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1 Introduction

Let M = Γ\H3 be a complete hyperbolic 3-manifold. A horocycle χ ⊂M is
an isometrically immersed copy of R with zero torsion and geodesic curvature
1. The torsion condition means the χ lies in an immersed totally geodesic
plane.

One can regard χ as a limit of planar circles whose centers have moved
off to infinity. It is natural to ask what the possibilities are for its closure,

χ ⊂M.

When M has finite volume, it is well–known that strong rigidity properties
hold; e.g. χ is always an immersed homogeneous submanifold of M [Sh],
[Rn]. Continuing the investigation begun in [MMO], this paper shows that
rigidity persists for horocycles in certain infinite volume 3-manifolds. These
are the first examples of hyperbolic 3-manifolds of infinite volume, with Γ
Zariski dense, where the topological behavior of horocycles in Γ\H3 has been
fully described.

Horocycles in acylindrical manifolds. To state the main results, recall
that the convex core of M is given by:

core(M) = Γ\ hull(Λ) ⊂M,

where Λ ⊂ Ĉ is the limit set of Γ, and hull(Λ) ⊂ H3 is its convex hull. We
say M is a rigid acylindrical manifold if its convex core is a compact, proper
submanifold of M with totally geodesic boundary. Our first result describes
the behavior of horocycles in M .

Theorem 1.1 Let χ ⊂ M = Γ\H3 be a horocycle in a rigid acylindrical
3-manifold. Then either:

1. χ ⊂M is a properly immersed 1-manifold; or

2. χ ⊂ M is a properly immersed 2-manifold, equidistant from a totally
geodesic surface S ⊂M ; or

3. χ is the entire 3-manifold M .

Corollary 1.2 The closure of any horocycle is a properly immersed sub-
manifold of M .
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Similar results for geodesic planes in M are obtained in [MMO].

Homogeneous dynamics. To make Theorem 1.1 more precise, we refor-
mulate it in terms of the frame bundle FM →M .

Let G denote the simple, connected Lie group PGL2(C). Within G, we
have the following subgroups:

H = PSL2(R),

A =

{(
a 0

0 a−1

)
: a ∈ R+

}
,

K = SU(2)/(±I),

N =

{
ns =

(
1 s

0 1

)
: s ∈ C

}
,

U = {ns : s ∈ R}, and

V = {ns : s ∈ iR}.

Upon identifying H3 with G/K, we obtain the natural identifications

FM ∼= Γ\G and M ∼= Γ\G/K.

Every (oriented) horocycle χ in M lifts to a unique unipotent orbit xU in
the frame bundle FM . Let A+ be the positive semigroup in A, defined by
a ≥ 1, and let

RF+M = {x ∈ FM : xA+ ⊂ FM is compact}.

This locus is closed and invariant under AN .
Our main result may now be stated as follows (see §6).

Theorem 1.3 Let M = Γ\H3 be a rigid acylindrical 3-manifold. Then for
any x ∈ FM , either

1. xU is closed;

2. xU = xvHv−1 ∩ RF+M for some v ∈ V ; or

3. xU = RF+M .

It is readily verified that these three alternatives give the three cases in
Theorem 1.1, using the fact that the map FM → M is proper and its
restriction to RF+M is surjective.
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Corollary 1.4 The closure of any U–orbit in RF+M is homogeneous, in
the sense that

xU = xS ∩ RF+M

for some closed subgroup S ⊂ G with U ⊂ S.

Indeed, we can take S = U , vHv−1 or G. As we will see in §7, the classifi-
cation of AU–orbits follows from Theorem 1.3 as well:

Corollary 1.5 For any x ∈ RF+M , we have xAU = xH ∩ RF+M .

The possibilities for xH are recalled in Theorem 2.3 below. (For x 6∈ RF+M ,
it is easy to see that the orbit xAU is closed.)

