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REPRESENTATIONS OF INFINITESIMAL
CHEREDNIK ALGEBRAS

FENGNING DING AND ALEXANDER TSYMBALIUK

ABSTRACT. Infinitesimal Cherednik algebras are continuous analogues of ra-
tional Cherednik algebras, and in the case of gl,,, are deformations of universal
enveloping algebras of the Lie algebras sl,, 1. In the first half of this paper, we
compute the determinant of the Shapovalov form, enabling us to classify all
irreducible finite dimensional representations of H¢(gl,). In the second half,
we investigate Poisson-analogues of the infinitesimal Cherednik algebras and
generalize various results to H¢(sps,,,), including Kostant’s theorem.

INTRODUCTION

The main goal of this paper is to study the representation theory of infinitesimal
Cherednik algebras H(gl,,), a deformation of the representation theory of sl 14
with infinitely many deformation parameters ¢ = ({o, (1,2, -.-sCm, ). Namely,
sl,4+1 can be represented as gl,, ®V @& V*, where V, V* are the natural representa-
tions of gl,, on vectors and covectors. In this representation of sl,, 11, the elements of
V commute with each other, as do the elements of V*. The commutation relations
of gl,, with V, V* are given by the usual action of matrices on vectors and covectors,
while commutators of V' with V* produce elements of gl,,. To pass to the deforma-
tion H(gl,,), one needs to change only the last relation: commutators of V' and V*
will now be not just elements of gl,, but rather some polynomial (yrg+ 171+ - of
them, where (; are the deformation parameters mentioned above and r; are basis
polynomials introduced in [EGG]. This deformation turns out to be very interest-
ing, since it unifies the representation theory of sl,, 1 with that of degenerate affine
Hecke algebras (|D],[L]) and of symplectic reflection algebras ([EG]).

The main results of this paper are the following. In Section 2] we generalize a
classical result from the representation theory of Kac-Moody algebras by computing
the determinant of the contravariant (or Shapovalov) form, thus determining when
the Verma module over H¢(gl,,) is irreducible. This proof requires knowledge of the
quadratic central element and its action on the Verma module. In Section Bl we
find the quadratic central element of H(gl,); this extends the work of Tikaradze
[TT], who proved using methods of homological algebra that the center of H¢(gl,,)
is a polynomial algebra in n generators, but did not get any explicit formulas for
these generators. In Section [ we provide a complete classification and character
formulas for finite dimensional representations of H¢(gl,,), generalizing Chmutova’s
unpublished work. In Sections [{] to [1l we introduce Poisson analogues of the infin-
itesimal Cherednik algebras, compute their Poisson center, and use them to give a
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second proof of the formula for the quadratic central element of H(gl,). We also
provide an analogous formula for the center of the Poisson analogue of H¢(spy,,).
Finally, in Section[§ we investigate an analogue of Kostant’s theorem for H¢(sp,,, ).

1. BASIC DEFINITIONS

Let us formally define the infinitesimal Cherednik algebras of gl,,, which we
denote by H¢(gl,). Let V = span(yi,...,yn) be the basic n-dimensional repre-
sentation of gl, and V* = span(zy,...,x,) the dual representation. For any gl
invariant pairing ¢ : V- x V* — U(gl,,), define an algebra H.(gl,,) as the quotient of
the semi-direct product algebra U(gl,,) x T(V @ V*) by the relations [y, z] = ((y,x)
and [z,2'] = [y,y’] =0 for all z,2' € V* and y,y € V.

Let us introduce an algebra filtration on H(gl,,) by setting deg(z) = deg(y) =1
for x € V*, y € V, and deg(g) = 0 for g € U(gl,,). We say that Hc(gl,) satisfies
the PBW property if the natural surjective map U(gl,) x S(V & V*) — grH:(gl,,)
is an isomorphism, where S denotes the symmetric algebra; we call these H(gl,,)
the infinitesimal Cherednik algebras of gl,,. In [EGG], Theorem 4.2, it was shown
that the pairings ¢ such that H¢(gl,,) satisfy the PBW property are given by ¢ =
Z?zo ¢jrj where ¢; € C and r; is the symmetrization of the coefficient of 77 in the
expansion of (z, (1 — 7A)"ly)det(l — 74)7L.

