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1. Introduction

Let f be a homogeneous polynomial in n variables with integer coefficients. For any
integer m, consider the affine subvariety of Rn defined by

Vm = {x ∈ Rn : f(x) = m}.

It is a classical problem in number theory to understand the distribution of the set
Vm(Z) of integer points in Vm.

Two basic types of questions have been studied in the literature. The first type of
problem is perhaps more well-known. Here, for a fixed integer m, one sets

N(Ω) = #Vm(Z) ∩ Ω for any nice compact subset Ω of Vm.

One is then interested in the asymptotics of N(Ωi) for a nice family of growing compact
subsets Ωi ⊂ Vm, for i = 1, 2, · · · . For example, one would like to show that

(1.1) N(Ωi) ∼ vol(Ωi) as i→ ∞

for a suitably normalized measure on Vm. The second type of problem deals with a
family of varieties instead of a single one. To be more precise, in order to compare
Vm(Z) for different positive integers m, one does a rescaling by radially projecting
Vm(Z) to a fixed (non-empty) variety, say V1. Note that the radial projection π of Vm
onto V1 is given by x 7→ m− 1

d · x where d is the degree of f . One can then ask whether
the points π(Vm(Z)) are equidistributed in V1 as m → ∞. In other words, for nice
compact subsets Ω1 and Ω2 of V1, one would like to show that

#π(Vm(Z)) ∩ Ω1

#π(Vm(Z)) ∩ Ω2
∼
vol(Ω1)

vol(Ω2)
as m→ ∞.

This problem was raised by Linnik in the early sixties and particular examples were
studied by Linnik and Skubenko (cf. [LS] and [Li]). Hence, following Sarnak [Sa], we
shall call a question of this type Linnik’s problem.

The only known general approach to these two types of problems is the Hardy-
Littlewood circle method. However, this applies only when the number of variables
involved is much larger compared to the degree of the homogeneous polynomial in
question and in many interesting cases, this condition is not satisfied. When the
Hardy-Littlewood method does not apply, both problems are hopeless ventures in the
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generality of the above setting. The expectation highlighted in [Sa] is that if one re-
stricts attention to the case where the varieties in question are homogeneous varieties
of a linear semisimple algebraic group, then both problems can be related to the har-
monic analysis of the group, thus becoming more tractable. We refer the reader to
[Sa] for references to earlier works which exploit this relation. Subsequent to the ap-
pearance of [Sa], this expectation was realized for the first type of problem by Duke,
Rudnick and Sarnak in [DRS], where (1.1) was shown when Vm is an affine symmetric
space. The method of [DRS] allows one in principle to obtain an estimate on the rate
of convergence in (1.1). A simpler proof of the results in [DRS] was given by Eskin and
McMullen in [EM], using the decay of matrix coefficients and some geometric property
of affine symmetric spaces. A few years later, Eskin, Mozes and Shah extended these
to a much greater generality, using Ratner’s results on unipotent flows on homoge-
neous spaces. This method unfortunately does not provide information on rates of
convergence.

The purpose of the present paper is the realization of the expectation expressed in
[Sa] for Linnik’s problem. For the sake of simplicity, we assume that the group in
question is Q-split in the introduction. Thus, let G be a connected reductive Q-split
algebraic group with absolutely simple derived group and one dimensional center. Set
G = G(R)0 andG0 = [G,G]. Let ι : G → GLn(C) = GL(V ) be a rational representation
defined over Z such that the identity component of the center of G acts by non-trivial
scalars on V . Suppose that the polynomial f is a semi-invariant of G, that is, for some
non-trivial Q-rational character χ of G, f(vg) = χ(g)f(v) for any v ∈ V and g ∈ G.
Then G0 acts on each Vm. Let v0 ∈ V1(Z) be such that the stabilizer of v0 in G0 does
not possess any non-trivial Q-rational character. Note that the [G,G]-orbit of v0 in V
may not be Zariski closed; so that the stabilizer of v0 is not necessarily reductive (cf.
[BH]). Then we have the following equidistribution statement, whose special case for
f = det was proven by Linnik and Skubenko [Li, Thm. 1]:

Theorem 1.2. Fix a compact subset Ω ⊂ v0G0 and for any small ǫ > 0, consider
the standard division of Rn into ǫ-cubes. Then there exists an effective constant mΩ,ǫ

such that for any positive integer m > mΩ,ǫ, any ǫ-cube intersecting the interior of Ω
contains at least one point in the radial projection of Vmr(Z) into V1. Here r is an
explicit positive integer which depends only on G, ι and deg(f) and is given in (8.1).

We emphasize that our proof of Theorem 1.2, essentially making use of harmonic
analysis of G, does yield an effective estimate for the constant mΩ,ǫ.

Corollary 1.3. Given any open set U ⊂ v0G0, there exists a constant mU such that U
contains a point in the radial projection Vmr(Z) for any positive integer m > mU . In
particular, the subset

⋃∞
m=1 π(Vm(Z)) is dense in v0G0.

Remark

• As we explain in Section 9 (Exs. 2 and 3), there are fundamental obstructions to
having such a theorem for any sequence m tending to infinity; so the restriction
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to a sub-sequence of an r-th power of m is not that surprising, and is even
necessary.

• If V1 is the union of finitely many G0-orbits each of which possessing an integer
point, then one can replace v0G0 by the whole variety V1 in Theorem 1.2. For
example, in the case of a regular prehomogeneous vector space with a unique
semi-invariant, each Vm, for m 6= 0, is the union of finitely many G0-orbits.
Therefore the classification of Q-split irreducible regular prehomogeneous vector
spaces given by Sato and Kimura in [SK] provides explicit examples to which
Theorem 1.2 applies, with v0G0 replaced by V1, as long as each G0-orbit contains
an integer point.

• Assuming only that the derived group of G is Q-isotropic, we obtain a slightly
weaker version of Theorem 1.2 (see Theorem 5.1).

To prove Theorem 1.2, we introduce for each m ∈ N a subset G[m] of GQ as follows:

G[m] = {g ∈ GQ : ι(g) ∈ End(VZ) and χ0(g) = m}

where χ0 denotes the basis element of the character group of G whose restriction to the
center of G is a positive multiple of the central character of ι. If GZ is the arithmetic
subgroup of G associated to the Chevalley Z-structure, each G[m] is a (possibly empty)
finite union of GZ-double cosets. For some fixed r0 ∈ N (depending only on G and ι), we
shall see that #GZ\G[mr0] ≥ mβ·r0 for some fixed constant β > 0 independent ofm ∈ N

and further v0G[mr0 ] ⊂ Vmr(Z). Thus the subsets G[mr0 ] allow us to produce many
integer points in Vmr starting from v0 ∈ V1(Z). There is of course no reason to expect
that every point in Vmr(Z) is obtained in this way. In fact, in the general case, there
will be primitive or new points in Vmr(Z) which do not arise from any lower stratum
in this way. There is no doubt that these primitive points are the most interesting
from the arithmetic point of view. However, for the purpose of Linnik’s problem, and
in particular for the proof of Theorem 1.2, there is no harm in discarding these points.
Indeed, Theorem 1.2 is an immediate consequence of the following equidistribution
statement, which is of independent interest:

Theorem 1.4. Fix a nice (see Def. 4.5) compact subset Ω of v0G0 and 0 < ǫ ≪ 1.
Then there exists a constant CΩ,ǫ such that for any positive integer m,

|
1

#GZ\G[mr0]
·





∑

y∈GZ\G[mr0 ]

#v0GZy ∩ R+Ω



 − vol(Ω)| ≤ CΩ,ǫ ·m
−r0κ+ǫ.

Here the volume of Ω is with respect to a suitably normalized G0-invariant measure on
v0G0 and R+Ω = {x ∈ Rn : tx ∈ Ω for some t > 0}. Moreover, r0 is an explicit positive
integer depending only on G and ι (see (7.3)) and the exponent κ > 0 is independent
of Ω and is explicitly computable (see (7.7)).
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Remark

• Though in the above we have restricted ourselves to homogeneous varieties
defined by a single polynomial, there are in fact no additional difficulties in
dealing with a more general case, where the varieties are defined by several
polynomials.

• When the stabilizer of v0 in G0 is trivial, Theorem 1.4 yields

#v0G[mr0 ] ∩ R+Ω ∼ #GZ\G[mr0 ] · vol(Ω) as m→ ∞.

It will be very interesting to know whether in general the asymptotic of above
type exists. Some new results are obtained in this direction [EO].

The main tool in the proof of Theorem 1.4 is the use of Hecke operators. The
relation of Hecke operators to Linnik’s problem was first observed by Sarnak in [Sa].
Our starting point is then an equidistribution result for Hecke points in ZΓ\G where
Z is the connected center of G and Γ is a congruence subgroup of G. This result was
recently proved by Clozel, Oh and Ullmo in [COU] for simple and simply-connected
algebraic groups over Q (not necessarily Q-split). For our purpose, we need to extend
this to a slightly more general class of algebraic groups. This extension is provided
in Section 3 using a suitably modified definition of Hecke operators given in Section
2. Using this extension, we obtain in Section 4 an equidistribution result for Hecke
points on homogeneous varieties of G with an estimate on the rate of convergence.
The difficulties involved in passing from an equidistribution result on G to that on a
homogeneous variety of G are analytic in nature and are addressed in Section 4. In
Section 7, we deduce Theorem 7.6, which directly implies Theorem 1.4, from the (rate
of) equidistribution of Hecke points on homogeneous varieties of G. To do so, we need
to estimate the number of GZ-double cosets in G[mr0 ] as well as the number of single
GZ-cosets in each double coset. These are handled in Sections 6 and 7.

