on distributing (Hecke) points on S^2 to a connected compact simple Lie group with discrepancy estimates.

In section 2, we discuss how the Hecke operators are related with unitary representations of $G(\mathbb{Q}_p)$'s. Proposition 2.6 reduces the norm estimate of Hecke operators to the pointwise bound for matrix coefficients of unitary representations of the groups $G(\mathbb{Q}_p)$, $p \in R_f$. When the \mathbb{Q}_p -rank of $G(\mathbb{Q}_p)$ is at least 2, we use the bound constructed in [Oh2], which is presented in Theorem 3.1. For the case when the \mathbb{Q}_p -rank of $G(\mathbb{Q}_p)$ is 1, we lift the Ramanujan bound for SL_2 to $G(\mathbb{Q}_p)$ using the method developed by Burger and Sarnak in [BS] (see [CU] for its *p*-adic version). This process is explained in 3.3 and 3.4. In section 4, we give proofs of all theorems listed in the introduction except Theorem 1.5, and in section 5, we write down the bounds in Theorem 1.1 explicitly for the groups SL_n (or GL_n) and Sp_{2n} (or GSp_{2n}) using the maximal strongly orthogonal system constructed in [Oh1] and obtain Theorem 1.5. We also prove Corollary 1.9 in 5.2.

A special case of Theorem 1.1 for $G = SL_n$ was first announced by Sarnak in his address in the 1991 international congress of mathematics in Kyoto [Sa]. Chiu afterwards obtained some analogues of Theorem 1.1 for SL_2 and SL_3 in [Ch] for special types of Hecke operators. The first and the third named authors, in their joint work [CU], have also obtained some special cases of the above results for GL_n and GSp_{2n} . We also mention that Theorem 1.6 has been stated in [BS] without proofs when the sequence a_n converges to an element of $G(\mathbb{R})$ not in the commensurator of Γ . We emphasize that the novelty of our results lies not just in obtaining the equidistribution statement but also in getting (sharp) rates of equidistribution. While all previous results were limited to some directions of a_n going to ∞ we have no such restrictions in our theorems.

Acknowledgment. We would like to thank Peter Sarnak and Wee Teck Gan for many helpful discussions and useful comments. The second named author is indebted to Wee Teck Gan for giving an introductory explanation on the relations between Hecke operators and the spherical unitary representations.

2. Adelic interpretation of T_a

2.1. Unless mentioned otherwise, in the whole section 2, let G be a connected almost simple simply connected \mathbb{Q} -linear group such that $G(\mathbb{R})$ is non-compact. Let R be the set of all primes including ∞ and R_f the finite primes. We set $\mathbb{Q}_{\infty} = \mathbb{R}$. We denote by $G(\mathbb{A})$ the adele group associated to G, that is, $G(\mathbb{A})$ is the restricted topological product of the groups $G(\mathbb{Q}_p)$, $p \in R$, with respect to a family of compact open subgroups $K_p \subset G(\mathbb{Q}_p), p \in R_f$. Recall that G is called *unramified* over \mathbb{Q}_p if G is quasi-split over \mathbb{Q}_p and splits over an unramified extension field over \mathbb{Q}_p . Set $R_h = \{p \in R_f \mid p \in R_f$ G is unramified over \mathbb{Q}_p . Thus $R_f - R_h$ is a finite set [Ti1]. If $p \in R_h$, we can take K_p to be a hyper-special maximal compact open subgroup of $G(\mathbb{Q}_p)$. For other primes $p \in R_f$, as in the introduction, K_p is simply a special maximal compact open subgroup of $G(\mathbb{Q}_p)$. We may assume that for almost all $p \in R_f$, $K_p = \mathcal{G}(\mathbb{Z}_p)$ for a smooth model of G over $\mathbb{Z}[1/N]$ (N some appropriate integer). Denote by $G(\mathbb{A}_f)$ the subgroup of $G(\mathbb{A})$ consisting of adeles with the trivial element at ∞ . Let Γ be a congruence subgroup of G. Then Γ is of the form $G(\mathbb{Q}) \cap (G(\mathbb{R}) \times \prod_{p \in R_f} U_p)$ where $U_p \subset G(\mathbb{Q}_p)$ are compact open subgroups and $U_p = K_p$ for almost all $p \in R_f$. Set $U_f = \prod_{p \in R_f} U_p$. Since U_f is an open subgroup of $G(\mathbb{A}_f)$, by the strong approximation theorem (cf. [PR, Theorem [7.12]), we have

$$G(\mathbb{A}) = G(\mathbb{Q}) G(\mathbb{R}) U_f.$$

Since

$$\Gamma = G(\mathbb{Q}) \cap (G(\mathbb{R}) \times U_f),$$

the spaces $G(\mathbb{Q})\backslash G(\mathbb{A})/U_f$ and $\Gamma\backslash G(\mathbb{R})$ are naturally identified with each other and furthermore this identification is a homeomorphism. Let $L^2(G(\mathbb{Q})\backslash G(\mathbb{A})/U_f)$ denote the space of L^2 -integrable functions on $G(\mathbb{Q})\backslash G(\mathbb{A})/U_f$ with respect to the pull back of the measure μ under the above identification. Let μ_p denote the Haar measure on $G(\mathbb{Q}_p)$ with $\mu_p(U_p) = 1$ for each $p \in R_f$. It is well known that the collection μ , μ_p , $p \in R_f$ defines a Haar measure on $G(\mathbb{A})$ and hence on $G(\mathbb{Q})\backslash G(\mathbb{A})$, which will be denoted by $\mu_{\mathbb{A}}$. Consider the space $L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))^{U_f}$ of L^2 -integrable functions on $G(\mathbb{Q})\backslash G(\mathbb{A})$ (with respect to $\mu_{\mathbb{A}}$) which are right U_f -invariant. Then the canonical embedding of $L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))^{U_f}$ into $L^2(G(\mathbb{Q})\backslash G(\mathbb{A})/U_f)$ is an isometry under which the constant functions on $G(\mathbb{Q})\backslash G(\mathbb{A})$ correspond to the constant functions $G(\mathbb{Q})\backslash G(\mathbb{A})/U_f$ [GGP, Appendix II to Ch 4]. We will not distinguish these two spaces as well as their orthogonal complements to the space of constant functions hereafter.

The map

$$\phi: L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))^{U_f} \to L^2(\Gamma\backslash G(\mathbb{R}))$$

given by $\phi(f)(x) = f(x, (e)_{p \in R_f}), x \in G(\mathbb{R})$, defines a one-to-one correspondence, which is an isometry. Here *e* denotes the identity element in *G*.

2.2. For $a \in G(\mathbb{Q})$, set $\deg_p(a)$ to be the cardinality of the set $U_p \setminus U_p a U_p$ for each $p \in R_f$. Note that $\deg_p(a) = 1$ for almost all $p \in R_f$.