Strategy. The idea behind the proof of Theorems 1.3 is the following
dynamical scenario. Suppose a horocycle χ ⊂ M limits on a properly em-
bedded, totally geodesic surface S (such as one of the boundary components
of the convex core of M). If χ is contained in S then χ is trapped and χ = S;
otherwise, χ is scattered by S, and χ = M . In both cases the behavior
of χ is strongly influenced by the behavior of the horocycle flow on S. To
complete the proof we show that, up to the action of V , every recurrent
horocycle accumulates on such a surface S. This step uses the classification
of H–orbits from [MMO].

We remark that any connected subgroup of G generated by unipotent
elements is conjugate to N , H or U . Theorem 1.3 completes the description
of the topological dynamics of these groups acting on FM , since the behavior
of H and N was previously known (see §2).

Outline of the paper. The remainder of the paper is devoted to the proof
of Theorem 1.3. In §2 we review existing results about dynamics on FM .
In §3 we establish a general lemma about the double coset space U\G/H,
and in §4 we prove an approximation theorem for U–orbits. The space of
exceptional frames is introduced in §5, and the proof of Theorem 1.3 is
completed in §6. Corollary 1.5 is deduced in §7.

Remark: General acylindrical manifolds. When M is a convex cocom-
pact, acylindrical manifold that is not rigid, the behavior of horocycles can
be radically different from the rigid case. For example, a horocycle orthogo-
nal to a closed leaf of the bending lamination of ∂ core(M) can be properly
embedded, giving rise to a frame x ∈ FM with a compact A–orbit and a
nonrecurrent U–orbit. The scattering argument also breaks down, due to
the lack of totally geodesic surfaces in M . It is an open problem to develop
a rigidity theory for these and other infinite–volume hyperbolic 3-manifolds.
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2 Background

In this section we introduce notation and recall known results regarding
topological dynamics on FM .

Figure 1. Limit set of a rigid acylindrical manifold.

Geometry on H3. Notation for G and its subgroups was introduced in
§1. We also let AC = {

(
z 0
0 z−1

)
: z ∈ C∗}. The action of G on H3 = G/K

extends continuously to a conformal action of G by Möbius transformations
on the Riemann sphere,

Ĉ = C ∪ {∞} ∼= G/ACN,

and the union H3 ∪ Ĉ ∼= B3 is compact. We let R̂ = R ∪ {∞} denote the
standard circle on Ĉ. Its orientation–preserving stabilizer in G is H.

Let M = Γ\H3 be a hyperbolic 3-manifold. The natural covering map

FH3 ∼= G→ FM ∼= Γ\G

will be denoted by g 7→ [g]. The limit set of Γ is characterized by Λ = Ĉ∩Γp,
for any p ∈ H3; the domain of discontinuity is its complement, Ω = Ĉ− Λ.
The convex hull of Λ is the smallest convex subset of H3 containing all
geodesics with both endpoints in the limit set; and its quotient gives the
convex core of M :

core(M) = Γ\ hull(Λ) ⊂M.
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A group is elementary if it contains an abelian subgroup with finite index.
We will always assume that Γ ∼= π1(M) is a nonelementary group.

Surfaces in M . There is a natural correspondence between

(i) Closed H–orbits in FM ,

(ii) Properly immersed, totally geodesic surfaces S ⊂M , and

(iii) Circles C ⊂ Ĉ such that ΓC is discrete in the space of all circles,
C ∼= G/H.

This correspondence is given, with suitable orientation conventions, by C =
[xH], S = the projection of hull(C) ⊂ H3 to M , and xH = TS, the bundle
of frames tangent to S.

Convex cocompact manifolds. Now assume that the convex core of M
is compact. The renormalized frame bundle of M is defined by

RFM = {x ∈ FM : xA ⊂ FM is compact}.

Replacing A with A+ in the definition above, we obtain the locus RF+M .
Note that RFM is invariant under A and RF+M is invariant under AN .

In terms of the universal cover, we have [g] ∈ RF+M if and only if
g(∞) ∈ Λ , while [g] ∈ RFM if and only if {g(0), g(∞)} ⊂ Λ.