We conclude the introduction by discussing the classical example treated by Linnik
and Skubenko in [LS] and [Li], and revisited by Sarnak in [Sa].

Example: Consider the action of GLn on the space Mn of n × n matrices by right
multiplication. The determinant map is a homogeneous polynomial on Mn of degree
n. Then for any n ≥ 3,

Vm(Z) = {A ∈Mn(Z) : det(A) = m} = G[m].

Set ‖A‖ = (
∑

i,j A
2
ij)

1
2 . Then, taking v0 to be the identity matrix In, Theorem 1.4

implies that for any given R > 0 and 0 < ǫ≪ 1, as m→ ∞,

#{A ∈Mn(Z) : det(A) = m, and ‖A‖ ≤ m
1
nR}

= cn,R · #SLn(Z)\G[m] · (1 +OR,ǫ(m
− 1

2n2+2
+ǫ

))
(1.5)
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Here cn,R is the volume of the set {A ∈ SLn(R) : ‖A‖ ≤ R} with respect to the Haar
measure of SLn(R) giving SLn(Z)\SLn(R) volume 1. For n = 2, the same asymptotic

holds except that the error term should be replaced by m− 1
20

+ǫ.
Furthermore one can show that (cf. [COU])

#SLn(Z)\G[m] ∼ bm,n as m→ ∞

where

bm,n = [SLn(Z) : SLn(Z) ∩ diag(m, 1, · · · , 1)SLn(Z)diag(m−1, 1, · · · , 1)]

=
∏

i

(pki+1
i − 1) · · · (pki+n−1

i − 1)

(pi − 1) · · · (pn−1
i − 1)

when m =
∏

i p
ki

i is the prime factorization of m.

The above example is deceptively simple because of the following reasons. Firstly,
r0 = r = 1 and every point in Vm(Z) is obtained from v0 via G[m], i.e. Vm(Z) = v0G[m].
Hence Theorem 1.4 gives a precise result for all integer points. As mentioned before,
this is far from being true in general. Secondly, the stabilizer of v0 in GLn is trivial.
This ensures that the sets v0SLn(Z)y appearing in Theorem 1.4 are disjoint as y ranges
over SLn(Z)\G[m]. When the stabilizer of v0 is non-trivial, this will not be the case
and Theorem 1.4 should be interpreted as an equidistribution theorem of integer points
counted with multiplicities (see the remark following Theorem 1.4). In Section 8, we
give a couple of examples which illustrate these phenomenons.
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2. Hecke Operators

We begin with some preliminaries on global and local Hecke operators. In particular,
we shall give a modified definition of global Hecke operators, which possesses good
localization properties.

Let G be a connected reductive linear algebraic group over Q, and let Z be the
identity component of the center of G. Suppose that the algebraic group Z\G is
absolutely simple with Q-rank at least 1. This assumption is not strictly necessary but
it results in cleaner statements for our main results. We set



















G = G(R)0;

Z = Z(R)0;

G = Z\G;

GQ = G(Q) ∩G.

For any subset S ⊂ G, S will denote the image of S in G.

Let G(Af ) be the group of finite adeles attached to G. It is the restricted direct
product over all primes of the groups G(Qp) with respect to some family of open
compact subgroups Kp ⊂ G(Qp). For almost all p, Kp is a hyperspecial maximal
compact subgroup of G(Qp). Without loss of generality, we may assume that for all p,
Kp is a special maximal compact subgroup. The group G(A) of adeles attached to G
is equal to G(R) × G(Af).

Let Γ ⊂ GQ be an arithmetic subgroup of G such that

Γ = GQ ∩ U

for some open compact subgroup U =
∏

p Up of G(Af ).

To define global Hecke operators with nice localization properties, we assume that

(2.1) G(A) = G(Q) ·G · U ;

(2.2) Z(A) = Z(Q) · Z · (U ∩ Z(Af)).

Remark: We note that the above assumptions are satisfied in the following two cases.

• When G is simply connected and Γ is a congruence subgroup: noting that G(R)
is connected, (2.1) is just a consequence of the strong approximation property.
(2.2) trivially holds since G is then semisimple and hence Z = {e}.

• When G is Q-split and hence canonically defined over Z and Γ = G ∩ G(Z): to
see this, note that we have U =

∏

p G(Zp) and hence G(A) = G(Q) · G(R) · U
(see [PR, Pg. 486. Cor 2]). Moreover, it was proven by Matsumoto (cf. [BT,
Thm. 14.4]) that G(R) = G · S(R) for any maximal R-split torus S of G. This
implies that for a maximal Q-split torus S defined over Z, S(Z) meets every
connected component of G(R); hence so does G(Z), from which (2.1) follows.
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Since U ∩ Z(Af ) =
∏

pZ(Zp), (2.2) follows from the well known fact that Q

has class number 1.

Via the diagonal embedding, we may consider an element of GQ as an element in
G(Af). For each a ∈ GQ, we now set

G[a] = {g ∈ GQ : g ∈ UaU}.

If G is simply-connected, the strong approximation implies that G[a] = ΓaΓ. In general
G[a] is a union of Γ-double cosets of GQ.

Lemma 2.3. The natural map from Γ\G[a] to U\UaU is a bijection.

Proof. Denote this map by ι. It is clear that ι sends the set Γ\G[a] into the set U\UaU .
If b1 and b2 are elements of G[a] such that Ub1 = Ub2, then b1b

−1
2 ∈ U ∩GQ = Γ. Hence

Γb1 = Γb2, and the map is injective. To show the surjectivity, let x ∈ UaU , and
consider the element (1, x−1) ∈ G(A). Then by hypothesis (2.1), (1, x−1) = (br, bu)
for some b ∈ G(Q), r ∈ G and u ∈ U . Thus b−1 = r ∈ GQ; b−1 = ux ∈ UaU , hence
b−1 ∈ G[a]. Therefore x = u−1b−1 ∈ UG[a]. The surjectivity is proved. �

If we set
{

deg(a) = #Γ\G[a],

degp(a) = #Up\UpaUp.

Then Lemma 2.3 says that for any a ∈ GQ,

(2.4) deg(a) =
∏

p

degp(a);

in particular, deg(a) <∞.

Note that Γ is a lattice in G by the well-known theorem of Borel and Harish-Chandra
[BH]. Denote by µḠ the Haar measure on G with respect to which the quotient Γ\G ∼=
ZΓ\G has volume 1. The hypotheses (2.1) and (2.2) imply that there is a G-equivariant
bijection

φ : Z(A)G(Q)\G(A)/U → Γ\G.

This then defines a pullback map φ∗ from functions on the space Γ\G to those on the
space Z(A)G(Q)\G(A)/U . Naturally functions on Z(A)G(Q)\G(A)/U can be consid-
ered as right U -invariant functions on Z(A)G(Q)\G(A). In what follows, we shall not
distinguish these two spaces.

Let Cc(Γ\G) denote the space of continuous functions with compact support on the
real manifold Γ\G, and C∞

c (Γ\G) the subspace of smooth functions. One also has the
space Lq(Γ\G) of Lq-integrable functions relative to the measure µḠ, with associated
norm ‖ · ‖q. We shall let 〈−,−〉 denote the natural sesquilinear pairing induced by µḠ
between Lp(Γ\G) and Lq(Γ\G) when p−1 + q−1 = 1.
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If we give the locally compact group Z(Af )\G(Af) its unique Haar measure for
which (Z(Af ) ∩ U)\U has volume 1, this together with µḠ defines a measure µ0 on
Z(A)G(Q)\G(A) which gives rise to a pairing 〈−,−〉 between Lp(Z(A)G(Q)\G(A))
and Lq(Z(A)G(Q)\G(A)) when p−1 + q−1 = 1. Further, given f1 ∈ Lp(Γ\G) and
f2 ∈ Lq(Γ\G), we have

(2.5) 〈f1, f2〉 = 〈φ∗(f1), φ
∗(f2)〉.

Definition: Fix a ∈ GQ. For any function f on Γ\G, set

Ta(f)(g) =
1

deg(a)

∑

y∈Γ\G[a]

f(yg).

Then Ta(f) is also a function on Γ\G, and is independent of the choice of representatives
y of Γ\G[a] used. We call Ta the Hecke operator attached to a. Note that Ta preserves
the spaces Cc(Γ\G), C∞

c (Γ\G) and L2(Γ\G).

For each prime p, one can also define the local analog Ta(p), which acts on functions
f on Z(A)G(Q)\G(A)/U as follows:

Ta(p)(f)(g) =
1

degp(a)

∑

y∈Up\UpaUp

f(gy−1).

The operators Ta(p), for different primes p, commute with each other, and are equal to
the identity operator for almost all p. Hence we obtain an operator

T̂a =
∏

p

Ta(p).

The following lemma relates the global Hecke operators to the local ones. Using Lemma
2.3, it can be proved in the same way as [COU, Thm. 2.3]:

Lemma 2.6. Let a ∈ GQ. For any function f on Γ\G, we have

φ∗(Ta(f)) = T̂a(φ
∗(f)).

It is clear from the definition of T̂a, considered as an operator on L2(Z(A)G(Q)\G(A)/U),

that ‖T̂a‖ = 1; hence by (2.5) and the above lemma, Ta also has norm 1 as an operator
on L2(Γ\G).

Lemma 2.7. Let a ∈ GQ.
(i) We have deg(a) = deg(a−1).