Lemma. For $a \in G(\mathbb{Q})$,

- (1) $\deg(a) = [\Gamma : \Gamma \cap a^{-1}\Gamma a];$
- (2) $\deg_p(a) = [U_p : U_p \cap a^{-1}U_p a];$
- (3) $\deg(a) = \prod_{p \in R_f} \deg_p(a).$

Proof. Consider the Γ -orbit of a in $\Gamma \setminus G(\mathbb{R})$ under the translation from the right, that is, $\gamma \mapsto \Gamma a \gamma^{-1}$. Then the stabilizer $\{\gamma \in \Gamma \mid \Gamma a \gamma^{-1} = \Gamma a\}$ is precisely $\Gamma \cap a^{-1}\Gamma a$. Hence we obtain a bijection between $\Gamma \setminus \Gamma a \Gamma$ and $(\Gamma \cap a^{-1}\Gamma a) \setminus \Gamma$; hence $\deg(a) = [\Gamma : \Gamma \cap a^{-1}\Gamma a]$. Similarly, we have $\deg_p(a) = [U_p : U_p \cap a^{-1}U_p a]$. Denote by i the diagonal embedding of Γ into U_f and by π the natural projection of U_f onto the coset space $(U_f \cap a^{-1}U_f a) \setminus U_f$. Then the map $\pi \circ i$ factors through $(\Gamma \cap a^{-1}\Gamma a) \setminus \Gamma$. On the other hand, by the strong approximation, we have $(U_f \cap a^{-1}U_f a)\Gamma = U_f$. Hence this yields a bijection between $(\Gamma \cap a^{-1}\Gamma a) \setminus \Gamma$ and $(U_f \cap a^{-1}U_f a) \setminus U_f$. Since $[U_f : U_f \cap a^{-1}U_f a] = \prod_{p \in R_f} [U_p : U_p \cap a^{-1}U_p a]$, the lemma is proved. \Box

2.3. For each $a \in G(\mathbb{Q})$ and $p \in R_f$, we now define the local Hecke operator $T_{a(p)}$ acting on the space of right U_f -invariant functions on $G(\mathbb{Q}) \setminus G(\mathbb{A})$. If $U_p a U_p = \coprod_{i=1}^{\deg_p(a)} U_p a_{ip}$ for $a_{ip} \in G(\mathbb{Q}_p)$, then for $(x_q)_{q \in R} \in G(\mathbb{Q}) \setminus G(\mathbb{A})$,

$$T_{a(p)}(f)((x_q)_{q \in R}) = \frac{1}{\deg_p(a)} \sum_{i=1}^{\deg_p(a)} f((x_q)_{q \neq p}, (x_p a_{ip}^{-1})).$$

One can easily check that this is a well defined operator and that for primes $p \neq q$, $T_{a(p)}$ and $T_{a(q)}$ commute with each other. Hence the product operator $\hat{T}_a := \prod_{p \in R_f} T_{a(p)}$ acts on $L^2(G(\mathbb{Q}) \setminus G(\mathbb{A}))^{U_f}$. The following is well known:

Theorem. For any $a \in G(\mathbb{Q})$ and $f \in L^2(G(\mathbb{Q}) \setminus G(\mathbb{A}))^{U_f}$,

$$\phi(\hat{T}_a(f)) = T_a(\phi(f)).$$

Proof. Let $S \subset R_f$ be a finite subset such that $a \in U_p$ for each $p \in R_f - S$. Let $\Gamma a \Gamma = \coprod_{i=1}^{\deg(a)} \Gamma a_i$ and $U_p a U_p = \coprod_{j_p=1}^{\deg_p(a)} U_p a_{j_p}$ for each $p \in S$. We will understand f as a function on $G(\mathbb{A})$ which is $G(\mathbb{Q})$ -invariant from the left and U_f -invariant from the right. Note that for $g \in G(\mathbb{R})$,

$$T_{a}(\phi(f))(g) = \frac{1}{\deg(a)} \sum_{i=1}^{\deg(a)} f\left(a_{i}g, (e)_{p \in R_{f}}\right)$$

and

$$\phi(\hat{T}_{a}(f))(g) = \frac{1}{\prod_{p \in S} \deg_{p}(a)} \sum_{\{(j_{p})_{p \in S} | 1 \le j_{p} \le \deg_{p}(a)\}} f(g, (a_{j_{p}}^{-1})_{p \in S}, (e)_{p \notin S})$$

From the way we obtained the bijection between $\Gamma \setminus \Gamma a \Gamma$ and $U_f \setminus U_f a U_f$ in the proof of Lemma 2.2, it is clear that for any $(j_p)_{p \in S}$, there exists one and only one a_i for some $1 \leq i \leq \deg(a)$ such that $a_i \in U_p a_{j_p}$, or equivalently $a_i^{-1} \in a_{j_p}^{-1} U_p$, for each $p \in S$. Since f is $G(\mathbb{Q})$ -invariant from the left and U_f -invariant from the right,

$$\sum_{\{(j_p)_{p \in S} | 1 \le j_p \le \deg_p(a)\}} f(g, (a_{j_p}^{-1})_{p \in S}, (e)_{p \notin S}) = \sum_{i=1}^{\deg(a)} f(g, (a_i)^{-1}_{p \in S}, (e)_{p \notin S}),$$

which is again equal to $\sum_{i=1}^{\deg(a)} f(a_i g, (e)_{p \in R_f})$. Since $\deg(a) = \prod_{p \in S} \deg_p(a)$ by Lemma 2.2, we have

$$\phi(\hat{T}_a(f))(g) = T_a(\phi(f))(g)$$

for any $g \in G(\mathbb{R})$. \Box

2.4. Let \mathbb{C} denote the space of constant functions on $L^2(G(\mathbb{Q})\backslash G(\mathbb{A}))$. We will write $L^2(G(\mathbb{Q})\backslash G(\mathbb{A})) = \mathbb{C} \oplus L^2_0(G(\mathbb{Q})\backslash G(\mathbb{A}))$. If $S \subset R$ is a finite subset such that $R_f - S \subset R_h$ and $U_p = K_p = G(\mathbb{Z}_p)$ for all $p \in R_f - S$, then the subgroup $\prod_{p \in R_f - S} U_p$ acts trivially on this space, which we will view then as a module under $\prod_{p \in S} G(\mathbb{Q}_p)$. Set

 $G_S = \prod_{p \in S} G(\mathbb{Q}_p)$. As such (all groups having type one), the space $L^2_0(G(\mathbb{Q}) \setminus G(\mathbb{A}))$ has a decomposition as a Hilbert integral. Write

$$L_0^2(G(\mathbb{Q})\backslash G(\mathbb{A}))^{U_f} = \int_X m_x \rho_x^{U_f} d\nu(x)$$

where $X = \widehat{G}_S$, $\rho_x = \bigotimes_{p \in S} \rho_{x(p)}$ is irreducible with a non-trivial U_f -invariant vector, m_x is a multiplicity for each $x \in X$ and ν is a measure on X. Here each $\rho_{x(p)}$ is an irreducible unitary representation of $G(\mathbb{Q}_p)$ with a non-trivial U_p -invariant vector [F1].

From the strong approximation and the spectral decomposition (cf. [Ar]), we have:

Proposition. For each $p \in S$, $\rho_{x(p)}$ is non-trivial for almost all $x \in X$.

We may therefore assume that the above proposition holds for all $x \in X$ without loss of generality.

2.5. Since both K_p and U_p are compact open subgroups of $G(\mathbb{Q}_p)$, they are commensurable with each other. It is easy to see:

Lemma. If ρ is a unitary representation of $G(\mathbb{Q}_p)$ and v is a U_p -invariant vector, then

$$\dim \langle K_p v \rangle \le [K_p : K_p \cap U_p]$$

where $\langle K_p v \rangle$ denotes the subspace spanned by $K_p v$.

2.6. Recall that for two unitary representations ρ_1 and ρ_2 of $G(\mathbb{Q}_p)$, ρ_1 is said to be weakly contained in ρ_2 if every diagonal matrix coefficients of ρ_1 can be approximated uniformly on compact sets by convex combinations of diagonal matrix coefficients of ρ_2 . For each $p \in R_f$, denote by \hat{G}_p the unitary dual of $G(\mathbb{Q}_p)$ and by $\hat{G}_p^{Aut} \subset \hat{G}_p$ the set of irreducible unitary representations of $G(\mathbb{Q}_p)$ which are weakly contained in the representations appearing as \mathbb{Q}_p -components of $L^2(G(\mathbb{Q})\backslash G(\mathbb{A})/O_f)$ for some compact open subgroup $O_f \subset G(\mathbb{A}_f)$.

We are now ready to prove a main proposition which provides relation between Hecke operators and unitary representations.