Note that for { = {oro+ (171 with ¢4 # 0, there is an isomorphism ¢ : Hc(gl,,) —
Ul(sln41) given by ¢(a) = a for a € sby, ¢(y;) = VCi€ims1, d(xi) = V31 entri,
and

o(Id) = Lt <€11 + 4 enn —Neniingl — n@) .
n+1 ’ Cl
This isomorphism allows us to view H¢(gl,,) for general ¢ as an interesting defor-
mation of U(sl,+1), even though any formal deformation of U(sl,,41) is trivial.

Example 1.1. The infinitesimal Cherednik algebras of gl; are generated by ele-
ments e, f, and h, satisfying the relations [h,e] = e, [h, f] = —f, and e, f] = ¢(h)
for some polynomial ¢. In literature, these algebras are known as generalized Weyl
algebras ([9)]).

Similarly to the representation theory of sl,, 1, we define the Verma module of

He(gl,) as
M(\) = He(gl,)/{Hc(al,) -0 + He(gl,) (h = A(h)) brep

where the set of positive root elements n' is spanned by the positive root elements
of gl,, (i-e., matrix units e;; with ¢ < j) and elements of V'; the set of negative root
elements n~ is spanned by the negative root elements of gl,, (i.e., matrix units e;;
with ¢ > j) and elements of V*; and the Cartan subalgebra b is spanned by diagonal
matrices. The highest weight, A, is an element of h*, and v is the corresponding
highest-weight vector.

Let us denote the set of positive roots by A%, so that A% = {ef; —ef,;} U {ef,}
for 1 <i<j<n,1<k<mn. To denote the positive roots of gl,, we use A™ (gl,,),
and to denote the weights of y;, we use AT (V). We define p = %ZAEA*’(QI") A=
(”771, "T*B, ey _an)’ a quasiroot to be an integral multiple of an element in AY,
and Q7 to be the set of linear combinations of positive roots with nonnegative
integer coefficients. Finally, U(n~), denotes the —v weight-space of U(n™), where
veQt.
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2. SHAPOVALOV FORM

As in the classical representation theory of Lie algebras, the Shapovalov form
can be used to investigate the basic structure of Verma modules. Similarly to
the classical case, M ()\) possesses a maximal proper submodule M()\) and has
a unique irreducible quotient L(\) = M()\)/M()\). Define the Harish-Chandra
projection HC : H(gl,) — S(h) with respect to the decomposition H¢(gl,) =
(He(gly)nt +n~He(gl,)) @ U(h), and let o : He(gl,) — Hc(gl,) be the anti-
involution that takes y; to x; and e;; to ej;.

Definition 2.1. The Shapovalov form S : Hc(gl,) x Hc(gl,) = U(h) = S(h) =
C[p*] is a bilinear form given by S(a,b) = HC(o(a)b). The bilinear form S())
on the Verma module M()) is defined by S(X\)(uivy,ugvy) = S(u1,usz)(N), for
uy,ug € U(n™).

This definition is motivated by the following two properties (compare with [KK]):

Proposition 2.1. 1. S(Un7),,Un™),) =0 forp#v,
2. M(\) = ker S()\).

Statement 1 of Proposition 2] reduces S to its restriction to U(n™), x U(n™),,
which we will denote as S,,. Statement 2 of Proposition [Z1] gives a necessary and
sufficient condition for the Verma module M (X) to be irreducible, namely that
for any v € Q7, the bilinear form S, ()\) is nondegenerate, or equivalently, that
det S, (\) # 0, where the determinant is computed in any basis; note that this
condition is independent of basis. For convenience, we choose the basis {f™},
where m runs over all partitions of v into a sum of positive roots and f™ = [] f&
with f, € n~ of weight —a. We will use the notation at b to mean that (a1, ..., a,)
is a partition of b into a sum of n nonnegative integers when b € N, and mF v to
mean that m is a partition of v into a sum of elements of A™ when v € Q*. Then,
the basis we will work with is {f™}mr ..