(ii) Whenever both sides in the following converge, we have:

〈Taf, ψ〉 = 〈f, Ta−1ψ〉.
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Proof. For any function f on Γ\G, set f ′ = φ∗(f) for simplicity. Also set X =

Z(A)G(Q)\G(A). By (2.5) and Lemma 2.6, it suffices to prove the lemma for T̂a.
Observe that

deg(a) · 〈T̂af
′, ψ′〉 =

∫

X/U





∑

x∈U∩a−1Ua\U

f ′(g(ax)−1)



 · ψ′(g) dµ0(g)

=

∫

X/U





∑

x∈U/U∩a−1Ua

f ′(gxa−1)



 · ψ′(g)dµ0(g)

=

∫

X/U∩a−1Ua

f ′(ga−1) · ψ′(g)dµ0(g)

=

∫

X/U∩aUa−1

f ′(t) · ψ′(ta) dµ0(t)

=

∫

X/U

f ′(t) ·





∑

y∈U/U∩aUa−1

ψ′(tya)



 dµ0(t)

=

∫

X/U

f ′(t) ·





∑

y∈U∩aUa−1\U

ψ′(t(a−1y)−1)



 dµ0(t)

=

∫

X/U

f ′(t) ·





∑

y∈U\Ua−1U

ψ′(ty−1)



 dµ0(t)

= deg(a−1) · 〈f ′, T̂a−1ψ′〉

The above equality applied to constant functions f ′ and ψ′ yields (i). (ii) then follows
from (i) and the above equality. �

We illustrate the above discussion by considering the case when G is simply-connected;
this is the case treated in [COU]. Then G[a] = ΓaΓ is a single Γ-double coset and (2.4)
holds (cf. [COU, Lemma 2.2]). In [COU], (2.4) and Lemma 2.6 allow one to reduce
the global problem considered there to local harmonic analysis on G(Qp). When G is
not simply-connected, the definition of Ta given above is designed so that the passage
between local and global Hecke operators continues to hold.

3. Equidistribution of Hecke points on ZΓ\G

The main result of [COU] is an equidistribution theorem for Hecke points on Γ\G,
where G is simple and simply-connected. In this section, we shall extend this theorem
to the class of G considered in the previous section. To state the result, we need to
introduce more notations.



10 WEE TECK GAN AND HEE OH

For each prime p, let Ap be a maximal Qp-split torus of G such that Kp is good
with respect to Ap in the sense of [Oh2, Prop. 2.1], and let X•(Ap) and X•(Ap) be
the character and cocharacter groups respectively. Let Φp ⊂ X•(Ap) be the set of
non-multipliable roots in the root system Φ(G,Ap). We fix a system of positive roots
Φ+
p . Denoting by 〈−,−〉 the canonical perfect pairing between X•(Ap) and X•(Ap),

we now set

P+
p = {λ ∈ X•(Ap) : 〈λ, α〉 ≥ 0 for all α ∈ Φ+

p }.

Then there exists a finite set Ωp contained in the centralizer of Ap(Qp) in G(Qp) such
that

G(Qp) =
⋃

λ∈P+
p

⋃

̟∈Ωp

Kpλ(p)̟Kp,

where the union above is disjoint (cf. [Si]). Using this decomposition, we regard
a element α ∈ X•(Ap) as a bi-Kp-invariant function on G(Qp). More precisely, if
g = k1λ(p)̟k2, then we set

α(g) = p〈λ,α〉 ∈ Q×.

Let Sp ⊂ Φ+
p be a maximal strongly orthogonal system of positive roots in the sense

of [Oh1]. Such a system is not uniquely determined. However, the element

ηp :=
∑

α∈Sp

α ∈ X•(Ap)

is independent of the choice of Sp and has been determined in [Oh1]. Following [Oh2],
we set

ξSp
(g) =

∏

α∈Sp

Ξp

(

α(g) 0
0 1

)

for each g ∈ G(Qp).

Here, Ξp is the Harish-Chandra function of PGL2(Qp); it is bi-invariant under PGL2(Zp),
and is uniquely determined by:

(3.1) Ξp

(

x 0
0 1

)

= p−
|ordp(x)|

2 ·

(

|ordp(x)| · (p− 1) + (p+ 1)

p + 1

)

for any x ∈ Q×
p .

In the above, ordp denotes the valuation on Qp such that ordp(p) = 1 with associated
absolute value | · |p. We refer the reader to [Oh2] for more details on the properties of
the function ξSp

and remark only that 0 < ξSp
(g) ≤ 1 and for any ǫ > 0, there exists a

constant Cp,ǫ > 0 such that

(3.2) |ηp(g)|
1
2
p ≤ ξSp

(g) ≤ Cp,ǫ · |ηp(g)|
1
2
−ǫ

p for any g ∈ G(Qp).

From the explicit formula given in (3.1), it is not difficult to see that for a fixed
ǫ > 0, there exists a constant Nǫ > 0 such that the constant Cp,ǫ can be chosen to be
1 for each prime p > Nǫ.
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Henceforth, for each prime p, we fix a maximal strongly orthogonal system Sp. Setting

R1 = {primes p : Qp-rank of Z\G = 1};

R2 = {primes p : Qp-rank of Z\G ≥ 2},

we define a real-valued function ξ on GQ by

(3.3) ξ(g) =
∏

p∈R1

ξSp
(g)

1
2 ·

∏

p∈R2

ξSp
(g).

Note that almost all terms in the above product is 1. Since almost all the constants
Cp,ǫ can be taken to be 1 in (3.2), we deduce:

Lemma 3.4. Given ǫ > 0, there exists a constant Cǫ > 0 such that

ξ(g) ≤ Cǫ
∏

p∈R1

|ηp(g)|
1
4
−ǫ

p ·
∏

p∈R2

|ηp(g)|
1
2
−ǫ

p

for any g ∈ GQ.

We now introduce the Sobolev norm on C∞(Γ\G) and our exposition below follows
[BR, Appendix B] closely. Let g be the Lie algebra of G and fix a basis {Xi} of g.
Each Xi acts on each f ∈ C∞(Γ\G) by infinitesimal right translation and we set

Sk(f) =
(

∑

‖Xαf‖
2
2

)
1
2

where the sum is taken over all monomials Xα = Xi1Xi2 ...Xin of order ≤ k in the
universal enveloping algebra of g. Note that if f ∈ C∞

c (Γ\G), then Sk(f) < ∞. Then
Sk is called the k-th Sobolev norm on C∞(Γ\G). Henceforth, set

k = the smallest integer >
1

2
· dim(G).

If we fix a closed embedding ι : Z\G →֒ GLn, we obtain a norm function ‖ · ‖ on G
by setting

‖g‖ = max
i,j

|ι(g)ij|.

Let

B = {g ∈ G : ‖g‖ ≤ 1}

be the unit ball in G relative to this norm. For each x ∈ G, we set

w(x) = (the maximal cardinality of the fibers of px)
1
2

where the map px : B → Γ\G is given by g 7→ xg. This defines a function w on G
which is left-invariant under Γ. The following lemma concerns the key property of w
we need:
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Lemma 3.5. There exists constants C > 0 and r ≥ 1 such that

w(g) ≤ C · ‖g‖r for any g ∈ G.

Proof. This is not difficult to prove using reduction theory. See for example [MW, Lem.
I.2.4(a), Pg. 25-26]. �

The importance of the function w lies in its role in the following Sobolev type in-
equality [BR, Prop. B.2, Pg. 349]:

Proposition 3.6. There exists a constant C > 0 such that

|f(x)| ≤ C · w(x) · Sk(f)

for any f ∈ C∞(Γ\G) and x ∈ Γ\G.

Having introduced the necessary notations, we can now state the main result of this
section, which is an extension of [COU, Thm. 1.1 and Thm. 1.7] to a more general
class of groups:

Theorem 3.7. (i) There exists a constant C > 0 such that for any f ∈ L2(Γ\G) and
any a ∈ GQ,

‖Ta(f) −

∫

Γ\G

f(g) dµḠ(g)‖2 ≤ C · ‖f‖2 · ξ(a).

(ii) There exists a constant C > 0 such that for any f ∈ C∞
c (Γ\G), x ∈ Γ\G and

a ∈ GQ,

|Ta(f)(x) −

∫

Γ\G

f(g) dµḠ(g)| ≤ C · w(x) · Sk(f) · ξ(a).

(iii) For any f ∈ C∞
c (Γ\G) and x ∈ Γ\G, we have

lim
deg(a)→∞

Ta(f)(x) =

∫

Γ\G

f(g) dµḠ(g).

The rest of the section is devoted to the proof of the above theorem. Using the
definition of the Hecke operator Ta given in the previous section, the proof of (i) is
virtually identical to that of [COU, Thm. 1.1]. Hence, we shall only give a brief sketch
of the proof.

• The main point of the proof is to give an upper bound for the operator norm
||Ta|| for the action of Ta on the subspace L0 of functions in L2(Γ\G) which
are orthogonal to the constant functions. Using Lemma 2.6 and the fact that
φ∗ is an isometry, we are reduced to estimating the operator norm of T̂a on
the subspace of U -invariant functions in the orthogonal complement L̂0 of the
constant functions in L2(Z(A)G(Q)\G(A)).
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• By an elementary but crucial observation [COU, Prop. 2.6], this is equivalent
to estimating the size of matrix coefficients for the unitary representations of
G(Qp) intervening in the representation L̂0 of G(A). This observation puts us
in a position to apply [Oh2, Thm. 1.1], at least when the Qp-rank of Z\G is
≥ 2.

• To be able to apply [Oh2, Thm. 1.1], it is necessary to show the following
lemma:

Lemma 3.8. Fix a direct integral decomposition of L̂0 into irreducible unitary repre-
sentations of G(A). Let A be the set of irreducible unitary representation π = ⊗̂vπv of

G(A) occurring in the direct integral decomposition of L̂0 such that

• π has a non-zero U-invariant vector;
• for some finite prime p, πp is 1-dimensional.