Proposition. Let G be a connected almost simple simply connected \mathbb{Q} -group with $G(\mathbb{R})$ non-compact and $\Gamma \subset G(\mathbb{Q})$ a congruence subgroup of the form $\Gamma = G(\mathbb{Q}) \cap (G(\mathbb{R}) \times \prod_{p \in R_f} U_p)$. Suppose that for each $p \in R_f$, there exists a bi- K_p -invariant positive function F_p on the group $G(\mathbb{Q}_p)$ such that for any non-trivial $\rho_p \in \hat{G}_p^{Aut}$ with K_p -finite unit vectors v and w,

$$|\langle \rho_p(g)v, w \rangle| \le (\dim \langle K_p v \rangle \dim \langle K_p w \rangle)^{1/2} \cdot F_p(g) \text{ for any } g \in G(\mathbb{Q}_p).$$

Assume moreover that $F_p(e) = 1$ for almost all $p \in R_f$. Then for any $a \in G(\mathbb{Q})$,

$$|T_a^0|| \le C \prod_{p \in R_f} F_p(a)$$

where $C = \prod_{p \in R_f} [K_p : K_p \cap U_p].$

Proof. Let $S \subset R$ be a finite subset such that $R_f - S \subset R_h$ and $U_p = K_p$ for each $p \in R_f - S$. We assume moreover that $a \in K_p$ for all $p \in R_f - S$. Write $\mathcal{L}_0 = L_0^2(G(\mathbb{Q}) \setminus G(\mathbb{A}))$. As a representation of G_S , we can write

$$\mathcal{L}_0 = \int_{x \in X} m_x \rho_x d\nu(x)$$

where X, ρ_x , m_x and ν are as in 2.4. If $\mathcal{L}_x \cong \oplus^{m_x} \rho_x$ is the corresponding summand,

$$\langle v, w \rangle = \int_{x \in X} \langle v_x, w_x \rangle_{\mathcal{L}_x} d\nu(x).$$

As in 2.3, T_a^0 acts on $\mathcal{L}_0^{U_f}$ by the product $\prod_{p \in S} T_{a(p)}$ where each $T_{a(p)}$ acts as a local Hecke operator on the *p*-factor $\rho_{x(p)}^{U_p}$ of ρ_x as follows: if *v* is a U_p -invariant vector, then

$$T_{a(p)}(v) = \frac{1}{\deg_p(a)} \chi_{U_p a U_p} * v = \frac{1}{\deg_p(a)} \int_{G(\mathbb{Q}_p)} \chi_{U_p a U_p}(g) \,\rho_{x(p)}(g)(v) \,d\mu_p(g)$$

where μ_p is the Haar measure on $G(\mathbb{Q}_p)$ with $\mu_p(U_p) = 1$. Hence if $U_p a U_p = \coprod_{j_p=1}^{\deg_p(a)} U_p a_{j_p}$,

$$T_{a(p)}(v) = \frac{1}{\deg_p(a)} \sum_{j_p=1}^{\deg_p(a)} \rho_{x(p)}(a_{j_p})v.$$

By the integral representation, it now suffices to show that for each $p \in S \cap R_f$ and for any U_p -invariant vectors v, w in the space of $\rho_{x(p)}$,

$$|\langle T_{a(p)}(v), w \rangle| \le [K_p : K_p \cap U_p] F_p(a) ||v|| \cdot ||w||.$$

Let $p \in S \cap R_f$. Since $a_{j_p} \in U_p a U_p$ for each $1 \leq j_p \leq \deg_p(a)$, and v and w are U_p -invariant vectors, we have

$$\langle T_{a(p)}v,w\rangle = \langle \rho_{x(p)}(a)v,w\rangle.$$

Since $\rho_{x(p)}$ is non-trivial (Proposition 2.4) and the dimensions of $\langle K_p v \rangle$ and $\langle K_p w \rangle$ are at most $[K_p : K_p \cap U_p]$ (Lemma 2.5), we have

$$|\langle T_{a(p)}v,w\rangle| \le [K_p:K_p \cap U_p] F_p(a) ||v|| \cdot ||w||$$

by the assumption. Integrating over X, we conclude that for any v and $w \in \mathcal{L}_0$,

$$|\langle \hat{T}_a v, w \rangle| \le C \prod_{p \in R_f} F_p(a) \|v\| \cdot \|w\|$$

by the Cauchy-Schwartz inequality, where C is the product of the finite primes p such that $U_p \neq K_p$ of $[K_p, K_p \cap U_p]$. Since the map ϕ in 2.1 is an isometry, this finishes the proof. \Box

Since K_p and U_p are commensurable for each $p \in R_f$ and $K_p = U_p$ for almost all $p \in R_f$, the product $\prod_{p \in R_f} [K_p : K_p \cap U_p]$ is well defined.

2.7. Remark. In fact, in the above proposition, we obtain that

$$||T_a^0|| \le \prod_{p \in R_0} \left([K_p : K_p \cap U_p] F_p(a) \right)$$

for any finite subset $R_0 \subset R_f$. This follows from the observation that for any $p \in R_f - R_0$, we can use the trivial upper bound $||v|| \cdot ||w||$ for $\langle T_{a(p)}v, w \rangle$ instead of $[K_p : K_p \cap U_p] F_p(a)$. This fact will be used in 4.2.

3. Bounds for matrix coefficients

3.1. In this subsection, let G_p be any connected reductive \mathbb{Q}_p -group with $G_p/Z(G_p)$ almost \mathbb{Q}_p -simple. Let A_p be a maximal \mathbb{Q}_p -split torus, B_p a minimal parabolic subgroup of G_p containing A_p and K_p a good maximal compact subgroup of $G_p(\mathbb{Q}_p)$ with Cartan decomposition $G_p(\mathbb{Q}_p) = K_p A_p^+ \Omega_p K_p$ where A_p^+ denotes the closed positive Weyl chamber. In particular, for any $g \in G_p(\mathbb{Q}_p)$, there exist unique elements $a \in A_p^+$ and $d \in \Omega_p$ such that $g \in K_p a d K_p$. We remark that $\Omega_p = \{e\}$ for any $p \in R_h$ (see 2.1). Let S_p be a strongly orthogonal system of Φ_p where Φ_p denotes the set of non-multipliable roots in the relative root system $\Phi(G_p, A_p)$. Recall the bi- K_p -invariant function ξ_{S_p} from the introduction. In particular, if we set

$$n_{\mathcal{S}_p}(g) = \frac{1}{2} \sum_{\alpha \in \mathcal{S}_p} \log_p |\alpha(g)|_p,$$

then

$$\xi_{\mathcal{S}_p}(g) = p^{-n_{\mathcal{S}_p}(g)} \prod_{\alpha \in \mathcal{S}_p} \left(\frac{(\log_p |\alpha(g)|_p)(p-1) + (p+1)}{p+1} \right).$$

It follows that for any $\epsilon > 0$, there exists constants C_1 and $C_2(\epsilon)$ such that for any $g \in G(\mathbb{Q}_p)$,

$$C_1 p^{-n_{\mathcal{S}_p}(g)} \le \xi_{\mathcal{S}_p}(g) \le C_2(\epsilon) p^{-n_{\mathcal{S}_p}(g)(1-\epsilon)}$$

(see [Oh2, 5.9]).

Theorem [Oh2, Theorem 1.1]. Assume that the semisimple \mathbb{Q}_p -rank of G_p is at least 2. Let \mathcal{S}_p be any strongly orthogonal system of Φ_p . Then for any irreducible infinite dimensional unitary representation ρ of $G_p(\mathbb{Q}_p)$ with K_p -finite unit vectors v and w,

$$|\langle \rho(g)v, w \rangle| \le \left([K_p : K_p \cap dK_p d^{-1}] \dim \langle K_p v \rangle \dim \langle K_p w \rangle \right)^{1/2} \cdot \xi_{\mathcal{S}_p}(g)$$

for any $g = k_1 a d k_2 \in K_p A_p^+ \Omega_p K_p$.

Note that if $G_p(\mathbb{Q}_p)$ is non-compact almost \mathbb{Q}_p -simple and simply connected, then any non-trivial irreducible unitary representation is of infinite dimension.

A similar statement has been proven for any local field not of characteristic 2 in [Oh2].