Now, we present a formula for the determinant of the Shapovalov form for
H¢(gl,,) generalizing the classical result presented in [KK]. This formula uses the
following result proven in Section[3.2t for a deformation ¢ = (oro+Gir1+- - +Cmrm,
the central element ¢} (introduced in SectionB]) acts on the Verma module M () by
a constant P(\) = ;”;Bl w;H;i(X + p), where H;(A\) = > 1 i [Ti<i<n A]* are the
complete symmetric functions (we take Ho(A) = 1) and w; (o, ...,¢;) are linearly
independent linear functions on (.

Define the Kostant partition function 7 as 7(v) = dimU(n™),. Then:

Theorem 2.1. Up to a nonzero constant factor, the Shapovalov determinant com-
puted in the basis {f™}mr o s given by

detS, N = ] H PO\ —ka))"vF)

a€AT(V) k=1

% H H )\ +p,a )T(u—k a)

aEA+(gl,) k

Remark 2.1. In the case ( = (yro + (171 with (3 # 0, we get the classical formula
from [KK].
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Proof. The proof of this theorem is quite similar to the classical case with a few
technical details and differences that will be explained below. We begin with the
following lemma, which shows that irreducible factors of detS,(\) must divide
P(\) — P(\— p) for some p € Q7.

Lemma 2.1. Suppose det S,(\) = 0. Then, there exists p € QT\{0} such that
P(A\)— P(A—pu)=0.

Proof. Note that det S, (A) = 0 implies that the Verma module M ()) has a critical
vector (a vector on which all elements of n™ act by 0) of weight A — u for some
p € QT satisfying 0 < p < v. Thus, M (X — p) is embedded in M()). Since t] acts
by constants on both M () and M (X — ), which can be considered as a submodule
of M(X), we get P(\) = P(\ — p). O

The top term of the Shapovalov determinant det S, (A) in the basis {f™}mr o
comes from the product of diagonal elements, that is, [T, [Ilo(fa), fa]™=(N).
The top term of [e;;,e;;](A) for ¢ < j is Ay — Aj = (A, &) where « is the weight of
eij. The following lemma gives the top term of [y;, 2] (N):

Lemma 2.2. The highest term of [y;, ;](\) for ¢ = Coro+- - +CmTm 8 Cn > p(Pj+
1) [T AP, where the sum is over all partitions p of m into n summands.

Proof. From [EGG], Theorem 4.2, we know that the top term of [y;, ;] for { =

Coro —|— Ci7m1 + -+ + 7y is given by the coefficient of 7™ in det(1 — 7A4) " (z;, (1 —

7A)7ly;). Because the set of diagonalizable matrices is dense in gl,,, we can assume

Aisa d1agonal matrix A = diag(A1, Ag, ..., )\ n) so that

det(1—7A)"' =] 1_TA ZZHAP’ b

pHEk @
and )
-1
(E](l—’TA) yj:l—T/\j:]-—'—)\jT—’_”.'
Multiplying these series gives the statement in the lemma. O

Thus, we see that the top term of the determinant computed in the basis
P P
{f™}mr v, up to a scalar multiple, is of the form

Zm m,,
M S T (z@j +1>fo1‘)

a€AT(gl,) a=wt(y;) €A+ (V)

Since 7(u) is the number of partitions of a weight p, the sum > m, over all
partitions m of v with « fixed must equal >"72, 7(v — ka), so the expression above
simplifies to

H H}\aﬂ'uka)

acAt(gl,)

S B | R 14 SRR 1 0

a=wt(y;)EAT(V) k=1 \ pFm

T(v—ka)

This highest term comes from the product of the highest terms of factors of
P(\) — P(\ — p) for various p € Q7.
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Lemma 2.3. (1) For all u # ka, a € At (gl,,), P(A\) — P(\ — ) is irreducible
as a polynomial in \.