Minimality. We now turn to some dynamical results. Let L be a closed
subgroup of G. We say X ⊂ FM is an L–minimal set if xL = X for all
x ∈ X.

Theorem 2.1 (Ferte) If M is convex cocompact, then the locus RF+M is
an N–minimal set.

See [Fer, Cor. C(iii)]; a generalization appears in [Win]. We also record the
following result from [Da]:

Theorem 2.2 (Dal’bo) If Γ ⊂ H is a nonelementary convex cocompact
Fuchsian group, then (Γ\H) ∩ RF+M is a U–minimal set.

Rigid acylindrical manifolds. Recall that M is a rigid acylindrical man-
ifold if M is convex cocompact, of infinite volume, and ∂ core(M) is totally
geodesic. In this case Ω ⊂ Ĉ is the union of a dense set of round disks with
disjoint closures, and Λ is a Sierpiǹski curve; see Figure 1.

Theorem 2.3 Let M be a rigid acylindrical manifold. Then for any x ∈
RFM , either xH is closed or xH = (RF+M)H.
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Proof. Since Ω is a union of round disks, any circle that meets Λ in just
one point can be approximated by a circle meeting Λ in two or more points;
thus

(RFM)H = (RF+M)H. (2.1)

Let H ′ = PGL2(R) = H ∪ jH, where j =
(
1 0
0 −1

)
. Note that Aj = jA and

hence (RFM)j = RFM .
With H ′ in place of H, Theorem 2.3 is proved in [MMO, Theorem 1.5].

Using the H ′ version, we can conclude that either xH is closed or xH ′ =
(RF+M)H ′. In the latter case, RFM is contained in xH ∪ xHj. But RFM
has a dense A–orbit [MMO, Thm 4.3], so RFM is contained in xH or xHj.
In either case, we have

RFM = (RFM)j ⊂ xHj2 = xH.

Hence xH = (RF+M)H by equation (2.1) above.

3 Configuration spaces and double cosets

This section and the next present two self–contained results that will be
used in §6 below. In this section we will prove:

Theorem 3.1 Suppose gn → id in G − V H, and Tn ⊂ U is a sequence of
K–thick sets. Then there is a K ′–thick set V0 ⊂ V such that

lim supTngnH ⊃ V0.

Double cosets. As motivation for the Theorem, we remark that the dou-
ble coset space U\G/H is the moduli space of pairs (χ, P ) ⊂ H3, where χ
is a horocycle and P ∼= H2 is a hyperplane. This moduli space is highly
nonseparated near the identity coset, where χ ⊂ P . This means that as
χ approaches P , the pair (χ, P ) can have many different limiting config-
urations, depending on how we choose coordinates. The Theorem above
describes, more precisely, the different limiting configurations that arise.
The appearance of multiple configurations is a basic mechanism at work in
homogeneous dynamics.

Limits of sets. We recall that the limsup of a sequence of sets Xn ⊂ G
consists of all limits of the form g = limxnk

, where nk →∞ and xnk
∈ Xnk

.

Thick sets and polynomials. We say T ⊂ R is K-thick if

[1,K] · |T | = [0,∞).
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This notion also makes sense for T inside any Lie group isomorphic to R,
such as U or V . A basic fact about thick sets, which will be used below, is
the following. Let p ∈ R[x] be a polynomial of degree d, and let T ⊂ R be
K–thick. Then for any symmetric interval I = [−a, a] ⊂ R, we have

max
x∈T∩I

|p(x)| ≥ kmax
x∈I
|p(x)|, (3.1)

where k > 0 depends only on K and d. For more details, see [MMO, §8].

-y

y
Cn

xn+iy

0

Figure 2. The circles Cn → R̂ eventually meet the locus | Im(z) = y|.

Proof of Theorem 3.1. Fix y > 0. We will first show that lim supUgnH
contains v or v−1, where v(z) = z + iy.