3.2. We now recall that the Ramanujan conjecture at a finite prime p asserts that for $G = SL_2$, any non-trivial representation ρ_p in \hat{G}_p^{Aut} (see 2.6) is tempered, that is, for any $SL_2(\mathbb{Z}_p)$ -finite unit vectors v and w,

$$|\langle \rho_p(g)v, w\rangle| \le (\dim \langle K_p v \rangle \dim \langle K_p w \rangle)^{1/2} \cdot \Xi_{SL_2(\mathbb{Q}_p)}(g) \text{ for any } g \in SL_2(\mathbb{Q}_p).$$

Note that $\Xi_{SL_2(\mathbb{Q}_p)}(g) = \Xi_{PGL_2(\mathbb{Q}_p)}[g]$ when [g] denotes the image of g under the natural projection $SL_2(\mathbb{Q}_p) \to PGL_2(\mathbb{Q}_p)$.

It follows from the Gelbart-Jacquet estimate toward the Ramanujan conjecture [GJ] that for any non-trivial $\rho_p \in \hat{G}_p^{Aut}$, the matrix coefficients of ρ_p with respect to $SL_2(\mathbb{Z}_p)$ -finite vectors are $L^{4+\epsilon}$ -integrable for any $\epsilon > 0$. Then applying [CHH], we obtain that for any $SL_2(\mathbb{Z}_p)$ -finite unit vectors v and w,

$$|\langle \rho_p(g)v, w\rangle| \le (\dim \langle K_p v \rangle \dim \langle K_p w \rangle)^{1/2} \cdot \Xi^{1/2}_{SL_2(\mathbb{Q}_p)}(g) \text{ for any } g \in SL_2(\mathbb{Q}_p).$$

3.3. The following *p*-adic analogue of Burger and Sarnak's results on lifting the automorphic bound of a \mathbb{Q} -subgroup to the ambient \mathbb{Q} -group [BS, Theorem 1.1] is obtained in [CU].

Theorem [CU, Theorem 5.1]. Let G be a connected almost simple simply connected \mathbb{Q} -group and H a connected semisimple \mathbb{Q} -subgroup of G. Then for any $p \in R_f$ and for any $\rho_p \in \hat{G}_p^{Aut}$, any irreducible unitary representation of $H(\mathbb{Q}_p)$ weakly contained in $\rho_p|_{H(\mathbb{Q}_p)}$ is contained in \hat{H}_p^{Aut} .

3.4. Theorem. Let G be a connected almost simple simply connected Q-group with $\operatorname{rank}_{\mathbb{Q}}G = 1$. Let $p \in R_f$ such that $\operatorname{rank}_{\mathbb{Q}_p}G = 1$. Then for any non-trivial representation $\rho_p \in \hat{G}_p^{Aut}$ with K_p -finite unit vectors v and w,

$$|\langle \rho_p(g)v, w\rangle| \le \left([K_p: K_p \cap dK_p d^{-1}] \dim \langle K_p v\rangle \dim \langle K_p w\rangle \right)^{1/2} \cdot \xi_{\mathcal{S}_p}^{1/2}(g)$$

for any $g = k_1 a d k_2 \in K_p A_p^+ \Omega_p K_p$ and for the strongly orthogonal system $S_p = \{\alpha_p\}$ where α_p is the simple root in Φ_p .

Proof. We can find a connected semisimple Q-split Q-subgroup H of G containing a maximal Q-split torus of G and whose root system is equal to the set of non-multipliable Q-roots of G [BT]. Since rank $_{\mathbb{Q}}(G) = 1$, H is necessarily isomorphic to SL_2 . We may assume that for a maximal Q-split torus A of H, $A_p = A$ and $SL_2(\mathbb{Z}_p) \subset K_p$. Hence $H \cap \Gamma$ is a congruence subgroup of H and if $g = k_1 a d k_2 \in K_p A_p^+ \Omega_p K_p = G(\mathbb{Q}_p)$,

$$\langle \rho_p(g)v, w \rangle = \langle \rho_p(a)(dk_2v), (k_1^{-1}w) \rangle$$

It is not difficult to see that dk_2v is also K_p -finite and the dimension of the subspace $\langle K_p dk_2 v \rangle$ is bounded by $[K_p : K_p \cap dK_p d^{-1}] \dim \langle K_p v \rangle$ (see [Oh2, Lemma 5.6]). Since $a \in H$, by applying Theorem 3.3 with the known bound of the Ramanujan conjecture discussed in 3.2, the claim follows. \Box

4. Proof of main theorems

4.1. Proof of Theorem 1.1. Without loss of generality, we may assume that each K_p in section 2.1 is a good maximal compact subgroup in the sense of [Oh2]. By Proposition 2.6, Theorem 3.1, Proposition 3.4, it suffices to set $F_p = \max_{d \in \Omega_p} [K_p : K_p \cap dK_p d^{-1}] \cdot \xi_{\mathcal{S}_p}$ if $p \in R_2$, $F_p = \max_{d \in \Omega_p} [K_p : K_p \cap dK_p d^{-1}] \cdot \xi_{\mathcal{S}_p}^{1/2}$ if $p \in R_1$ and $F_p \equiv 1$ for $p \notin R_1 \cup R_2$. \Box .

Remark. From the proof, the constant C depending on Γ in Theorem 1.1 can be made explicit. In fact,

$$C_{\Gamma} = \prod_{p \in R_f - R_h} \left(\max_{d \in \Omega_p} [K_p : K_p \cap dK_p d^{-1}] \left[K_p : K_p \cap U_p \right] \right).$$

- (1) If G is split over \mathbb{Q} and $\Gamma = G(\mathbb{Z})$, then $K_p = G(\mathbb{Z}_p) = U_p$ and $\Omega_p = \{e\}$ for each $p \in R_f$, and hence $C_{\Gamma} = 1$.
- (2) If Γ' is a congruence subgroup of Γ , then $C_{\Gamma'} \leq [\Gamma : \Gamma']C_{\Gamma}$. To see this, letting $\Gamma' = G(\mathbb{Q}) \cap (G(\mathbb{R}) \times U'_f)$, by a similar argument to the proof of Lemma 2.2, we can obtain a bijection between $\Gamma' \setminus \Gamma$ and $U'_f \setminus U_f$. Hence

$$\frac{C_{\Gamma'}}{C_{\Gamma}} = [K_f \cap U_f : K_f \cap U'_f] \le [U_f : U'_f] = [\Gamma : \Gamma'].$$

4.2. The above constant C_{Γ} increases (exponentially) whenever Γ goes deeper in its congruence level, independent of a. Therefore fixing a, the norms of T_a with respect to a family of congruence subgroups are more sharply estimated in the following statement, which is immediate from 4.1 in view of Remark 2.7.

Theorem. With the same notation as in Theorem 1.1, set

$$R_{\Gamma,a} = \{ p \in R_f \mid a \notin U_p \cup K_p \Omega_p \}; \text{ and}$$
$$C_{\Gamma,a} = \prod_{p \in R_{\Gamma}(a)} \left(\max_{d \in \Omega_p} [K_p : dK_p d^{-1}] [K_p : K_p \cap U_p] \right)$$

Then

$$\|T_a^0\| \le \begin{cases} C_{\Gamma,a} \left(\prod_{p \in R_1 \cap R_{\Gamma,a}} \xi_{\mathcal{S}_p}^{1/2}(a)\right) \left(\prod_{p \in R_2 \cap R_{\Gamma,a}} \xi_{\mathcal{S}_p}(a)\right) & \text{if } \operatorname{rank}_{\mathbb{Q}}G \ge 1; \\ C_{\Gamma,a} \left(\prod_{p \in R_2 \cap R_{\Gamma,a}} \xi_{\mathcal{S}_p}(a)\right) & \text{if } \operatorname{rank}_{\mathbb{Q}}G = 0 \end{cases}$$

We remark that for example, if $U_p \subset K_p$ for all $p \in R_f$, we have $\prod_{p \in R_{\Gamma,a}} \xi_{\mathcal{S}_p}(a) = \prod_{p \in R_f} \xi_{\mathcal{S}_p}(a)$. By a similar argument as in the remark in 4.1, we can show that $C_{\Gamma',a}/C_{\Gamma,a} \leq [\Gamma : \Gamma']$ for any congruence subgroup Γ' of Γ . Note that fixing $a \in G(\mathbb{Q})$, $C_{\Gamma,a}$ is bounded by the constant $\prod_{p \in R_f - R_h} \max_{d \in \Omega_p} [K_p : dK_p d^{-1}]$ for any congruence subgroup Γ as long as $a \in U_p \cup K_p$ whenever $K_p \neq U_p$. Roughly speaking, $C_{\Gamma,a}$ remains unchanged for a family of congruence subgroups Γ as long as the primes defining this family does not overlap with the primes appearing in the prime factorization of a.