(2) For p=ka, a € AT (gl,), W is irreducible.

If Lemma 23] is true, then all p contributing to the above product must be
quasiroots: if u # ka for some a € AT (gl,), the highest term of the irreducible
polynomial P(A) — P(A — ), Y, > 1i(pj + 1) [[AY, does not match any
factor in the highest term of the Shapovalov determinant unless p is a V-quasiroot.
Moreover, if 4 = ka for « € AT (gl,), since W is irreducible for a €
AT(gl,), comparison with the highest term of the determinant shows that only
the linear factor (A + p,a) — k of P(A\) — P(\ — ka) appears in the Shapovalov
determinant.

Proof. We will prove that P(\) — P(\— u) is irreducible for pu # ka (o € AT (gl,));
P(A\)—P(A—ka)

Orpa) %~ s irreducible for any o € ATt (gl,),

similar arguments will show that
ke N.

Consider the parameters w; as formal variables. Then, we have P(A\)—P(A—p) =
Sisowi(Hi(A+p) — Hi(A+ p— ). We can absorb the p vector into the A vector.
For this polynomial to be reducible in w; and Aj, the coeflicient of w; should
be zero: Hy(\) — Hi(A — p) = Hi(p) = 0. Also, since the coefficient of wy is
linear in A;, it must divide the coefficients of every other w;. In particular, the
highest term of Ha(\) — Ha(A — ) must divide that of H3(A) — Hz(A — p). The
highest term of Ha(\) — Ha(A — p) is 3, Ai(ps + > ; #5) = (A, p) and the highest
term of Hs(\) — H3(A — p) is given by H,(M)(p), the evaluation of the gradient
Hi(X\) at p. Since this term is quadratic and is divisible by (A, ), we can write
Hi(N)(p) = (A, p) (X, ) for some & € h*. Now, let us match coefficients of A;\;
for i # j and of A? on both sides of the equation. By doing so (and using the
fact that > p; = 0), we obtain w;§; + ;& = p + p; and & = 2u,. Since
1+ -+ pp =0 and p # 0, at least two of p,; are nonzero, say p;, and p,,. From
the two equations, we obtain y;, + p;, = 0. If p;; # 0, then by similar arguments,
[Liy + His = iy + fig = i, + i, = 0, which is impossible since pu;, , i, ptiz 7 0.
Thus, P(A) — P(A — p) is reducible only if exactly two of the p; are nonzero and
opposite to each other; that is, u = ka for « € AT (gl,,). O

To prove that the power of each factor in the determinant formula of Theorem 2.1]
is correct, we use an argument involving the Jantzen filtration, which we define as in
[KK], page 101 (for our purposes, we switch U(g) to Hc(gl,,)). The Jantzen filtration
is a technique to track the order of zero of a bilinear form’s determinant. Instead
of working over the complex numbers, we consider the ring of localized polynomials
C(t) = {% | p(t),q(t) € C[t],q(0) # 0}. A word-to-word generalization of [KK],
Lemma 3.3, proves that the power of P(\) — P(A — ka) for a € AT(V) and of
A+ p,a) — k for « € A't(gl,) is given by 7(v — ka), completing the proof of
Theorem 211 O

3. THE CASIMIR ELEMENT OF H(gl,)

Let Q1,Q2,93,...,9, € S(gl,) (which can be identified as elements of S(gl,,)
under the trace-map) be defined by the power series

n

det(tld — X) =) (—1)/t" 7 Q;(X),

=0
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562 F. DING AND A. TSYMBALIUK

and let ; be the image of Q; under the symmetrization map from S(gl,,) to U(gl,,).
The center of U(gl,,) is a polynomial algebra generated by these ;. Define t; =
> %j[Bisyj].  According to [TT], Theorems 2.1 and 1.1, the center of Ho(gl,)
is a polynomial algebra in {f;}1<i<n, and there exist unique (up to a constant)
¢ € 3(U(gl,)) such that the center of H¢(gl,) is a polynomial algebra in t; = ¢;+¢;,
1<i<n.