Let Cn = gn(R̂). Since gn → id, we have Cn → R̂ in the Hausdorff
topology on closed subsets of Ĉ. Note that for n � 0, Cn ∩ C is either a
circle of large radius or a straight line of nonzero slope (since gn 6∈ V H),
Thus Cn meets the locus L = | Im(z)| = y for all n � 0. Passing to a
subsequence, we can assume that Cn ∩ L 6= ∅ for all n, and that the point
of Cn ∩ L closest to the origin has the form xn + εy for a fixed ε = ±1 (see
Figure 2). Let un(z) = z − xn; then

ungn(R̂)→ R̂ + iεy

as n → ∞. It follows that ungnhn(z) → z + iεy for suitable hn ∈ H, since
the latter group can be used to reparameterize R̂. Equivalently, v or v−1

belongs to lim supUgnH.
We now take into account the thick sets Tn. Note that at the scale |xn|,

the arc of gn(R̂) close to R is well–modeled by a parabola, i.e. the graph of a
quadratic polynomial. Applying equation (3.1) to this polynomial, we find
there is a K ′ depending only on K, and a sequence x′n + iy′n ∈ Cn, such that
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u′n(z) = z − x′n ∈ Tn, and 1 ≤ |y/y′n| ≤ K ′. Passing to a subsequence and
arguing as above, we conclude that v(z) = z + iy′ belongs to lim supTngnH
for some y′ with 1 ≤ |y/y′| ≤ K ′. Since y > 0 was arbitrary, this shows that
V ∩ (lim supTngnH) is a K ′–thick subset of V .

Remark. Theorem 3.1 is a strengthening of [MMO, Lemma 8.2]; the proof
here is more geometric.

4 Moving to the renormalized frame bundle

In this section we describe how to use U to move points close to RFM into
RFM . The boundary of the convex core of M gives rise to an exceptional
case.

Theorem 4.1 Suppose xn ∈ (RFM)U and xn → y ∈ RFM . There there
exists a sequence un ∈ U such that xnun ∈ RFM and

1. We have un → id, and hence xnun → y; or

2. There is a component S of ∂ core(M) such that yH = TS, and xnun
accumulates on TS as n→∞.

� �

�R
p

Figure 3. If d(γ, χ) ≤ R− 1, with R� 0, then d(p, γ) < R.

The proof relies on the following fact from planar hyperbolic geometry.

Lemma 4.2 Let γ, χ ⊂ H be a geodesic and a horocycle respectively, let
δ be a geodesic joining the base of χ to one of the endpoints of γ, and let
{p} = δ ∩ χ. Then for all R� 0, if d(χ, γ) < R− 1, then d(p, γ) < R.
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The proof is indicated in Figure 3, where the endpoint in common to γ and
δ is at infinity. Note that an R–neighborhood of γ ⊂ H, for R � 0, is
bounded by a pair of rays meeting at an angle of nearly 180◦.

Proof of Theorem 4.1. Choose gn → g0 in G such that [gn] = xn and
[g0] = y, and let Cn = gn(R̂).

Recall that [g] ∈ RFM if and only if {g(0), g(∞)} ⊂ Λ. By assumption,
gn(∞) ∈ Λ for all n, and g0(0) ∈ Λ. Moreover, since xn ∈ (RFM)U , there
exist sn ∈ R such that gn(sn) ∈ Λ. Let us arrange that |sn| is as small as
possible; then gn(In) ⊂ Ω, where In = (−sn, sn). Setting un(z) = z− sn, we
then have [gnun] = xun ∈ RFM .

It remains to verify that (1) or (2) is true. If |sn| → 0, then clearly we
are in case (1), so let us assume that s = lim sup |sn| > 0. In this case,
we claim C0 bounds a component Ω0 of Ω. To see this, recall that Ω is a
union of round disks with disjoint closures. The arc J = g0(−s, s) is the
limit, along a subsequence, of arcs gn(In) ⊂ Ω; since Ω has only finitely
many components with diameter greater than diam(J)/2, there is a unique
component Ω0 of Ω such that g0(0) ∈ ∂Ω0. In fact the entire circular arc J
must lie in Ω0, and hence C0 ⊂ Ω0. Since |C0 ∩ Λ| ≥ 2, we have C0 = ∂Ω0.