4.3. Example. Let $G = SL_n$, $(n \ge 2)$. Let N be the unipotent radical of a parabolic subgroup of G contained in the lower (or upper) triangular subgroup. Let $J_N = \{(i, j) \mid I_n + E_{ij} \in N\}$ where E_{ij} is the elementary matrix whose only non-zero element is 1 at (i, j)-entry and I_n is the identity matrix. Fix a positive integer k and set

$$\Gamma_{q^k} = \{ (a_{ij}) \in SL_n(\mathbb{Z}) \mid q^k | a_{ij} \text{ for all } (i,j) \in J_N \}.$$

Then $\Gamma_{q^k} = SL_n(\mathbb{Q}) \cap (SL_n(\mathbb{R}) \times U_f)$ where $U_p = SL_n(\mathbb{Z}_p) = K_p$ for all finite prime $p \neq q$ and $U_q = \{(a_{ij}) \in SL_n(\mathbb{Z}_q) \mid a_{ij} \in q^k \mathbb{Z}_q$ for all $(i, j) \in J_N\}$. These Γ_{q^k} 's are (Hecke) congruence subgroups of SL_n . If $a = \text{diag}(m_1, \cdots, m_n) \in SL_n(\mathbb{Q})$ is such that each m_i is relatively prime to q, then $a \in U_q$. Note that $R_{\Gamma,a}$ is precisely the set of finite primes which appear in the prime factorization of m_i for some $1 \leq i \leq n$. Since $q \notin R_{\Gamma,a}$, we have $K_p = U_p$ for all $p \in R_{\Gamma,a}$ and hence $C_{\Gamma_{q^k},a} = 1$ for any k and N (while $C_{\Gamma_{q^k}} = [SL_n(\mathbb{Z}_q) : U_q]$).

Theorem 4.2 then implies that if $n \geq 3$, the norm $||T_a^0||$ with respect to any congruence subgroup of the form Γ_{q^k} is bounded above by $\prod_{p \in R_{\Gamma,a}} \xi_{\mathcal{S}_p}(a)$, which is equal to $\prod_{p \in R_f} \xi_{\mathcal{S}_p}(a)$ in this case.

4.4. Proof of Corollary 1.4. We first state a simple lemma concerning deg(a).

Lemma. Let $a_n \in \mathbb{Q}$ for each $n \in \mathbb{N}$. If $\deg(a_n) \to \infty$ as $n \to \infty$, then either (i) there exists a strictly increasing sequence of primes p_n tending to ∞ such that $a_n \notin K_{p_n}\Omega_{p_n}$ for all $n \in \mathbb{N}$, or (ii) $\{a_n\}$ is unbounded in $G(\mathbb{Q}_p)$ for some prime $p \in R_f$.

Proof. If (i) does not hold, then there exists some prime q such that for all $n \in \mathbb{N}$, $a_n \in K_p\Omega_p$ for each prime p > q. Hence for any prime p > q and for any $n \in \mathbb{N}$, $\deg_p(a_n) = U_p \setminus U_p a_n U_p$ is bounded by the number, say, N, of cosets in $U_p \setminus (U_p K_p \Omega_p U_p)$. Since both U_p and $U_p K_p \Omega_p U_p$ are open compact subsets, N is finite. Consider the diagonal embedding of $\{a_n\}$ into $\prod_{p \leq q} G_p(\mathbb{Q}_p)$. If the image of $\{a_n\}$ under this embedding is bounded, and hence lies in some open compact subset, there exists some M > 0 such that $\deg_p(a_n) \leq M$ for all $n \in \mathbb{N}$ and $p \leq q$. Since $\deg(a_n) = \prod_{p \in R_f} \deg_p(a_n)$ by Lemma 2.2, it contradicts the assumption that $\deg(a_n)$ tends to ∞ . Hence the image of $\{a_n\}$ in $\prod_{p \leq q} G_p(\mathbb{Q}_p)$ is unbounded. It follows that for some prime p, the sequence $\{a_n\}$ is unbounded in $G(\mathbb{Q}_p)$, yielding the claim. \Box

To deduce Corollary 1.4 from Theorem 1.1, for each $p \in R_f$, let S_p be a large strongly orthogonal system of Φ_p , for instance $S_p = \{\gamma_p\}$ for the highest root γ_p in Φ_p . For the case (i) in the above lemma, we have for any $\epsilon > 0$, $\prod_{p \in R_f} \xi_{S_p}(a_n) \leq \xi_{S_{p_n}}(a_n) \leq d \cdot p_n^{-1/2+\epsilon}$ for some constant d independent of n. This follows from the fact that if S_p is large and $a \notin K_p \Omega_p$, then

$$\xi_{\mathcal{S}_p}(a) \leq \Xi_{PGL_2(\mathbb{Q}_p)} \begin{pmatrix} p & 0\\ 0 & 1 \end{pmatrix}$$

(cf. [Oh2]). Hence

$$\lim_{n \to \infty} \prod_{p \in R_f} \xi_{\mathcal{S}_p}(a_n) = 0$$

Now for the case (ii), since $\{a_n\}$ is unbounded in $G(\mathbb{Q}_p)$, the A_p^+ -part, say $A_p^+(a_n)$, of a_n in the Cartan decomposition $K_p A_p^+ \Omega_p K_p$ tends to ∞ as $n \to \infty$. Since \mathcal{S}_p is large, it implies that $\prod_{\alpha \in \mathcal{S}_n} \alpha(A^+(a_n)) \to \infty$ and hence

$$\lim_{n \to \infty} \xi_{\mathcal{S}_p}(a_n) = 0.$$

Since $\prod_{p \in R_f} \xi_{\mathcal{S}_p}(a_n) \leq \xi_{\mathcal{S}_p}(a_n)$, we obtain $\lim_{n \to \infty} \prod_{p \in R_f} \xi_{\mathcal{S}_p}(a_n) = 0$. Hence Theorem 1.1 implies Corollary 1.4.

4.5. Theorem 1.6 can be easily deduced from Theorem 1.1. In fact, let G be a connected semisimple Lie group and Γ a lattice in G. Let μ denote the normalized Haar measure on $\Gamma \backslash G$. For a finite subset $E \subset \Gamma \backslash G$ invariant by Γ on the right, we define an operator T_E on $L^2(\Gamma \backslash G)$ by

$$T_E f(x) = \frac{1}{|E|} \sum_{y \in E} f(yx).$$

Then in the same setting as in the introduction, the Hecke operator T_a is equal to $T_{\Gamma a\Gamma}$. Namely the following proposition can be proved in a standard way (cf. [CU, Proposition 8.1]).

Proposition. Let $E_n \subset \Gamma \backslash G$ be a sequence of finite subsets invariant by Γ on the right such that for any $f \in L^2(\Gamma \backslash G)$,

$$\lim_{n \to \infty} \|T_{E_n} f - \int_{\Gamma \setminus G} f(x) d\mu(x)\| = 0.$$

Then for any continuous function f on $\Gamma \backslash G$ with compact support and for any $x \in \Gamma \backslash G$,

$$\lim_{n \to \infty} T_{E_n} f(x) = \int_{\Gamma \setminus G} f(x) d\mu(x).$$

4.6. The following theorem now provides a passage from an L^2 -norm estimate of the Hecke operator T_a to an L^{∞} -norm estimate of T_a .