Then the set A has measure zero with respect to the measure giving the direct integral
decomposition of L̂0.

Proof. Let us decompose the unitary representation L̂0 into the direct sum of its contin-
uous and discrete spectrum. The continuous spectrum has been described by Langlands
in terms of the discrete spectrum of Levi subgroups, using his theory of Eisenstein se-
ries (cf. [MW]). One sees directly from this description that the set of irreducible
representations π ∈ A which occur in the continuous spectrum indeed has measure
zero. Thus it remains to deal with the discrete spectrum.

Suppose V is a subspace of L̂0 which affords the irreducible unitary representation
π. Let G̃ be the simply-connected cover of the derived group of G. Then there is a
natural projection map

G̃(Q)\G̃(A) → Z(A)G(Q)\G(A)

and using this, we can pull back a function f ∈ V to obtain a function f̃ on G̃(Q)\G̃(A).

Suppose that there is a finite prime p such that f̃ is right-invariant under G̃(Qp). Sup-

pose that f is continuous; hence so is f̃ . Since f̃ is left G̃(Q)-invariant and right

G̃(Qp)-invariant, it follows by the strong approximation theorem for G̃ that f̃ is con-
stant. Since the continuous functions in V are dense in V , we deduce that all functions
in V are fixed by the image of G̃(A) in G(A), as well as by Z(A). This implies that V
is a 1-dimensional space spanned by a unitary character χ of G(A), which is trivial on

G(Q) and Z(A). Since V ⊂ L̂0, χ is a non-trivial character.

Now suppose further that χ is trivial on U . Then it follows by the hypothesis (2.1)
that χ gives rise to a non-trivial character on G. This is a contradiction, since G is a
connected semisimple real Lie group and has no non-trivial character. The lemma is
proved. �
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With the lemma, we can now apply [Oh2, Thm. 1.1] to obtain the desired bound on
matrix coefficients, when the Qp-rank of Z\G is ≥ 2. On the other hand, if the Qp-rank
of Z\G is equal to 1, one appeals to [CU, Thm. 5.1], which is a p-adic analogue of
the results of Burger and Sarnak [BS], and the Gelbart-Jacquet bound towards the
Ramanujan conjecture of GL2, as in the proof of [COU, Thm. 1.1]. This completes a
sketch of the proof of (i) in the theorem.

The statement (ii) now follows from (i), using Prop. 3.6 and the fact that the
Hecke operator Ta commutes with all infinitesimal right translations. (iii) is a direct
consequence of (ii), since ξ(a) → 0 as deg(a) → ∞.

This completes the proof of Theorem 3.7.

4. Equidistribution of Hecke points on ZH\G

In this section, we extend the equidistribution result in Theorem 3.7 to homogeneous
varieties of G. Keeping the same notation of the previous sections, we further let H ⊂ G
be a Q-algebraic subgroup and let H = H(R) ∩ G. Assume that Γ ∩ H is a lattice
in H , or equivalently that the identity component of (Z ∩H)\H does not possess any
non-trivial Q-rational character. Let µH̄ be the right H-invariant measure on H which
gives (Γ ∩ H)\H volume 1. The measures µḠ and µH̄ induce a unique G-invariant
measure µ on the homogeneous space H\G ∼= ZH\G. Given a measurable subset Ω of
H\G, we shall write vol(Ω) for its measure with respect to µ.

Given an integrable function f with compact support on H\G, we define a function
F on Γ\G by:

(4.1) F (g) =
∑

γ∈(Γ∩H)\Γ

f(γg).

Observe that:

• the support of F is compact if and only if Γ ∩H is cocompact in H ;
• F is an integrable function on Γ\G:

∫

Γ\G

F (g)dµḠ(g) = µ(f) :=

∫

H\G

f(g)dµ(g).

We would like to show that for any x ∈ Γ\G,

Ta(F )(x) → µ(f) as deg(a) → ∞.

This is not a consequence of Theorem 3.7, since we do not know that F is smooth of
compact support, or even square-integrable. Nevertheless, the following theorem says
that the above limit holds in the weak sense and further that the rate of convergence
can be estimated.

Theorem 4.2. Let f be an integrable function of compact support on H\G, and let F
be constructed from f as in (4.1).
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(i) For any ψ ∈ C∞
c (Γ\G),

〈TaF, ψ〉 → 〈µ(f), ψ〉 as deg(a) → ∞.

(ii) For any ψ ∈ C∞
c (Γ\G) and a ∈ GQ,

|〈Ta(F ) − µ(f), ψ〉| ≤ Cf · Cψ · ξ(a−1)δ

where Cf > 0 is a constant depending on f ,

Cψ =

{

Sk(ψ), if Γ ∩H is cocompact in H;

Sk(ψ) + ‖ψ‖1 + ‖ψ‖∞, otherwise,

and δ is a positive constant ≤ 1, with equality when Γ ∩H is cocompact in H.

Proof. By Lemma 2.7(ii), we have

〈Ta(F ), ψ〉 = 〈F, Ta−1ψ〉.

Note also that

〈µ(f), ψ〉 = 〈F, µḠ(ψ)〉.

Hence

〈Ta(F ) − µ(f), ψ〉 = 〈F, Ta−1ψ − µḠ(ψ)〉.

This latter integral can be written as:
∫

H\G

f(g) ·

(
∫

(Γ∩H)\H

(Ta−1(ψ)(hg) − µḠ(ψ))dµH̄(h)

)

dµ(g).

Statement (i) now follows by Theorem 3.7(iii), applied to ψ, and the dominated con-
vergence theorem. Similarly, the cocompact case in statement (ii) follows immediately
by Theorem 3.7(ii), using the fact that the function w is bounded on compact subsets
of Γ\G.

It remains to consider the case when Γ ∩H is not cocompact in H, which is much
more involved. Let us fix a compact subset Ω̃ ⊂ G which maps bijectively to the
closure of the support of f . We first obtain a bound for the integral

Φ(g) :=

∫

(Γ∩H)\H

|Ta−1(ψ)(hg) − µḠ(ψ)|dµH̄(h),

as g varies over Ω̃. This is done by dividing the domain of the integration, using Siegel
sets and reduction theory, as we now explain.

We first recall what a Siegel set is. Let L ⋉ U be a Levi decomposition of the
(possibly disconnected) algebraic group (Z∩H)\H with U its unipotent radical. Choose
a maximal Q-split torus A of L and let P be a minimal parabolic subgroup of L0

containing A, with unipotent radical N . Then the Levi subgroup of P containing A is
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an almost direct product M·A, where M is an anisotropic reductive algebraic group
over Q:

P = NMA.

The choice of P determines a system of simple roots ∆ for L relative to A, and we set:

At = {a ∈ A(R)0 : α(a) ≥ t for all α ∈ ∆}.

Choose compact subsets ω1 ⊂ (N ·M)(R) and ω2 ⊂ U(R). Then for a suitable maximal
compact subgroup K of L(R), the subset

ω1AtKω2 ⊂ ((Z ∩H)\H)(R)

is called a Siegel set.

The natural map H → (Z ∩H\H)(R) has finite kernel and cokernel. Using this, we
let Σ ⊂ H be the inverse image of ω1AtKω2. Reduction theory (cf. [Bo] and [PR, Ch.
4]) says that for some t < 1, ω1 and ω2 which will be fixed henceforth, there exists a
finite number h1, ..., hr of elements in H such that

⋃

i Σ ·hi is a fundamental set for the

quotient (Γ ∩H)\H.

Now for R > t, we set

At,R = {a ∈ A(R)0 : t ≤ α(a) ≤ R for all α ∈ ∆},

which is a compact subset of At and let Σ≤R ⊂ H be the inverse image of ω1At,RKω2.
Setting Σ>R = Σ \ Σ≤R, we deduce from the above that

Φ(g) ≤ Φ≤R(g) + Φ>R(g),

where

Φ≤R(g) =
∑

i

∫

Σ≤R

|Ta−1ψ(hhig) − µḠ(ψ)|dµH̄(h);

Φ>R(g) =
∑

i

∫

Σ>R

|Ta−1ψ(hhig) − µḠ(ψ)|dµH̄(h).

We first give a bound for Φ>R(g). Using standard integration formulas [PR, Pg. 213],
it is not difficult to check that

∫

Σ>R

dµH̄ ≤ C1 · R
−n,

for some constants C1 and n. Together with the fact that ‖Ta−1(ψ)‖∞ ≤ ‖ψ‖∞, one
sees that for some constant C ′

1 > 0

Φ>R(g) ≤ C ′
1 · (‖ψ‖∞ + ‖ψ‖1) ·R

−n for any g ∈ G.
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It remains to estimate Φ≤R(g), as g varies over Ω̃. Applying Theorem 3.7(ii), we
deduce that

Φ≤R(g) ≤ Cf · Sk(ψ) · ξ(a−1) · sup
h∈Σ≤R

w(h)

for some constant Cf > 0 depending on the support of f . By Lemma 3.5, it is not
difficult to check that

sup
h∈Σ≤R

w(h) ≤ C2 · R
m,

for some positive constants C2 > 0 and m ≥ 1.