Consequently the plane H0 = hull(C0) ⊂ H3 covers a component S of
∂ hull(M). In particular, we have y ∈ TS.

Now even in this case, we have sn → 0 along the subsequence where
gn(0) 6∈ Ω0. Thus to complete the proof, it suffices to show that (2) holds
under the assumption that gn(0) ∈ Ω0 for all n. Under this assumption,
Cn∩Ω0 is a circular arc with two distinct endpoints, one of which is gn(sn).
Equivalently, Hn = hull(Cn) meets H0 along a geodesic γn ⊂ H3, with one
end converging to gn(sn).

Let χn ⊂ Hn be the unique horocycle resting on gn(∞). The natural
lift of χn to FH3 gives the orbit gnU . Let δn denote the geodesics in H3

connecting gn(∞) to gn(sn). Note that δn and χn both lie in the plane Hn,
and cross at a unique point pn.

We claim that d(pn, H0) → 0. To see this, fix ε > 0. It is easy to see
that the set of points in Hn that are within hyperbolic distance ε of H0 is
convex and invariant under translation along γn; thus

Hn(ε) = {p ∈ Hn : d(p,H0) < ε} = {p ∈ Hn : d(γn, p) < Rn}

for some Rn > 0. Since xn → id, we have Hn → H0 and hence Rn → ∞;
moreover, χn converges to a horocycle in H0, so eventually d(γ, χn) < Rn−1.
By Lemma 4.2, this implies that d(pn, γ) < Rn, and hence d(pn, H0) < ε for
all n� 0.
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By construction we have gnun ∈ FpnH3. Since the frame gnun is tangent
to the geodesic δn, whose endpoints lie in the limit set, we have [gnun] ∈
RFM ; and since d(pn, H0) → 0 (and indeed Hn and H0 are nearly parallel
near pn), the frames gnun accumulate on TH0 and hence the frames xnun =
[gnun] accumulate on TS.

5 Exceptional frames

Let M be a rigid acylindrical manifold. We define the locus of exceptional
frames in FM by

EM =
⋃
{xHV : x ∈ RFM and xH ⊂ FM is closed}.

In this section we develop some basic properties of the exceptional locus.

Immersed surfaces. As we remarked in §1, when x ∈ RFM and xH is
closed, its projection to M is a properly immersed, totally geodesic surface
S passing through the convex core of M . For v ∈ V , the projection of xHv
to M is a surface equidistant from S. The exceptional locus accounts for
the all the horocycles that lie on such surfaces.

Like RF+M , the locus EM is invariant under the action of AN . In terms
of the universal cover, we have [g] ∈ EM iff g(R̂) is tangent, at g(∞), to a
circle C such that |C ∩ Λ| ≥ 2 and ΓC is discrete. Note that

EM ∩ RFM 6= ∅, (5.1)

since EM contains the compact H–orbits coming from the totally geodesic
boundary components of the convex core of M .

Lemma 5.1 If x ∈ RFM , then xAU meets EM .

Proof. If xH is closed, then we have x ∈ EM already. Otherwise, we
have xH = (RF+M)H by Theorem 2.3, and xAUH = xH, since AU\H
is compact. Thus xAUH = RF+M contains one of the compact orbits
yH ⊂ EM coming from the boundary of the convex core of M , so xAU
must meet this orbit as well.

Lemma 5.2 For any x ∈ EM ∩RF+M , the locus Y = xU is a U–minimal
set, and Y = xvHv−1 ∩ RF+M for some v ∈ V .
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Proof. Since U commutes with the action of V , it suffices to treat the
case where xH is closed in FM . In this case, xH = TS for some properly
immersed, totally geodesic surface S ⊂ M . The subgroup π1(S) ⊂ π1(M)
determines a covering space M ′ → M , which we can normalize so that
M ′ = Γ′\H3 with Γ′ ⊂ H. (If S happens to be nonorientable, we pass to
the orientation–preserving subgroup of index two.)