Theorem [CU, Proposition 8.2]. Let G be a connected semisimple algebraic \mathbb{Q} -group and $\Gamma \subset G(\mathbb{Q})$ an arithmetic subgroup. Let f be any smooth function on $\Gamma \setminus G(\mathbb{R})$ with compact support. Then for any $x \in \Gamma \setminus G(\mathbb{R})$,

$$|T_a f(x) - \int_{\Gamma \setminus G(\mathbb{R})} f(x) d\mu(x)| \le C \cdot ||T_a f - \int_{\Gamma \setminus G(\mathbb{R})} f(x) d\mu(x)||$$

for some constant C (depending on f). Here C can be taken uniformly over compact subsets of $\Gamma \setminus G(\mathbb{R})$.

The above statement holds for a more general class of functions. Let $G(\mathbb{R}) = K \exp \mathfrak{p}$ be the Cartan decompositions of $G(\mathbb{R})$. Denote by Ω_G and by Ω_K the Casimir operators of $G(\mathbb{R})$ and K respectively. Then $D = \Omega_G - 2\Omega_K$ is elliptic as a differential operator on $G(\mathbb{R})$. Let m be an integer $\geq \frac{1}{2}(\dim(G(\mathbb{R})) + 1)$. Then the above theorem holds for any $f \in L^2(\Gamma \setminus G(\mathbb{R}))$ such that $f * D^m \in L^2(\Gamma \setminus G(\mathbb{R}))$ [CU].

Now Proposition 4.5 and Theorem 4.6, combined with Theorem 1.1, imply Theorem 1.6 and 1.7.

4.7. We give some explanation about the remark (3) following Theorem 1.7. Let G be GL_n $(n \geq 3)$ and GSp_{2n} $(n \geq 2)$ and $\Gamma = G(\mathbb{Z})$. Then $\Gamma = G(\mathbb{Q}) \cap (G(\mathbb{R}) \times U_f)$ where $U_f = \prod_{p \in R_f} G(\mathbb{Z}_p)$. Let Z denote the center of G. It then follows from the strong approximation of the derived group SL_n and Sp_{2n} respectively that the spaces $(Z(\mathbb{R})\Gamma)\backslash G(\mathbb{R})$ and $(Z(\mathbb{A})GL_n(\mathbb{Q}))\backslash G(\mathbb{A})/U_f$ can be identified, and the map ϕ defined in 2.1 provides an isometry between the spaces of L^2 -functions on these two spaces.

In particular, note that $(Z(\mathbb{R})\Gamma)\backslash GL_n(\mathbb{R})$ can be identified with $SL_n(\mathbb{Z})\backslash SL_n(\mathbb{R})$. The statements made in the rest of section 2 then hold for the Hecke operators T_a^0 , $a \in G(\mathbb{Q})$, acting on the subspace $L_0^2((Z(\mathbb{R})\Gamma)\backslash G(\mathbb{R}))$. Note that Theorem 3.1 holds for G. Hence the proof of Theorem 1.1 given in 4.1 can be carried over to G in the same way. As for Corollary 1.4, we only need to note that Lemma 4.4 for G can be stated as follows: if $\deg(a_n) \to \infty$ and a_n is bounded in $Z(\mathbb{Q}_p)\backslash G(\mathbb{Q}_p)$ for all $p \in R_f$, then $a_n \notin K_{p_n}\Omega_{p_n}Z(\mathbb{Q}_{p_n})$ for a sequence p_n tending to ∞ . Finally Proposition 4.5 and Theorem 4.6, hold for $Z(\mathbb{R})\Gamma\backslash G(\mathbb{R})$ for any connected reductive \mathbb{Q} -group G and any arithmetic subgroup Γ (see [CU]). In the case for $G = GL_2 = GSp_2$, we only need to note that Theorem 3.4 holds for GL_2 by the above argument.

5. Examples and Theorem 1.5

5.1. Let $G = SL_n$ or GL_n for $n \ge 3$ and $\Gamma = G(\mathbb{Z})$. Let $a = \text{diag}(a_1, \dots, a_n) \in G$ with $a_i \ge a_{i+1} > 0$ for each $1 \le i \le n-1$. For each $i = 1, \dots, [n/2]$, set

$$\gamma_i(a) = \frac{a_i}{a_{n+1-i}}.$$

Then $S = \{\gamma_i \mid 1 \leq i \leq \lfloor n/2 \rfloor\}$ is a maximal strongly orthogonal system of $\Phi(G, A)$ with A as in the introduction [Oh1, Proposition 2.4]. Recall the notation A^+ from the introduction if $G = SL_n$. For $G = GL_n$, set

$$A^{+} = \{ \text{diag}(a_{1}, \cdots, a_{n}) \mid a_{i} \in \mathbb{N}, a_{i+1} \mid a_{i} \text{ for each } 1 \leq i \leq n-1, a_{n} = 1 \}.$$

For $G = SL_n$, every double coset $\Gamma g\Gamma$ $(g \in G(\mathbb{Q}))$ has a representative of the form $\operatorname{diag}(a_1, \dots, a_n) \in A^+$. For $G = GL_n$, every double coset $\Gamma g\Gamma$ $(g \in G(\mathbb{Q}))$ has a representative of the form ca for $c \in Z(\mathbb{Q})$ and $a = \operatorname{diag}(a_1, \dots, a_n) \in A^+$ (cf. [Fr]). Hence the Hecke operators T_g and $T_{\operatorname{diag}(a_1, \dots, a_n)}$ coincide. By an estimate of ξ_S given in 3.1, we have that for any $\epsilon > 0$, there exists a constant C > 1 such that

$$\prod_{p \in R_f} \prod_{i=1}^{[n/2]} \left(\frac{|a_i|_p}{|a_{n+1-i}|_p} \right)^{1/2} \le \prod_{p \in R_f} \xi_{\mathcal{S}}(a) \le C \cdot \prod_{p \in R_f} \prod_{i=1}^{[n/2]} \left(\frac{|a_i|_p}{|a_{n+1-i}|_p} \right)^{1/2-\epsilon}$$

for any $a \in A^+$.

Hence Theorem 1.1 yields the following: for any $\epsilon > 0$, there exists a constant C (depending only on ϵ) such that

$$||T_a^0|| \le C \prod_{i=1}^{[n/2]} \left(\frac{a_i}{a_{n+1-i}}\right)^{-1/2+\epsilon}$$

for all $a \in A^+$. Here if $G = GL_n$, T_a is considered as an operator on $L^2(Z(\mathbb{R})\Gamma \setminus G)$. For $G = GL_n$ and all a_i square-free, the above inequality was obtained in [CU] using the description of the residual spectrum for GL_n of Moeglin and Waldspurger.