Definition 3.1. The Casimir element of H.(gl,,) is defined (up to a constant) as
t).

We will construct the Casimir element of H¢(gl,) and prove that its action on
the Verma module M () is given by P()\) = ;";01 w; Hj(A + p), where w; are
linear functions in ;.

1. Center. Let us switch to the approach elaborated in [EGGI, Section 4, where
all deformations satisfying the PBW property were determined. Define §(™) =
(i0)™8 with § being a standard delta function at 0, i.e., [ 6(0)p(8)dd = ¢(0). Let
f(2) be a polynomial satisfying f(z) — f(z — 1) = 0™(2"((z)), where ((z) is the
generating series of the deformation parameters: ((z) = (o+¢12+ (222 +---. Since
f(z) is defined up to a constant, we can specify f(0) = 0. Recall from [EGG],

Section 4.2, that for f(#) = Ym0 fmd™(8),

o] = —— wwony [~ (1= ) 0

n
2m veCn:|v|=1

Theorem 3.1. Let g(2) = Y gm=" = ¥ Germoislarn?
element of H¢(gl,,) is given by t) = > x;y; + Res,—og(2~") det (1 — zA) N dz /.

The Casimir

Proof. Define C' = Res,—qg(z ) det (1 — zA) ™" dz/z. Let us compute [y, t, +C"] =
> ilv, zily; + [y, C']. The first summand is:

> lyasly; = z%n Z/em —1/— — e ) f(0)e ) (a5, (v @ 0)y)y; dO dv

J

1 & A ) _
Yy / / (1—e7)f(0)e @ (v ® v)y do dv.
T lv|=1J —=
Following [EGG], Section 4.2, we define F,,(A) :f|v\:1<A”v v)"H dy = fm:l(v@)
17)m+1 dv. There, it was proven that

Z fmFm_1(A) = 20" Res,—og(z 1) det(1 — zA) 127 dz = 27"C".
m
Thus, we can write

md - i0(vRD) do d
QW"Z /|1U®q} v lv|=1 —wf De "
which implies that [y, C'] = 32= f o|=1 I F(0)[y, e@®)] df dv. Since

efie('u®17) [y ei@(v@l‘))] _ efie(v®17)yeu9('u®6) —ifad(v®D)

y—y = (e"—1)(v®@0D)y,

we get [y, C']= Qﬂ" f‘ =1 f f 19(1’@” (e7%—1)(v®v)y df dv, and so STily, iyt
[y, C’] = 0 as desired. By using the anti-involution o defined in the beginning of

—y=ce
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REPRESENTATIONS OF INFINITESIMAL CHEREDNIK ALGEBRAS 563

Section 2 this implies [z,t; + C'] = 0 for any « € V*, while [e;;,t1 + C'] = 0 by
[T1], and hence, ¢} =t + C". O

Remark 3.1. This proof resembles calculations in [EGG], Section 4. In particular,
Proposition 5.3 of [EGG] provides a formula for the Casimir element of continu-
ous Cherednik algebras. However, adopting this formula for the specific case of
infinitesimal Cherednik algebras is nontrivial and requires the above computations.

3.2. Action of the Casimir element on the Verma module. In this section,
we justify our claim that the action of the Casimir element ¢} is given by P(\) =