Since S is properly immersed, M ′ is convex cocompact; and since M is
acylindrical, M ′ is nonelementary. It is now easy to check that the covering
map FM ′ → FM sends (Γ′\H) ∩ RF+M

′ isomorphically to Y = (xH) ∩
RF+M , respecting the action of U (cf. [MMO, Thm. 6.2, Prop. 7.2]). The
result then follows from Dal’bo’s minimality Theorem 2.2.

Lemma 5.3 For any x ∈ RF+M − EM , the orbit xU meets RFM .

Proof. Suppose x ∈ RF+M but xU does not meet RFM . Then x = [g]
where C = g(R̂) meets Λ in just one point. Therefore C is tangent to
D = ∂Ω0 for some component Ω0 ⊂ Ω, and ΓD is discrete, so x ∈ EM .

6 Classification of U–orbit closures

We can now complete the proof of Theorem 1.3. The interaction between
xU and the exceptional locus EM plays a leading role in the proof.

Lemma 6.1 For any x ∈ RF+M , the orbit closure X = xU meets EM .

Proof. Note that the result holds for x if and only if it holds for some
x′ ∈ xAN . Thus we are free to adjust x by elements of AN in the course of
the proof.

Suppose X is disjoint from EM . By Lemma 5.3, after replacing x with
an element of xU , we may assume x ∈ RFM . Then X contains a closed,
U–invariant set Y such that Y L+ ⊂ Y for some 1-parameter semigroup
L+ ⊂ AV , by [MMO, Prop. 9.3 and Thm. 9.4]. Let L ⊂ AV be the group
generated by L+. Note that either L = V or L = vAv−1 for some v ∈ V .

Choose `n → ∞ in L+
∼= R+. Then L =

⋃
`−1n L+. The locus Y `n ⊂ X

is U–invariant, so by Lemma 5.3 again we can find yn ∈ RFM ∩ Y `n. Pass
to a subsequence such that yn → z ∈ RFM . We have yn`

−1
n L+ ⊂ X for all

n, so in the limit we obtain zL ⊂ X.
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If L = V , then we have zN ⊂ X, so X = RF+M by Theorem 2.1, and
thus X meets EM by equation (5.1). Otherwise, L = vAv−1 for some v ∈ V .
Therefore

X ⊃ zvAUv−1.

Again, we can find u ∈ U such that y = zuv ∈ RFM . Then yAU = zvAU .
By Lemma 5.1, yAU meets EM , so X meets EM as well.

Typical orbits. Using the results of §3 and §4, we can now finally describe
the behavior of U–orbits outside of the exceptional locus.

Theorem 6.2 Suppose x ∈ RF+M − EM . Then xU = RF+M .

Proof. Let X = xU . Choose y ∈ X ∩ EM , using Lemma 6.1. By Lemma
5.2, there is a v ∈ V such that Z = yvHv−1 is closed, we have

X ⊃ Y = yU = Z ∩ RF+M,

and Y is a U–minimal set. Replacing x with xv, we can assume that v = id,
and hence Z = yH. Then Y ∩ RFM 6= ∅, so we can also assume that
y ∈ RFM . By Lemma 5.3, after replacing x with xu for some u ∈ U , we
can further assume that x ∈ RFM .

Let X∗ = X ∩ RFM , and let

G0 = {g ∈ G : Zg ∩X∗ 6= ∅}.

We claim there is a sequence gn → id in G0 − HV . To see this, first
note that since y ∈ X, we can find un ∈ U and gn → id in G such that
xun = ygn. In particular, we have xun → y. We now apply Theorem
4.1. This Theorem implies that after changing our choice of un ∈ U , we can
assume that xun ∈ X∗ and either (i) xun → y, or (ii) Z = Y is compact, and
xun accumulates on Y . In either case, after passing to a subsequence and
(in case (ii)) possibly changing our choice of y ∈ Y , we still have xun = ygn.
Then clearly gn ∈ G0, we have gn → id, and gn 6∈ HN = HV because
yH ⊂ EM while x 6∈ EM .