5.2. Proof of Corollary 1.9. Assume that $m = p^r$ for some positive integer r. Set

$$D(m) = \{ (k_1, \cdots, k_n) \in \mathbb{Z}^n \mid k_i \ge k_{i+1} \text{ for each } 1 \le i \le n-1, k_n = 1, \sum_{i=1}^n k_i = r \}.$$

For each $(k_1, \dots, k_n) \in D(m)$, we set $a(k_1, \dots, k_n) := \operatorname{diag}(p^{k_1}, \dots, p^{k_n})$. Then

$$X_{\bar{\Lambda}}(m) = \coprod_{(k_1, \cdots, k_n) \in D(m)} T_{a(k_1, \cdots, k_n)}(\bar{\Lambda}).$$

Hence

$$|X_{\bar{\Lambda}}(m)| = \sum_{(k_1,\cdots,k_n)\in D(m)} \deg(a(k_1,\cdots,k_n)).$$

Using the degree formula in Proposition 7.4 in [Gr], we obtain that for each $(k_1, \dots, k_n) \in D(m)$,

$$\deg(a(k_1,\cdots,k_n)) = p^{\sum_{i=1}^{\lfloor n/2 \rfloor} ((k_i - k_{n+1-i})(n - (2i-1)))} (1 + O(p^{-1}))$$

where the big O depends only on n. On the other hand for a maximal strongly orthogonal system S in 5.1, we have that for any $\epsilon > 0$,

$$p^{-1/2\left(\sum_{i=1}^{[n/2]}(k_i-k_{n+1-i})\right)} \le \prod_{p\in R_f} \xi_{\mathcal{S}}(a(k_1,\cdots,k_n)) \le C(\epsilon) \cdot p^{-1/2\left(\sum_{i=1}^{[n/2]}(k_i-k_{n+1-i})\right)(1+\epsilon)}$$

Note that $\sum_{i=1}^{[n/2]} (k_i - k_{n+1-i}) \leq r$. Then

$$\sum_{i=1}^{\lfloor n/2 \rfloor} (n - (2i - 1))(k_i - k_{n+1-i}) \le (n - 1)k_1 + (n - 3)(r - k_1) = (n - 1)r - 2(r - k_1) \le (n - 1)r.$$

For simplicity, let $a_m = a(r, 1, \dots, 1)$, which is equal to $(m, 1, \dots, 1)$. Then

$$\deg(a_m) = p^{(n-1)r}(1 + O(p^{-1}))$$

and for any $\epsilon > 0$, there exists a constant C_{ϵ} such that

$$p^{(n-3/2)r(1-\epsilon)}(1+O(p^{-1})) \le \deg(a_m) \prod_{p \in R_f} \xi_{\mathcal{S}}(a_m) \le C_{\epsilon} \cdot p^{(n-3/2)(r+\epsilon)}(1+O(p^{-1})).$$

On the other hand, if (k_1, \dots, k_n) is an element in D(m) different from $(r, 1, \dots, 1)$, then $r - k_1 \ge 1$ and hence

$$\sum_{i=1}^{\lfloor n/2 \rfloor} (n - (2i - 1))(k_i - k_{n+1-i}) \le (n - 1)r - 2.$$

Hence for all $(k_1, \dots, k_n) \in D(m) - \{(r, 1, \dots, 1)\},\$

$$\deg(a(k_1,\cdots,k_n)) \le p^{(n-1)r-2}(1+O(p^{-1})).$$

Since the exponent of p in deg $(a(k_1, \dots, k_n)) \cdot \prod_{p \in R_f} \xi_{\mathcal{S}}(a(k_1, \dots, k_n))$ is $\sum_{i=1}^{[n/2]} (n - (2i-1) - 1/2)(k_i - k_{n+1-i})$ up to an ϵ -factor, we also have

$$\deg(a(k_1,\cdots,k_n))\cdot\prod_{p\in R_f}\xi_{\mathcal{S}}(a(k_1,\cdots,k_n))\leq C_{\epsilon}\cdot p^{(n-3/2)r(1+\epsilon)-2}.$$

Since $|D(m)| \leq (\log m)^n$, the above inequalities imply that the leading exponent of m in the fraction

$$\frac{\sum_{(k_1,\cdots,k_n)\in D(m)} \deg(a(k_1,\cdots,k_n)) \cdot \prod_{p\in R_f} \xi_{\mathcal{S}}(a(k_1,\cdots,k_n))}{\sum_{(k_1,\cdots,k_n)\in D(m)} \deg(a(k_1,\cdots,k_n))}$$

essentially comes from the term

$$\frac{\deg(a_m)\prod_{p\in R_f}\xi_{\mathcal{S}}(a_m)}{\deg(a_m)} = \prod_{p\in R_f}\xi_{\mathcal{S}}(a_m).$$

Since for any $\epsilon > 0$,

$$p^{-r/2} \le \prod_{p \in R_f} \xi_{\mathcal{S}}(a_m) \le C_{\epsilon} \cdot p^{-r/2(1-\epsilon)},$$

and $p^{-r/2} = m^{-1/2}$, the corollary is proved for $m = p^r$.

It is not hard to see the above process can be generalized to an arbitrary positive integer m. Hence Corollary 1.9 follows from Theorem 1.7.

5.3. Let $G = Sp_{2n}$ or GSp_{2n} for $n \ge 2$ and $\Gamma = G(\mathbb{Z})$. The group G will be defined by the bi-linear from $\begin{pmatrix} 0 & \bar{I}_n \\ -\bar{I}_n & 0 \end{pmatrix}$ where \bar{I}_n denotes the skew diagonal $n \times n$ -identity matrix. Let $a = \operatorname{diag}(a_1, \dots, a_n, b_n, \dots, b_1) \in G(\mathbb{Q})$ with $a_i \ge 1$ and $b_i > 0$ for each $1 \le i \le n$. For each $i = 1, \dots, n$, set

$$\gamma_i(a) = \frac{a_i}{b_i}.$$

Then $S = \{\gamma_1, \dots, \gamma_n\}$ is a maximal strongly orthogonal system of $\Phi(G, A)$ [Oh1, Proposition 2.3]. Recall A^+ from the introduction for $G = Sp_{2n}$. For $G = GSp_{2n}$, set

$$A^{+} = \{ \text{diag}(a_{1}, \cdots, a_{n}, \frac{c}{a_{n}}, \cdots, \frac{c}{a_{1}}) \mid c \in \mathbb{Z}, a_{i} \in \mathbb{N}, a_{i+1} \mid a_{i} \text{ for each } 1 \le i \le n, a_{1} \mid c, c \mid a_{n}^{2} \}$$

Then any double coset $\Gamma g \Gamma$ $(g \in G(\mathbb{Q}))$ has a representative d a for $d \in Z(\mathbb{Q})$ and $a = \operatorname{diag}(a_1, \dots, a_n, \frac{c}{a_n}, \dots, \frac{c}{a_1}) \in A^+$ [Fr]. Then the Hecke operators T_g and T_a coincide. By an estimate of $\xi_{\mathcal{S}}$ given in 3.1, we have that for any $\epsilon > 0$,

$$\prod_{p \in R_f} \prod_{i=1}^n \left(\frac{|a_i|_p^2}{|c|_p} \right)^{1/2} \le \prod_{p \in R_f} \xi_{\mathcal{S}}(a) \le C(\epsilon) \cdot \prod_{p \in R_f} \prod_{i=1}^n \left(\frac{|a_i|_p^2}{|c|_p} \right)^{1/2 - \epsilon}$$

for any $a \in A^+$. Hence Theorem 1.1 yields the following: for any $\epsilon > 0$, there exists a constant C (depending on ϵ) such that

$$||T_a^0|| \le C \prod_{i=1}^n \left(\frac{a_i^2}{|c|}\right)^{-1/2+\epsilon}$$

Here if $G = GSp_{2n}$, T_a is considered as an operator on $L^2(Z(\mathbb{R})\Gamma\backslash G(\mathbb{R}))$. For $G = GSp_{2n}$ and $a_i = p = c$ for all *i*, this inequality was obtained in [CU] assuming the Ramanujan conjecture for SL_2 .

5.4. In this subsection, let G be as in 5.1 or 5.3. Let P_0 be the maximal parabolic subgroup of G which stabilizes the line containing the standard vector e_1 . The following theorem with [Oh2, Theorem 1.1] (see Theorem 3.1 above) implies that the unitarily induced representation $\operatorname{Ind}_{P_0(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)}(1)$ from the trivial representation 1 of $P_0(\mathbb{Q}_p)$ to $G(\mathbb{Q}_p)$ provides the slowest decay in the spherical unitary dual of $G(\mathbb{Q}_p)$.