;7;"51 w; Hj(A+p). Obviously, ¢ acts by a scalar on M (A—p), which we will denote
by t;(A). Since ¢ = S zy;, + C’, C' € 3(U(g)) = S(g)¢, we see that () = C’()\)
where C’(\) denotes the constant by which C" acts on M (X — p).
Theorem 3.2. Let w(z) be the unique degree m + 1 polynomial satisfying

f(2) = (2sinh(9/2))" 2" Lw(z).
Then
B0 = 3w, H, ().
p=>0

Proof. Because C’(\) is a polynomial in A, we can consider a finite-dimensional
representation of U(gl,) instead of the Verma module M (XA — p) of H(gl,,). For
a dominant weight A — p (so that the highest weight gl,-module V)_, is finite
dimensional) we define the normalized trace T'(\,0) = try,_, (e"®")/dim V) _,
for any v satisfying |v| = 1 (note that T(X, ) does not depend on v). To compute

_1\w ew}x
T'(A,0), we will use the Weyl character formula (see [FH]): xa—, = %,
weW

where W denotes the Weyl group (which is S, for gl,,). However, direct substitution
of e??(v®?) into this formula gives zero in the denominator, so instead we compute
lime 0 Xa—,(e?(V®0)FH) for a general diagonal matrix p.

Without loss of generality, we may suppose v = y1, so that

10 - 0
00 - 0
VRV =q= .
0 0 0
Then

_ 1 \w(w,i0g+epn)
limx)\, (eie(v®f1)+eu):hm ZwESn( 1) € .q "
e—0 P e—0 Zwesn(—l)we@UPvZGquﬁH)

= lim Swes, (—1)welwribaten

€—0 HaGAHgI )(e<0¢/2,i9q+6u> — e*<a/2,i9q+eu>)'

Partition A*(gl,,) into Ay U Ay = AT (gl,), where Ay = {ef; —ef; 1 1 < j < n}.
For a € Ay,

lim (e<a/27i9q+eu) . e—(a/2,i9q+eu)> _ ei9/2 _ 6—i0/2 — 9 sin (Q) ,
e—0 2

so lim,_,¢ HaEAl (e(a/Q,i9q+eu> _ e—(a/2,i9q+eu>)—1 _ (22 sin (g))l—n
Next, we compute the numerator. We can divide S, = | |,<;<,, Bj, where B; =
{w € S,|w(j) = 1}. Note that B; = ¢; - S,_1, where 0; = (12...5) and S,
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564 F. DING AND A. TSYMBALIUK

denotes the subgroup of S,, corresponding to permutations of {1,2,...,5 — 1,7 +

1,...,n}. We can then write
Z (_1)we(w)\,i0q+e,u> _ Z (_1)crj(_1)crei0)\j e€<0'j00'()\)”u.>
we B 0€Sn 1
= (_1)]’7161'9)\]-66)\]-#1 Z (_1)0640(5\]‘),/1)’
og€Sp_1

where 3\: = (AL, Ao A1, An) and 1= (pe, . ).
Combining the results of the last two paragraphs, we get

Zwesn (_1)we<w/\7i9q+eu>

22}(1) HaeA+(g[ )(€<O‘/27i9‘1+eﬂ) — e—(a/Z,i0q+eu))
— lim Z (_1 e el0NjteXjm 2065”71(_1)0(35(5()\”@)
= 1$5%n (2isin g)n—l Tlaca, (e@/2ibaten) — ¢—{a/2Zibaten))”

Using the Weyl character formula again, we see that

Yoes, , (=1)7e 7O :
g n— _ €L
Toca, (@75 — o @rman) — M,-s(")

where p is half the sum of all positive roots of gl,,_;. Thus,
Z cs (_1)‘765<a—(5‘j)7p‘>
lim ol .
e—0 Ha€A2 (6(0/2719%6#) — e—<0¢/2,19q+6u>)
We substitute to obtain

try,_, (€705 = (~1y -

1<j<n

= try, (1) = dim V5 _.
€92 dim V~_ 5
(2isin )n-1
Our original goal was to calculate T'(X,0) = trkap(ew(”@_’))/ dim V_,. We obtain
‘ e dim V; _;
T = 122”(_1)]-1 (2isin 8)n—1 di/\r]n ;A,p'