In conclusion, we have shown that for any g ∈ Ω̃,

|Φ(g)| ≤ C ′
f · (Sk(ψ) · ξ(a−1) · Rm + (‖ψ‖1 + ‖ψ‖∞) · R−n)

for some constant C ′
f > 0 depending on f and some constants m ≥ 1 and n ≥ 1

(independent of f). Putting

R = ξ(a−1)−
1

m+n > t.

we have:

Φ(g) ≤ C ′′
f · (Sk(ψ) + ‖ψ‖1 + ‖ψ‖∞) · ξ(a−1)δ,

where δ = n
m+n

< 1. Since

|〈Ta(F ) − µ(f), ψ〉| ≤

∫

H\G

|f(g)| · Φ(g)dµ(g),

the desired result follows and Theorem 4.2 is proved completely. �

We shall henceforth specialize to the case where f is the characteristic function of a
compact subset Ω of H\G so that µ(f) = vol(Ω). The function FΩ constructed from
f by (4.1) satisfies:

FΩ(g) = #Ωg−1 ∩ v0Γ,

where v0 denotes the coset of the identity element in H\G. Further, for any a ∈ GQ,
we have:

(4.3) Ta(FΩ)(g) =
1

deg(a)
·

∑

y∈Γ\G[a]

#Ωg−1 ∩ v0Γy.

We should remark here that the subsets v0Γy of H\G need not be disjoint as y ranges
over Γ\G[a], though they are disjoint if H is trivial. The goal of this section is to
use Theorem 4.2 to obtain an asymptotic formula for Ta(FΩ)(1) as deg(a) → ∞. To
convert the weak convergence of Theorem 4.2 to a pointwise convergence, we shall need
to restrict the class of compact subsets to consider.
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Recall that we have chosen a basis {Xi} of the Lie algebra g of G. This induces a
Euclidean metric on g, and a G-invariant metric on G. For a sufficiently small ǫ > 0,
and Dǫ = {x ∈ g : |x| < ǫ}, we set

Uǫ := exp(Dǫ) ⊂ G,

and call this the ǫ-neighborhood of the identity element in G.

Lemma 4.4. For a sufficiently small ǫ > 0, there exists a non-negative function ψǫ ∈
C∞
c (Γ\G) which is supported on the image of Uǫ in Γ\G and which satisfies:











‖ψǫ‖1 = 1,

‖ψǫ‖∞ ≤ C · ǫ−d;

Sk(ψǫ) ≤ C · ǫ−d−1,

where C is a constant independent of d = dim(G) and ǫ.

Proof. For a sufficiently small ǫ0, the natural map ϕ : Dǫ0 → Γ\G is a local diffeomor-
phism and thus provides a local chart at the identity coset. So we are reduced to the
question of finding a function ψǫ supported on the disc Dǫ in g with suitable properties,
for all ǫ ≤ ǫ0 say. Let f be a bump function on D1, i.e. a non-negative smooth function
supported on D1 with integral 1. Now set

fǫ(x) =
1

ǫd
f(
x

ǫ
),

which is supported on Dǫ. Then it suffices to take ψǫ to be the multiple of fǫ ◦ ϕ−1

with L1-norm 1. �

We now make the following definition:

Definition 4.5. A compact subset Ω ⊂ H\G is nice if for all sufficiently small ǫ > 0
(depending on Ω),

vol(∂Ω · Uǫ) < CΩ · ǫ

for some constant CΩ > 0 depending on Ω. Here ∂Ω denotes the boundary of Ω.

Note that this definition is independent of the choice of the metric on g. A compact
subset being nice is a very mild condition. Any compact subset of the manifold H\G
with piecewise smooth boundary is nice in the above sense. In particular, any point
x of H\G has a basis of neighborhoods consisting of nice compact subsets. The main
property of nice compact subsets we need is contained in the following lemma (cf. [EM,
Prop. 3.3]):

Lemma 4.6. Let Ω be a nice compact subset of H\G. For any sufficiently small ǫ > 0,
we have

vol(Ωǫ+) − CΩ · ǫ ≤ vol(Ω) ≤ vol(Ωǫ−) + CΩ · ǫ,

where Ωǫ− = ∩u∈Uǫ
Ωu and Ωǫ+ = ∪u∈Uǫ

Ωu.
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We can now prove the main result of this section:

Theorem 4.7. Let Ω be a nice compact subset of H\G. There exists a constant CΩ

(depending only on Ω) such that for any a ∈ GQ, we have

|
1

deg(a)
·





∑

y∈Γ\G[a]

#v0Γy ∩ Ω



 − vol(Ω)| ≤ CΩ · ξ(a−1)
δ

d+2 ,

where 0 < δ ≤ 1 is the exponent appearing in Theorem 4.2(ii) and d = dim(G).

Proof. Fix a sufficiently small ǫ > 0; we will specify its value later. Let ψǫ be the
function supported on Uǫ furnished by Lemma 4.4. For any g ∈ Uǫ, it is clear that

Ωǫ−g
−1 ⊂ Ω ⊂ Ωǫ+g

−1

and hence, by virtue of (4.3), we have

TaFΩǫ−(g) ≤ TaFΩ(1) ≤ TaFΩǫ+(g).

Since
∫

ψǫ = 1, we see that

〈TaFΩǫ− , ψǫ〉 ≤ TaFΩ(1) ≤ 〈TaFΩǫ+ , ψǫ〉.

On the other hand, by Theorem 4.2(ii) and Lemma 4.4, we have

(4.8) |〈TaFΩǫ±, ψǫ〉 − vol(Ωǫ±)| ≤ CΩ · ξ(a−1)δ · ǫ−d−1,

for some constant CΩ, and some 0 < δ ≤ 1.

Now using (4.8) and Lemma 4.6, there is a constant C ′
Ω such that

|Ta(FΩ)(1) − vol(Ω)| ≤ C ′
Ω · (ǫ+ ǫ−d−1 · ξ(a−1)δ),

for all sufficiently small ǫ > 0. Now take

ǫ = ǫ0 · ξ(a
−1)

δ
d+2

for a sufficiently small ǫ0 (independent of a). Then we conclude that for some constant
C ′′

Ω > 0

|TaFΩ(1) − vol(Ω)| ≤ C ′′
Ω · ξ(a−1)

δ
d+2 ,

as required. �

The following is an immediate corollary of Theorem 4.7, though it can also be directly
deduced from (4.8) and Theorem 4.2(i).

Corollary 4.9. Let Ω be a nice compact subset of H\G. Then

lim
deg(a)→∞

1

deg(a)
·

∑

y∈Γ\G[a]

#v0Γy ∩ Ω = vol(Ω).
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5. Integer points on homogeneous varieties

With the results of the previous section, we now give a proof of a somewhat weakened
version of Theorem 1.2 for any Q-isotropic G. Let us briefly recall the setting. Suppose
that f is a homogeneous polynomial of degree d with integer coefficients on V = Rn.
Let

Vm(Z) = {x ∈ Zn : f(x) = m} for each m ∈ Z

and fix v0 ∈ V1(Z). Let G be a connected reductive linear algebraic group defined over
Q with one-dimensional center and ι : G → GL(V ) a Q-rational representation with
respect to which f is a semi-invariant. Assume that G0 := [G,G] is absolutely simple
and Q-isotropic. Assume that the identity component of the stabilizer H of v0 in G0

has no non-trivial Q-rational character.

Since v0G0(R)0 = v0G
sc
0 (R), there is no loss of generality in assuming that G0 is

simply connected. In this case, G0 := G0(R) is connected and all the assumptions we
made in Section 2 hold (cf. the remark following (2.2)), with Γ the stabilizer in G0 of
the lattice Zn. Under these conditions, we shall show the following:

Theorem 5.1. Fix a compact subset Ω ⊂ v0G0 and for any small ǫ > 0, consider
the standard division of Rn into ǫ-cubes. Then there exists an effective constant mΩ,ǫ

such that for any positive integer m > mΩ,ǫ, any ǫ-cube intersecting the interior of Ω
contains at least one point in the radial projection of VNmr(Z) into V1. Here N and r
are explicit positive integers which depend only on G, ι and deg(f).

The rest of the section is devoted to the proof of the theorem. Since G0 is Q-isotropic,
there is a non-trivial Q-rational one-parameter subgroup λ : Gm → G0. There exist
an element h ∈ GLn(Q) and integers k1, ..., kn (depending only on λ and ι and not all
zero) such that

λ(t) = h · diag(tk1 , ...., tkn) · h−1 for all t ∈ Gm.

Now let us set am = λ(m) ∈ GQ for each positive integer m. Setting

r = −min1≤i≤n{ki} > 0,

it is easy to see that there is a positive integer N (depending only on λ and ι) such
that Nmram preserves the lattice Zn. Indeed, we see that

v0Γ(Nmram)Γ ⊂ VNdmrd(Z)

and thus the radial projection of these points onto V1 are precisely the points v0ΓamΓ.

For each open ǫ-cube B intersecting the interior Int(Ω) of Ω, fix a nice compact
subset ωB ⊂ B ∩ Int(Ω); as we remarked after the definition of nice compact sets in
the previous section, this is possible since every point in v0G has a basis of (compact)
neighbourhoods which are nice compact sets. Since the number of ǫ-cubes B intersect-
ing Int(Ω) is finite, there is a constant δ > 0 such that vol(ωB) > δ for each such B.
As an immediate consequence of Corollary 4.9 and the fact that ξ(am) → 0 as m→ ∞,
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we see that the ineffective version of the theorem (i.e. for which one has no control on
the constant mΩ,ǫ) holds for the sequence {Ndmdr : m ∈ Z>0}.

To obtain the effective version of Theorem 5.1, we apply Theorem 4.7 to the element
am:

|
1

deg(am)
·





∑

y∈Γ\G[am]

#v0Γy ∩ Ω



 − vol(Ω)| ≤ CΩ · ξ(a−1
m )

δ
d+2 .