Theorem [Oh2, Theorem 1.3]. Let $p \in R_f$ and S a maximal strongly orthogonal system of Φ_p . Let v be a K_p -invariant unit vector of $\operatorname{Ind}_{P_0(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)}(1)$. Then for any $\epsilon > 0$, there exists a constant C depending on ϵ such that

$$C \cdot \xi_{\mathcal{S}}^{1+\epsilon}(g) \leq \langle \operatorname{Ind}_{P_0(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)}(1)(g)v, v \rangle \leq \xi_{\mathcal{S}}(g) \quad \text{for any } g \in G(\mathbb{Q}_p).$$

Recall that $U_f = \prod_{p \in R_f} G(\mathbb{Z}_p)$. For $G = SL_n$ or Sp_{2n} , set $X = G(\mathbb{Z}) \setminus G(\mathbb{R})$ and for $G = GL_n$ or GSp_{2n} , set $X = Z(\mathbb{R})G(\mathbb{Z}) \setminus G(\mathbb{R})$. The spectral decomposition theorem says the following (see, e.g., [Ar]):

$$L^{2}(X) = \bigoplus_{[P]} \bigoplus_{\tau} \int_{\mathrm{Im}X^{G}_{M_{P}}} \mathrm{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})} (\tau \otimes s \otimes 1)^{U_{f}} d\mu_{\tau}(s)$$

where [P] ranges over the associated class of standard parabolic subgroups containing B, τ ranges over irreducible representations occurring in the discrete part of regular representation of the Levi subgroups M_P on $L^2(Z(M_P)(\mathbb{R})M_P(\mathbb{Q})\backslash M_P(\mathbb{A}))$ and s ranges over the subset $\operatorname{Im}(X_{M_P}^G) \subset \operatorname{Im}(X_{M_P})$ of all unitary unramified characters of $M_P(\mathbb{A})$.

The notation $\tau \otimes s \otimes 1$ denotes the representation extended trivially to $P(\mathbb{A})$ from the representation $\tau \otimes s$ on $M_P(\mathbb{A})$.

Set $\pi(1,s) = \operatorname{Ind}_{P_0(\mathbb{A})}^{G(\mathbb{A})} (1 \otimes s \otimes 1)^{U_f}$. If $s = \bigotimes_{p \in R_f} s_p$, then

$$\int_{\mathrm{Im}X^G_{M_{P_0}}} \pi(1,s) d\mu_{\tau}(s) = \bigotimes_{p \in R} \int_{\mathrm{Im}X^G_{M_{P_0}}} \mathrm{Ind}_{P_0(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)} (1 \otimes s_p \otimes 1)^{G(\mathbb{Z}_p)} d\mu_{\tau_p}(s_p).$$

Then for a U_f -invariant unit vector $v_s = \bigotimes_{p \in R_f} v_{sp}$ of $\pi(1, s)$, we have

$$\int_{\mathrm{Im}X_{M_{P_0}}^G} \langle \pi(1,s)(a)v_s, v_s \rangle d\mu_{\tau}(s) = \prod_{p \in R_f} \int_{\mathrm{Im}X_{M_{P_0}}^{G(\mathbb{Q}_p)}} \langle \mathrm{Ind}_{P_0(\mathbb{Q}_p)}^{G(\mathbb{Q}_p)}(1 \otimes s_p \otimes 1)(a)v_{sp}, v_{sp} \rangle d\mu_{\tau_p}(s_p) d\mu_{\tau_p}(s_p)$$

Since each s_p is a unitary character, the above theorem 5.4 is applied for each s and p. Hence Theorem 1.5 follows.

References

- [Ar] J. Arthur, Eisenstein Series and the trace formula, Automorphic forms, representations and L-functions (A. Borel and W. Casselman, eds.), vol. 33, 1979, pp. 253-274.
- [BJ] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic forms, representations and L-functions (A. Borel and W. Casselman, eds.), vol. 33, 1979, pp. 189-202.
- [BT] A. Borel and J. Tits, *Groupes réductifs*, Publ. Math. IHES **27** (1965), 55-150.
- [BDHI] D. Bump, W. Duke, J. Hoffstein. H. Iwaniec, An estimate for the Hecke Eigenvalues of Maass forms, Int. Math. Res. Notices 4 (1992), Springer-Verlag, 75-81.
- [BS] M. Burger and P. Sarnak, *Ramanujan duals II*, Inventiones mathematicae **106** (1991), Springer-Verlag, 1-11.
- [CHH] M. Cowling, U. Haggerup and R. E. Howe, Almost L² matrix coefficients, J. Reiner Angew. Math 387 (1988), 97–110.
- [CU] L. Clozel and E. Ullmo, Equidistribution des points de Hecke, Preprint (1999).
- [Ch] P. Chiu, Covering with Hecke points, J. Number Theory 53 (1995), 25-44.
- [Du] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Inven. math **92** (1988), 73–90.
- [Fl] D. Flath, Decomposition of representations into tensor products, Automorphic forms, representations and L-functions (A. Borel and W. Casselman, eds.), vol. 33, Part 1, 1979, pp. 179-183.
- [Fr] E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, Heidelberg, New York, 1983.
- [GJ] S. Gelbart and H. Jacquet, A relation between automorphic representation of GL_2 and GL_3 , Ann. Sci. Ecole Norm. Sup **11** (1978), 471-552.
- [GGP] I. Gelfand, M. Graev and I. Piatetski-Shapiro, Representation Theory and Automorphic Functions, Academic press, INC, 1990.
- [Gr] Benedict H. Gross, On the Satake isomorphism, in: Galois Representations in Arithmetic Algebraic Geometry (1998), Cambridge University Press, 223–237.
- [Ha] Harish-Chandra, Harmonic analysis on reductive p-adic groups, in: Harmonic analysis on Homogeneous spaces 26 (1973), Proc. Symp. Pure. Math. Providence, 167–192.
- [JL] H. Jacquet and R. P. Langlands, *Automorphic Forms on GL*₂, vol. 114, Springer Lect. Notes in Math, 1970.
- [KS] H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications with an appendix, Refined esitames towards the Ramanujan and Selberg conjecture by H. Kim and P. Sarnak, preprint (2000).

- [LS] Y. V. Linnik and B. F. Skubenko, Asymptotic distribution of integral matrices of third order, Vest. Leniner. Univ. Ser. Math 13 (1964), 25–36.
- [LPSI] A. Lubotzky, R. Phillips and P. Sarnak, Hecke operators and distributing points on S², I, Comm. Pure and Applied Math 39 (1986), 149-186.
- [LPSII] A. Lubotzky, R. Phillips and P. Sarnak, Hecke operators and distributing points on S², II, Comm. Pure and Applied Math 40 (1987), 401-420.
- [LRS] W. Luo, R. Rudnick and P. Sarnak, On the generalized Ramanujan conjecture for GL_n , Proc. Symp. Pure. Math. AMS **66** (1999), 835–849.
- [Oh1] H. Oh, Tempered subgroups and the representations with minimal decay of matrix coefficients, Bull. Fran. Math. Soc 126 (1998), 355-380.
- [Oh2] H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Preprint (1999).
- [PR] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1994.
- [Sa] P. Sarnak, Diophantine problems and linear groups, Proceedings of the international congress of mathematics 1 (1991), Springer-Verlag, Tokyo, 459-471.
- [Sh] F. Shahidi, On the Ramanujan conjecture and finitness of poles for certain L-functions, Ann. of Maths 127 (1998), 547-584.
- [Ti1] J. Tits, *Reductive groups over local fields*, Automorphic forms, representations and L-functions (A. Borel and W. Casselman, eds.), vol. **33**, 1979, pp. 29-70.
- [Ti2] J. Tits, Classification of algebraic semisimple groups, Proc. Symp. Pure. Math. AMS 9 (1966), 33–62.

UNIVERSITÉ PARIS-SUD ORSAY, MATHÉMATIQUES BÂT 425, 91405 ORSAY, FRANCE *E-mail address*: Laurent.Clozel@math.u-psud.fr

MATHEMATICS DEPARTMENT, PRINCETON UNIVERSITY, PRINCETON, NJ 08544, USA *E-mail address:* heeoh@math.princeton.edu

MATHEMATICS DEPARTMENT, PRINCETON UNIVERSITY, PRINCETON, NJ 08544, USA *E-mail address:* eullmo@math.princeton.edu