Since Z is H–invariant, we have HG0 = G0. By [MMO, Lemma 9.2],
there is also a K > 1 and a sequence of K–thick sets Tn such that gnTn ⊂ G0

for all n. Applying Theorem 3.1 (with the order of factors reversed) to the
sequence HgnTn ⊂ G0, we find that G0 contains a thick subset V0 ⊂ V .
In particular, we can choose vn → ∞ in V ∩ G0. Then Zvn meets X∗ by
the definition of G0. But Zvn ∩ RF+M = Y vn, so the U–minimal set Y vn
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also meets X∗, and thus Y vn ⊂ X for all n. Now Y vn is invariant under
the closed subgroup v−1n AUvn of AN , which converges to N as n→∞. By
compactness of X∗, we conclude that X contains the N–orbit of a point in
X∗, and hence X = RF+M by Theorem 2.1.

Proof of Theorem 1.3. Let x be an element of FM .
(1) If x 6∈ RF+M , then xU is closed. Indeed, in this case xU corresponds

to a horocycle χ ⊂ H3 resting on a point of Ω, and the projection of χ to
M is a proper immersion.

(2) If x ∈ EM∩RF+M , then we xU = xvHv−1∩RF+M for some v ∈ V ,
by Lemma 5.2.

(3) Finally, if x ∈ RF+M −EM , then xU = RF+M by Theorem 6.2.

7 Classification of AU–orbit closures

In this final section we use the classification of U–orbits to show that

xAU = xH ∩ RF+M (7.1)

for all x ∈ RF+M , as stated in Corollary 1.5.

Generic circles. Let M = Γ\H3 be a rigid acylindrical manifold. Let
C = G/H be the space of circles in Ĉ, let

C0 = {C ∈ C : |C ∩ Λ| ≥ 2},

and let
C1 = {C ∈ C0 : ΓC is discrete in C}.

Lemma 7.1 The set C1 is countable.

Proof. A circle C ∈ C1 corresponds to a properly immersed, totally geodesic
surface S with fundamental group π1(S) ∼= ΓC . Thus ΓC is a finitely gen-
erated, nonelementary group and C is the unique circle containing Λ(ΓC).
Since Γ is countable, there are only countably many possibilities for ΓC , and
hence only countably many possibilities for C.
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Lemma 7.2 There is a circle C ∈ C0 that is not tangent to any circle in
C1.

Proof. It is easy to see that C0 has nonempty interior, while the set of
circles tangent to a given C ∈ C1 is nowhere dense. Since C1 is countable,
the result follows from the Baire category theorem.

Rephrased in terms of Γ\G, this shows:

Corollary 7.3 There is an orbit yH ⊂ FM − EM that meets RFM .

Proof of Corollary 1.5. The argument is similar to the proof of Lemma
5.1. Consider x ∈ RF+M . We always have xAU ⊂ RF+M , since the latter
set is closed and AU invariant.

If xU meets RFM , then we can reduce to the case where x ∈ RFM .
Under this assumption, if xH is closed, then xU = xH ∩ RF+M by The-
orem 1.3; since the latter set is A–invariant, it also coincides with xAU .
Otherwise, by Theorem 2.3 and compactness of AU\H, we have

xAUH = xH = RF+M.

In particular, by Corollary 7.3, xAU meets RF+M − EM . Let y denote a
point in their intersection. Then we have

RF+M = yU ⊂ xAU

by Theorem 6.2, so equation (7.1) holds in this case as well.
Finally, if x ∈ RF+M but xU does not meet RFM , then xH corresponds

to a circle tangent to Λ in just one point, and (7.1) is easily verified using
minimality of the horocycle flow on a compact hyperbolic surface (cf. [MMO,
Theorem 1.5]).
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