It remains to analyze ξ(a−1
m ) more carefully and to show that there is an effectively

computable constant κ > 0 such that for any ǫ > 0,

ξ(am) ≤ Cǫ ·m
−κ+ǫ for some constant Cǫ.

Recall that the function ξ is the product of the local functions ξSp
or ξ

1
2
Sp

(cf. 3.3).
Further, the function ξp is defined using a maximal Qp-split torus Ap and a special
maximal compact subgroup Kp which is good with respect to Ap. The sequence {Kp}
is furnished by the Q-structure of G0; for almost all p, it can be taken to be the stabilizer
of Zn in G0(Qp) under the representation ρ. However, we are allowed to modify Kp

(and correspondingly Ap) as we wish for any given finite set of primes. We now note:

Lemma 5.2. Let T be any Q-split torus contained in G0. For all sufficiently large p,
there exists a maximal Qp-split torus Ap such that

• T ⊂ Ap;
• Kp is good with respect to Ap.

Proof. Let C be the centralizer of T in G0. For p sufficiently large, we have:

- Kp is a hyperspecial maximal compact subgroup;
- T (Qp) ∩Kp is the (unique) maximal compact subgroup T0 of T (Qp).

For such primes p, if vp is the unique vertex fixed by Kp in the Bruhat-Tits building
B(G0,Qp) of G0(Qp), then vp is fixed by T0.

To prove the lemma, we need to show that vp in fact lies in the subset B(C,Qp) ⊂
B(G0,Qp) for almost all p. Indeed, if this is the case, then vp lies in some apartment of
B(C,Qp). This apartment corresponds to a maximal Qp-split torus Ap of C and thus
of G0. The torus Ap then satisfies the desired properties.

Finally, the claim that vp lies in B(C,Qp) follows from a result of Prasad-Yu [PY,
Prop. 1.3], which says that B(C,Qp) = B(G0,Qp)

T0. �

Note that this lemma holds for any connected Q-isotropic semisimple G0; we do not
need G0 to be simply-connected or absolutely simple.

We apply the lemma with T equal to the image of λ. By modifying the choice of
Ap and Kp for a finite set of primes, we may thus assume that the conclusion of the
lemma holds for all primes p. Then the element am lies in Ap(Qp) for all p and the
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desired upper bound for ξ(a−1
m ) follows immediately from Lemma 3.4. This gives the

effective version of Theorem 5.1, i.e. with control on mΩ,ǫ.

Remarks: If the diagonal torus of GLn intersects ι(G0) non-trivially, then we can
choose λ to take values in the diagonal torus and thus N can be taken to be 1 in
Theorem 5.1. For example, this is the case when G is split and the representation ι
is defined over Z for the canonical Z-structure on G. This gives Theorem 1.2 of the
introduction. However, the sequence {Nmr} produced above is almost never optimal.
For instance, in the example where f = det and G = GLn discussed in the introduction,
the above proof gives an equidistribution result only for the sequence {mn : m > 0},
whereas by Linnik, one knows that Theorem 1.2 holds for the sequence {m : m > 0}.
Further, the above proof does not give the more precise result (1.5). For that, one
would need to consider many Hecke orbits at the same time. For the rest of the paper,
we address these more refined questions in the case when G is a split group.

6. A technical estimate

Henceforth, let G be any connected Q-split reductive algebraic group of semisimple
rank l ≥ 1. It is equipped with a canonical Z-structure such that for each finite prime
p, G(Zp) is a hyperspecial maximal compact subgroup of G(Qp). Recall the function ξ
from (3.3), which is constructed by bi-G(Zp)-invariant functions ξSp

defined in Section
3. In this section, we prove the following technical statement which will be used in the
next section.

Proposition 6.1. There exists an explicit constant 0 < c < 1 such that for any ǫ > 0,
there exists a constant Cǫ > 0 such that

ξ(a) ≤ Cǫ · deg(a)
−c+ǫ for any a ∈ GQ.

Fix a maximal split torus A contained in a Borel subgroup B of G, both of which
are defined over Z. Then G(Zp) is a good maximal compact subgroup with respect to
A [Oh2, Prop. 2.1]. Let Φ ⊂ X•(A) be the set of roots of G relative to A and set

2ρ =
∑

α∈Φ+

α.

The set Φ+ determines a positive Weyl chamber:

P+ = {λ ∈ X•(A) : 〈λ, α〉 ≥ 0 for all α ∈ Φ+}.

For each finite prime p, this gives the Cartan decomposition (cf. [Gr])

(6.2) G(Qp) =
⋃

λ∈P+

G(Zp)λ(p)G(Zp).

We now have:

Lemma 6.3. For each finite prime p and each ǫ > 0, there exists a constant Cǫ(p) > 0
satisfying:
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• for any λ ∈ P+,

p〈λ,2ρ〉 ≤ degp(λ(p)) ≤ Cǫ(p) · p
〈λ,2ρ〉·(1+ǫ).

• Cǫ :=
∏

p Cǫ(p) ≤ ∞.

Proof. By [Gr, Prop. 7.4], we have:

degp(λ(p)) =
#(G/Pλ)(Fp)

pdim(G/Pλ)
· p〈λ,2ρ〉,

where Fp = Z/pZ and Pλ = Mλ ·Nλ is a standard parabolic subgroup of G determined
by λ. It is thus clear that

p〈λ,2ρ〉 ≤ degp(λ(p)).

It remains to deal with the upper bound.

If di ≥ 2 are the degrees of the group Z\G, and ei ≥ 1 those of Z\Mλ, then by the
formulas in [Ca, Pg. 75]

#(G/Pλ)(Fp)

pdim(G/Pλ)
=

∏

i ζp(ei)
∏

i ζp(di)
,

which is at most ζp(1)l, since ζp ≥ 1. Here ζp(s) = (1− p−s)−1 is the local factor of the
Riemann ζ function. We thus see that

degp(λ(p)) ≤ ζp(1)l · p〈λ,2ρ〉.

Note that if 〈λ, 2ρ〉 6= 0, then

#{i : ei = 1} = the dimension of the center of Z\Mλ ≥ 1,

so that
∏

p

∏

i ζp(ei) diverges.

Now let ǫ > 0 be given and consider the function:

fp,ǫ(x) =
ζp(1)

pǫx · ζp(1 + ǫ)
for x ≥ 1.

It is clear that fp,ǫ is bounded for x ≥ 1 and if p is sufficiently large (depending on ǫ),
it is in fact bounded by 1. We let cp,ǫ ≥ 1 be an upper bound for fp,ǫ, with cp,ǫ = 1 for
almost all p.

Finally, we claim that we can take Clǫ(p) = (cp,ǫ · ζp(1 + ǫ))l; in other words,

degp(λ(p)) ≤ (cp,ǫ · ζp(1 + ǫ))l · p〈λ,2ρ〉·(1+lǫ).

This will prove the lemma, since
∏

p ζp(1+ ǫ) <∞ for ǫ > 0, and cp,ǫ = 1 for almost all

p. To prove the above inequality, note that 〈λ, 2ρ〉 is a natural number. If 〈λ, 2ρ〉 = 0,
then degp(λ(p)) = 1, and the result is clear. On the other hand, if 〈λ, 2ρ〉 ≥ 1, then
we have:

degp(λ(p)) ≤

(

ζp(1)

pǫ·〈λ,2ρ〉

)l

· p〈λ,2ρ〉·(1+lǫ)
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and the factor in the parenthesis is ≤ cp,ǫ · ζp(1 + ǫ). The lemma is proved. �

Let
∐

p P
+ denote the set of sequences (λp), indexed by the finite primes p, of

elements λp ∈ P+ with λp = 0 for almost all p. Each element (λp) ∈
∐

p P
+ gives rise

to an element a =
∏

p λp(p) ∈ AQ = A(Q) ∩G. We shall denote the set of elements of

AQ obtained in this way by A+
Q. Then by Cartan decomposition (6.2), the sets of the

form G[a] are naturally parametrized by A+
Q. We now have:

Corollary 6.4. Given any ǫ > 0, there exists a constant Cǫ > 0 such that for any
(λp) ∈

∐

p P
+ with corresponding element a ∈ A+

Q,
∏

p

p〈λp,2ρ〉 ≤ deg(a) ≤ Cǫ ·
∏

p

p〈λp,2ρ〉·(1+ǫ)

Proof of Proposition 6.1 Assume for simplicity that the rank of Z\G is ≥ 2; the
rank one case can be similarly treated and so we omit the details. Further, by the
discussion before the previous corollary, we may and do assume that a ∈ A+

Q. By
Lemma 3.4, we have for any ǫ > 0, there is a constant Cǫ > 0,

ξ(a) ≤ Cǫ
∏

p

|η(a)|
1
2
−ǫ

p .

Here, we have written η in place of ηp since the group G is Q-split. If {α1, ..., αl} is the
set of simple roots determined by Φ+, and

{

η =
∑l

i=1 niαi;

2ρ =
∑l

i=1miαi,

let us set

(6.5) c0 = min
1≤i≤l

ni
mi

Note that 0 ≤ c0 ≤ 1. However η is associated to a maximal strongly orthogonal
system; hence 0 < c0 ≤ 1. If a corresponds to the element (λp) ∈

∐

p P
+, then

∏

p

|η(a)|p ≤
∏

p

p−c0·〈λp,2ρ〉

Now using the upper bound in Corollary 6.4 and Lemma 2.7(i), we obtain that for any
ǫ > 0, there exists a constant Cǫ > 0 such that the above is at most Cǫ · deg(a)−c0+ǫ.

Now it suffices to set c = c0/2 to finish the proof.

