HOME EXAM

IAP 2014: DIRECTED READING PROGRAM

Part I

1. Let G be the group of nonconstant linear transformations $x \mapsto a x+b$ over \mathbb{F}_{q}.
(a) Find all irreducible G-representations and compute their characters.
(b) Compute the tensor product of irreducible representations.

2 . Let X_{1}, X_{2} be two G-sets, so that $\mathbb{C}\left[X_{1}\right]$ and $\mathbb{C}\left[X_{2}\right]$ become G-representations.
(a) Find $c\left(X_{1}, X_{2}\right):=\operatorname{dim} \operatorname{Hom}_{G}\left(\mathbb{C}\left[X_{1}\right], \mathbb{C}\left[X_{2}\right]\right)$.
(b) Let X_{1} and X_{2} be homogeneous G-spaces, so that $X_{i}=G / H_{i}$.

Show that $\mathbb{C}\left[X_{i}\right]=\operatorname{Ind}_{H_{i}}^{G} \mathbb{C}$ and prove that $c\left(X_{1}, X_{2}\right)=\# H_{1} \backslash G / H_{2}$.
(c) Let us consider the action of $G \times G$ on G given by $\left(g_{1}, g_{2}\right) \circ g:=g_{1} g g_{2}^{-1}$, and let Reg be the corresponding $G \times G$-representation on $\mathbb{C}[G]$. Prove that $\operatorname{dim} \operatorname{Hom}_{G \times G}(\operatorname{Reg}, \operatorname{Reg})$ is equal to the number of G-conjugacy classes on the one hand, and to the number of irreducible finite dimensional G-representations on the other hand.
3. Let $G:=\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $X_{k}^{q}:=\operatorname{Gr}_{k}\left(\mathbb{F}_{q}^{n}\right)$-the space of k-dimensional subspaces of \mathbb{F}_{q}^{n}. The natural action of G on X_{k}^{q} induces a G-action on $\mathbb{C}\left[X_{k}^{q}\right]=: V_{k}^{q}$.
(a) Compute $\# G$ and $\# X_{k}^{q}$.
(b) Prove that G-representations V_{k}^{q} and V_{n-k}^{q} are isomorphic.
(c) Prove that $\operatorname{dim} \operatorname{Hom}_{G}\left(V_{k}^{q}, V_{l}^{q}\right)=1+\min \{k, l, n-k, n-l\}$.
(d) Prove that $V_{k}^{q}=\bigoplus_{i=0}^{\min \{k, n-k\}} U_{i}^{q}$ for some G-irreducible representations $U_{0}^{q}, \ldots, U_{[n / 2]}^{q}$.

Part II
4. (a) Decompose $\operatorname{Ind}_{S_{3}}^{S_{4}} \pi$ into irreducibles for every irreducible S_{3}-representation π.
(b) Decompose $\operatorname{Ind}_{S_{3} \times S_{2}}^{S_{5}}$ sgn \otimes sgn into irreducibles.
(c) Decompose $\operatorname{Res}_{S_{2} \times S_{2}}^{S_{4}} \pi$ into irreducibles for every irreducible S_{4}-representation π.
5. Consider a subgroup $\mathbb{Z}_{n} \subset S_{n}$ generated by the long cycle $\sigma=(12 \ldots n)$, and a character $\chi: \mathbb{Z}_{n} \rightarrow \mathbb{C}^{*}$ with $\chi(\sigma)$ being a primitive n-th root of 1 .
(a) Decompose $\operatorname{Ind}_{\mathbb{Z}_{n}}^{S_{n}} \chi$ into irreducibles for $n=3,4$.
(b) Find the multiplicities of $V_{\left(1^{n}\right)}=\operatorname{sgn}$ and the standard representation $V_{(n-1,1)}$ in $\operatorname{Ind}_{\mathbb{Z}_{n}}^{S_{n}} \chi$.
(c) In general, show that the multiplicity of V_{λ} in $\operatorname{Ind}_{\mathbb{Z}_{n}}^{S_{n}} \chi$ is given by the following formula:

$$
\frac{1}{n} \sum_{d \mid n} \mu(d) \chi_{V_{\lambda}}\left(\sigma^{n / d}\right)
$$

where $\mu(d)$ is the Möbius function.
6. Let us define an element $C_{n}:=\sum_{i<j}(i j) \in \mathbb{C} S_{n}$.
(a) Show that C_{n} acts on V_{λ} as a multiplication by the scalar $c_{\lambda}=\sum_{j} \sum_{i=1}^{\lambda_{j}}(i-j)$.
(b) Show that $E_{n}:=(12)+\ldots+(1 n) \in \mathbb{C} S_{n}$ acts diagonalizably on V_{λ} with integer eigenvalues from $\{1-n, 2-n, \ldots, n-2, n-1\}$.
(c) Show that E_{n} acts on V_{λ} as a multiplication by a scalar iff λ is a rectangular Young diagram. Compute this scalar in the latter case.
7. Recall that $\operatorname{Res}_{A_{n}}^{S_{n}} V_{\lambda}$ is irreducible iff $\lambda \neq \lambda^{*}$. If $\lambda=\lambda^{*}$ it decomposes into a sum of two conjugate A_{n}-irreducibles: $\operatorname{Res}_{A_{n}}^{S_{n}} V_{\lambda}=V_{\lambda}^{\prime} \oplus V_{\lambda}^{\prime \prime}$. Compute the characters of V_{λ}^{\prime} and $V_{\lambda}^{\prime \prime}$.

Hint: See [Fulton-Harris, Exercise 5.4] for the outline of key steps.
8. As we know, the group $G=\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$ has 7 irreducible representations $\left\{V_{i}\right\}_{i=1}^{7}$. Let V_{7} denote the representation $\operatorname{Res}_{\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)}^{\mathrm{GL}_{2}\left(\mathbb{F}_{4}\right)} X_{\varphi}$ in the notation of [Fulton-Harris, p. 70] (it is also recommended to check that this restriction is indeed irreducible and does not depend on φ).

Draw the graph, whose vertices are parametrized by $\{1, \ldots, 7\}$ and the number of edges between vertices $\# i$ and $\# j$ is equal to $\operatorname{dim} \operatorname{Hom}_{G}\left(V_{j}, V_{i} \otimes V_{7}\right)$.
9. Prove that $\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$ is a simple group for odd $q>3$. Is $\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right)$ simple?

Part III

10. Classify irreducible finite dimensional representations of the two-dimensional Lie algebra with basis X, Y and commutation relation $[X, Y]=Y$. Consider the cases of zero and positive characteristic (we work only over algebraically closed fields).
11. Let L be a free Lie algebra on k generators x_{1}, \ldots, x_{k}. Consider a grading on L with $\operatorname{deg}\left(x_{1}\right)=\ldots=\operatorname{deg}\left(x_{k}\right)=1$. Thus $L=\bigoplus_{n \geq 0} L_{n}$ with L_{n} being the degree n component. Prove the following formula:

$$
\operatorname{dim} L_{n}=\frac{1}{n} \sum_{d \mid n} \mu(d) \cdot k^{n / d},
$$

where $\mu(d)$ is the Möbius function.
Hint: Use the Möbius inversion formula.
12. Let \mathfrak{g} be a simple Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$-its Cartan subalgebra. Let $R=R^{-} \cup R^{+}$ be the set of all roots of \mathfrak{g} and $\Pi \subset R^{+}$be the set of positive simple roots. Choose nonzero elements $e_{\alpha} \in \mathfrak{g}_{\alpha}$ for each $\alpha \in \Pi$ and set $e:=\sum_{\alpha \in \Pi} e_{\alpha}, h:=\sum_{\alpha \in R^{+}} h_{\alpha}$. Show that there is a unique element $f \in \mathfrak{g}$ such that $\{f, h, e\}$ generate a subalgebra isomorphic to $\mathfrak{s l}_{2}$ via

$$
F \mapsto f, H \mapsto h, E \mapsto e .
$$