Remark: We note that if G is in addition simply-connected, then the map

G(Z)\G(Q)/G(Z) →
∐

p

G(Zp)\G(Qp)/G(Zp)
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is bijective. It thus follows that every G(Z)-double coset of G(Q) has a representative
in A(Q). In general, we have that every G[a] has a representative in A(Q) by the
discussion before Corollary 6.4.

7. Equidistribution of the sets G[m] on ZH\G

As in the previous section, we let G be a connected Q-split reductive group with a
canonical Z-structure. Assume that the derived group of G is absolutely simple of rank
l ≥ 1 and the center of G is of dimension 1. Then the assumptions made in section 2
are satisfied with Γ = GZ := G ∩ G(Z) (see the remark there) and Z ∼= Gm. We set
G0 = [G,G](R)0. Then G = G0 × Z so that G0

∼= G.
Let V be a real vector space and let VZ be a lattice in V . This endows the general

linear group GL(V ) with its canonical integral structure. Suppose that

ι : G −→ GL(V )

is a representation of G (acting from the right) defined over Z such that Z acts by
non-trivial scalars on V . The character group X•(G) is a free Z-module of rank 1,
and we let χ0 be the basis element such that χ0|Z is a positive multiple of the central
character ν of ι.

For each m ∈ N, we set

G[m] = {g ∈ GQ : ι(g) ∈ End(VZ) and χ0(g) = m}.

We first remark that G[m] depends on the representation ι, even though we have
suppressed ι from the notation. It is of course possible that G[m] is empty; if it is
non-empty, it is clearly a union of GZ-double cosets.

Lemma 7.1. If a ∈ G[m], then G[a] ⊂ G[m].

Proof. Let b ∈ G[a]. Then b = u1au2 for some u1, u2 ∈
∏

p G(Zp). Since ι(b) ∈
End(VQ) and ι(b) ∈

⋂

pEnd(VZp
), we have ι(b) ∈ End(VZ). On the other hand,

χ0(ba
−1) ∈

∏

p Z×
p ∩ Q = {±1}. Note that since G is connected, χ0(G) ⊂ R+. There-

fore, χ0(ba
−1) = 1 and hence χ0(b) = m. Hence b ∈ G[m]. �

The lemma implies that G[m] is a disjoint union of sets of the form G[a] for a ∈ GQ.
We now let S[m] be a subset of GQ such that G[m] is the disjoint union of G[a]’s where
a ranges over S[m].

Lemma 7.2. Given ǫ > 0, there exists a constant Cǫ such that

#S[m] ≤ Cǫ ·m
ǫ

for any m ∈ N.

Proof. By the discussion before Corollary 6.4, we may assume S[m] ⊂ A+
Q. Then

#S[m] ≤ #{a ∈ A(Q) : ι(a) ∈ End(VZ) and χ0(a) = m}.
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Now let T be a maximal Q-split torus of GL(V ) defined over Z and such that ι(A) ⊂ T .
With respect to a suitable basis of VZ, we may assume that T is the diagonal torus.
Since the central character of ι is non-trivial and χ0 is a basis element of X•(G), we
deduce that det ◦ ι = χk0 for a non-zero integer k. However, since χ0|Z is a positive
multiple of the central character ν of ι, we see that k is positive. Therefore for C =
#ker(ι),

#S[m] ≤ C · #{(d1, · · · , dn) ∈ Zn :
∏

i

di = mk} ≤ C · (2 · φ(mk))n

where n = dimV and φ(m) denotes the number of divisors of m. To finish the proof, it
suffices to recall the well-known fact that for any ǫ > 0, there exists a constant Cǫ > 0
such that

φ(m) ≤ Cǫ ·m
ǫ for any m ∈ N.

�

Consider the set

X := {λ ∈ P+ : 〈λ, α〉 > 0 for some α ∈ Φ+ and

ι(λ(t)) ∈ End(VZ) for all non-zero t ∈ Z}.

Then X is non-empty and for any element λ in X, 〈λ, χ0〉 is a positive integer and
〈λ, 2ρ〉 > 0. Let λ1 be an element in X such that

〈λ1, χ0〉 = min
λ∈X

〈λ, χ0〉.

We then set

(7.3) r0 := 〈λ1, χ0〉

and

(7.4) β :=
〈λ1, 2ρ〉

〈λ1, χ0〉
.

Observe that r0 ∈ N and β > 0 depend only on G and ι.

Lemma 7.5. For any m ∈ N

max{deg(a) : a ∈ G[mr0]} ≥ mβ·r0 .

Proof. If we set for each p,

λp = ordp(m) · λ1,

then the element (λp) of
∐

p P
+ satisfies 〈λp, 2ρ〉 = β · r0 · ordp(m). Moreover, the

corresponding element a ∈ A+
Q lies in G[mr0 ] and thus the result follows by the lower

bound in Corollary 6.4. �
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Note that the above lemma implies that G[mr0 ] contains many GZ-single cosets:

#GZ\G[mr0] ≥ mβ·r0 .

Let H ⊂ G be a Q-algebraic subgroup such that H0 has no non-trivial Q-rational
character. Then H ⊂ G0, H ∩ Z is trivial and we have a G0-equivariant bijection:

H\G0
∼= ZH\G.

Let π : H\G → ZH\G ∼= H\G0 be the natural projection and let v0 denote the
identity coset in H\G. Using Theorem 4.7 and the results of Sections 6, we are now
ready to prove the following equidistribution of the subsets G[mr0 ]’s on ZH\G when
m→ ∞:

Theorem 7.6. Let Ω ⊂ H\G0 be a nice compact subset. There exists an explicit
positive integer r0 (7.3) depending only on G and ι such that for any ǫ > 0, there exists
a constant CΩ,ǫ > 0 such that for any m ∈ N,

|
1

#GZ\G[mr0 ]
·





∑

y∈GZ\G[mr0 ]

#π(v0GZy) ∩ Ω



 − vol(Ω)| ≤ CΩ,ǫ ·m
−r0κ+ǫ.

Here κ (see 7.7) is a positive constant independent of Ω and m.

Proof. The right hand side of the inequality in question is equal to:

I =
∑

a∈S[mr0 ]

deg(a)

#GZ\G[mr0 ]
·





1

deg(a)
·





∑

y∈GZ\G[a]

#π(GZy) ∩ Ω



 − vol(Ω)



 .

By Theorem 4.7, this is bounded above by

CΩ ·
∑

a∈S[mr0 ]

deg(a) · ξ(a−1)
δ

d+2

#GZ\G[mr0 ]
.

Note that 0 < δ
d+2

< 1. Now by Proposition 6.1, there exists a constant 0 < c < 1 such
that for any ǫ > 0,

ξ(a−1)
δ

d+2 ≤ Cǫ · deg(a)−c+ǫ

for some Cǫ > 0. Hence there exists CΩ,ǫ such that

I ≤ CΩ,ǫ ·
∑

a∈S[mr0 ]

deg(a)1−c+ǫ

#GZ\G[mr0 ]
≤ CΩ,ǫ ·

∑

a∈S[mr0 ]

maxa∈G[mr0 ] deg(a)1−c+ǫ

maxa∈G[mr0 ] deg(a)
.

By Lemma 7.5, we see that

I ≤ CΩ,ǫ · #S[mr0 ] ·m(−c+ǫ)·r0·β

where β > 0 does not depend on m. Finally the result follows by Lemma 7.2. �
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Remark: As for the constant κ in Theorem 7.6, we have:

(7.7) κ =











β·δ
r(Φ)·(d+2)

if the rank of Z\G is ≥ 2;

β·δ
4(d+2)

if the rank of Z\G is 1.

Here, we recall that d = dim(Z\G), δ is the exponent in Theorem 4.2 and β defined in
(7.4) is a constant which depends on the representation ι. Finally, r(Φ) is a constant
depending only on the root system Φ of Z\G and is defined by:

r(Φ) = 2 · max
1≤i≤l

mi

ni
,

where 2ρ =
∑

1≤i≤lmiαi and η =
∑

1≤i≤l niαi. The value of r(Φ) is tabulated in [Oh2].
Among these constants, the only one which is not so explicit is δ since it depends on
the subgroup H . However, when GZ ∩H is cocompact in H , we know that δ = 1.

8. Proof of Theorem 1.2 and Theorem 1.4

We now apply the results of Section 4 and the analysis of the previous two sections
to prove Theorems 1.2 and 1.4 of the introduction. We continue the assumptions and
notations from Section 7.

Fix v0 ∈ Vl(Z) with l 6= 0. Let H be the stabilizer in [G,G] of v0 and assume that
H0 has no non-trivial Q-rational character. Now the radial projection

π : v0G→ Vl

is simply the natural projection H\G→ ZH\G ∼= H\G0. Further, observe that

v0G[mr0 ] ⊂ v0G ∩ Vmrl(Z)

where

(8.1) r = d · r0 ·
〈λ0, ν〉

〈λ0, χ0〉
.

Proof of Theorems 1.2 and 1.4: With these identifications and l = 1, Theorem 1.4
of the introduction is simply a restatement of Theorem 7.6. Theorem 1.2 is a simple
corollary of Theorem 1.4 by the same argument as in the proof of Theorem 5.1.

9. Examples

In this section, we give some concrete examples to illustrate Theorems 1.2 and 1.4.
In these examples, the group G will be GLn so that











G = GLn(R)+;

G0 = SLn(R);

Γ = GLn(Z)+ = SLn(Z)
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and χ0 = det. Moreover,

G[m] = {g ∈Mn(Z) : det(g) = m}

and λ1 is the cocharacter given by t 7→ diag(t, 1, · · · , 1) so that r0 = 〈λ1, χ0〉 = 1 and
β = n− 1.

Example 1: Pffafian. Let G = GL2n (n ≥ 2) and VZ the lattice of skew symmetric
2n×2n matrices with entries in Z. The representation ι is given by the action of GL2n

on V by A 7→ gtAg. It is not hard to see that det restricted to V is in fact a square of
some integral homogeneous polynomial of degree n on V , which is called the Pffafian.
Denote by Pf(A) the Pffafian of a skew symmetric matrix A whose sign ambiguity is
resolved by setting Pf(v0) = 1 where

v0 =

(

0 In
−In 0

)

∈ VZ.

Then

Vm = {skew symmetric A : Pf(A) = m}.

It is easy to see that

Pf(gtAg) = det(g) · Pf(A)

and the stabilizer of v0 in G0 is Sp2n. The group G0 = SL2n(R) acts transitively on V1

and we have

Vm(Z) = v0G[m].

Let ‖A‖ = (
∑

i,j A
2
ij)

1
2 . Then Theorem 1.4 states that given positive numbers R and

0 < ǫ≪ 1, as m→ ∞,
∑

γ∈SL2n(Z)\G[m]

#{A ∈ γtV1(Z)γ : ‖A‖ ≤ m
1
nR} = c2n,R · bm,2n ·

(

1 +OR,ǫ(m
−κ+ǫ)

)

where bm,2n is as defined in the example treated in the introduction and c2n,R is the
volume of {A ∈ V1 : ‖A‖ ≤ R} with respect to the measure on V1

∼= Sp2n(R)\SL2n(R)
defined at the beginning of Section 4. Moreover, κ can be computed from the formula
in (7.7) and is given by

κ =
n(n+ 1)(4n− 1)

2(4n2 + 1)(4n3 + 3n2 + 11n− 6)
.

Note that κ > 1
4(4n2+1)

for each n ≥ 2. In this example, the stabilizer H of v0 in G0 is

non-trivial. Hence the sets in the above sum may not be disjoint.

In the remaining examples, we let G = GL2 and consider the right action ι of GL2

on the space V of binary n-forms given by:
(

A B
C D

)

: q(x, y) 7→ q(Ax+By,Cx+Dy).
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This is equivalent to the standard GL2-representation on Symn(R2) and we let VZ be
the lattice of binary n-forms with integer coefficients.

Example 2: Binary quadratic forms. Let d(q) be the discriminant of a binary
quadratic form q(x, y) = ax2 + bxy + cy2 Then

d(q) = b2 − 4ac

has degree 2 on V and is known to generate the ring of polynomial semi-invariants.
We have

Vm = {binary quadratic form q : d(q) = m}

and

d(q · g) = det(g)2 · d(q).

Take q0 ∈ Vd0(Z) for d0 6= 0. Then the stabilizer H in SL2 of q0 is isomorphic to the
special orthogonal group associated to the quadratic form q0. It is easy to see that q0
is isotropic over R (resp. over Q) if and only if d0 is a square in R (resp. in Q). Hence
d0 is not a square in Q if and only if H is Q-anisotropic (note that if d0 > 0, H is
an R-split orthogonal group.) Now fix an integer d0 which is not a square in Q and
q0 ∈ Vd0(Z). Then H has no non-trivial Q-rational characters and hence Theorem 1.4
is applicable. Note that we have r = 2 and hence

q0G[m] ⊂ Vm2d0(Z).

In general, one would not have equality above. For example, when q0 = x2 + y2,
q0G[m] 6= V−4m2(Z) for any m ≡ 3 (mod 4).

If we set ‖q‖ = max{|a|, |b|, |c|}, then Theorem 1.4 says that for any positive numbers
R and 0 < ǫ≪ 1,

∑

γ∈SL2(Z)\G[m]

#{q ∈ q0SL2(Z)γ : ‖q‖ ≤ mR} = cR · bm,2 ·
(

1 +OR,ǫ(m
− 1

20
+ǫ)

)

as m → ∞. Here where bm,2 is defined as in the example treated in the introduction
and cR is the volume of {q ∈ Vd0 : ‖q‖ ≤ R} with respect to the measure defined at the
beginning of Section 4. Hence we obtain an equidistribution result such as Theorem
1.2 for the radial projection of Vm2d0(Z) on Vd0 as m→ ∞. Note that for Vd0(Z) to be
non-empty, it is necessary and sufficient that d0 ≡ 0 or 1 (mod 4). Therefore, there is
an obvious obstruction to having an equidistribution result for the radial projection of
Vmi

(Z) for any sequence {mi} tending to infinity.

An integer d is a fundamental discriminant if and only if d is either a square-free
integer congruent to 1 mod 4 or 4 times of a square-free integer which is 2 or 3 mod 4. It
was shown by Duke [Du, Thm. 1] that the radial projection of Vd(Z) to a fixed variety
becomes equidistributed as d → ∞ (or d → −∞) along fundamental discriminants.
This result depends on his proof of a non-trivial bound on the Fourier coefficients of
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Maass cusp forms of half-integral weight, whereas our result depends on a known non-
trivial bound towards the Ramanujan conjecture for the Fourier coefficients of cusp
forms on GL2 of integral weight.

Combining the two results, one obtains an equidistribution result for the radial
projection of Vm(Z) on a fixed variety for any sequence m ≡ 0 or 1(mod 4) as m→ ∞
(or m→ −∞); see [CU, §2.3].

Example 3: Binary cubic forms. Let d(q) be the discriminant of a binary cubic
form q(x, y) = ax3 + bx2y + cxy2 + dy3. Then

d(q) = b2c2 + 18abcd− 4ac3 − 4db3 − 27a2d2

has degree 4 on V and the ring of polynomial semi-invariants of ι is generated by d.
Moreover,

d(q · g) = det(g)6d(q).

If we let q0 be the binary cubic form

q0(x, y) = x2y − xy2,

then d(q0) = 1,
Vm = {binary cubic form q : d(q) = m},

and G0
∼= SL2(R) acts transitively on V1. Note that the stabilizer H in G0 of any q

with d(q) 6= 0 is finite. In this case, we have r = 6 and hence

q0G[m] ⊂ Vm6(Z).

If we set ‖q‖ = max{|a|, |b|, |c|, |d|}, then Theorem 1.4 says that for any positive
numbers R and 0 < ǫ≪ 1,

∑

γ∈SL2(Z)\G[m]

#{q ∈ q0SL2(Z)γ : ‖q‖ ≤ m
3
2R} = cR · bm,2 ·

(

1 +OR,ǫ(m
− 1

20
+ǫ)

)

as m → ∞, where bm,2 is as defined in Example 2 and cR is the volume of {q ∈ V1 :
‖q‖ ≤ R} with respect to the measure defined at the beginning of Section 4. Thus
we obtain an equidistribution result such as Theorem 1.2 for the radial projection of
Vm6(Z) as m → ∞. We note here that the number of SL2(Z)-orbits contained in
v0G[m] ⊂ Vm6(Z) is at least of order m. On the other hand, it is known [Sh, Prop.
2.17(i), Pg. 186] that if h(m) denotes the number of SL2(Z)-orbits in Vm(Z), then

1

N

∑

m≤N

h(m) ∼
π2

9
as N → ∞,

so that the average of the h(m)’s are bounded. This shows that for some sequence
{mi} of positive integers tending to infinity, the sequence {h(mi)} is bounded. It
easily follows that we can find a nice compact subset Ω ⊂ V1 such that the number
of radial projections of Vmi

(Z) into Ω is uniformly bounded for all mi, and hence one
cannot have an equidistribution result as in Thm. 1.2 for such a sequence {mi}.
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Example 4: Binary quartic forms We conclude this section with an example in
which the ring of semi-invariants is a polynomial ring with two generators. Consider
the representation of GL2 on binary quartic forms. It is known [Ol, Pg. 29] that the
ring of semi-invariants is a polynomial ring with generators

{

f1(q) = 12ae− 3bd+ c2;

f2(q) = 72ace− 27eb2 − 27ad2 + 9bcd− 2c2.

where q(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4. We remark that the discriminant d
of q is (up to scaling) given by

d(q) = 4f1(q)
3 − f2(q)

2.

For any g ∈ GL2,

f1(q · g) = det(g)4 · f1(q) and f2(q · g) = det(g)6 · f2(q)

Therefore we see that r = 2 in this case. If one takes any q0 ∈ Vl1,l2(Z), then

q0G[m] ⊂ Vm4l1,m6l2(Z).

If q0 has 4 different roots in P1, then the stabilizer of q0 in SL2 is finite.

Putting ‖q‖ = max{|a|, |b|, |c|, |d|, |e|}, Theorem 1.4 says that for positive numbers
R and 0 < ǫ≪ 1,

∑

γ∈SL2(Z)\G[m]

#{q ∈ q0SL2(Z)γ : ‖q‖ ≤ m2R} = cq0,R · bm,2 · (1 +OR,ǫ(m
− 1

20
+ǫ))

as m → ∞. Here bm,2 is as in Example 2 and cq0,R is the volume of {q ∈ q0SL2(R) :
‖q‖ ≤ R} with respect to the measure used at the beginning of Section 4.

Note that since the ring of semi-invariants is a polynomial ring, Vl1,l2 is the union of
finitely many SL2(R) orbits for any l1 and l2 [MF, Pg. 160-161]. For a generic choice
of l1 and l2, the stabilizer of any point in Vl1,l2 is finite and so if each of these orbits has
an integer point, we have an equidistribution result on Vl1,l2 (instead of just q0SL2(R))
as in Theorem 7.6.
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