Using the dimension formula ([F'H|, Equation 15.17):
Ai — A
dmvi, = [ 2N

1<i<j<n J—t
we get T(X,0)=(2isin(0/2))' " (n — 1)! 37 lﬁ'
Since Z?:l m = Hp—ni1(21, ..., Tpn), we have
kit

. _n » 4 p+n—1
T(X,6) = (2isin(8/2))' " (n — 1)1 Y g LT

Thus, we get

tll(A):Cl(A): (%/_1 _Tl' f(e)eie(v(@”)ded’U) ()\):%‘/_ﬂ- f(@)T A, 0)do

= [ i isinery 2 O g S gy

= (p+n—1) =
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REPRESENTATIONS OF INFINITESIMAL CHEREDNIK ALGEBRAS 565

where w), = [7 F(0)(2i sin(@/?))l’”wdﬂ. Let w'(z) = > w,2P. We verify

that (p+n—1)!
a
(68/2 6—3/2)”71271—110/(2)
[ A0Sy (2 - vy
_/ﬂf(a) 2 (2isin(0/2)" (=) Ty
:/7T f(@)(Qisin(@/Q))l—"(ea/2 _6—6/2)”*161‘% do
:/“ f(ﬁ)(2isin(9/2))1— (ei9/2_e—i9/2>" 1eiz9 o

and it is easy to see that the polynomial solution to f(z)=(2sinh(9/2))" 12" 1w(z)
is unique. (Il

4. FINITE DIMENSIONAL REPRESENTATIONS

In this section, we investigate when the irreducible H(gl,,) representation L(\)
is finite dimensional. As in the case of classical Lie algebras, any finite dimensional
irreducible representation is isomorphic to L(\) for a unique weight A\. Theorem
[Tl provides a necessary and sufficient condition for L()) to be finite dimensional.
In particular, all such representations have a rectangular form.

In Section 2] we prove that for any allowed rectangular form there exists a
deformation ¢ such that the representation L(X) of H¢(gl,) has exactly that shape.

4.1. Rectangular nature of irreducible representations.

Theorem 4.1. (a) The representation L(\) is finite dimensional if and only if
A is a dominant gl, weight and there exists v, € Ny such that P(A\) = P(A —
0,...,0,v, +1)).

For every 1 <1 <n-—1let k; € Ny be the smallest nonnegative integer such that
PA) = P(A—=(0,...,0,k; +1,0,...,0)) (we set k; = oo if no such nonnegative
integer exists). We define parameters v; = min(k;, A\; — Ait1).

(b) If L()) is finite dimensional, then as a gl,, module it decomposes into

LX) = @ Vv,

0<A—N<v
where v = (v1,...,v,) are the parameters defined above (depending on ¢ and \).

Proof. In order for L(\) to be finite dimensional, it is clearly necessary for A to
be a dominant gl,, weight. Recalling the PBW property and the definition of the
Verma module M (\), we see that as a gl,, module, M () decomposes as M () =
e (VhaeS)® (Vy®Ss)@---, where S = Symk(:vl,a:g, vy Xy ). We can further
decompose each V) ® S; into irreducible modules of gl,,; once we do so, we find
that M (A) has a simple gl,, spectrum. Note that V,, ® S; can be decomposed as
Vieer ®Vi—ex, @OV, _ex  (taking Vi—er, = {0} if p—eZ; is not dominant). We can
thus associate each V,, for p = A—aq1ej; —- - - —aye},, in the decomposition of M(\)
with a lattice point P, = (—a1, —ag, ..., —a,) € Z"™. We draw a directed edge from
P, to P, if Vs is in the decomposition of V,®51, and we say P, is smaller than P,,.
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A key property of this graph is that any H¢(gl,)-submodule of M () intersecting
the module V,, must necessarily contain V), and all V},» such that P, is reachable
from P, by a walk along directed edges. Recall that L(\) = M(X)/M (), where
M(X) is the maximal proper H(gl,)-submodule of M()). The aforementioned
property guarantees that as a gl, module, M()\) = P.cs Vs for some set S of
vertices closed under walks, so that L()) is finite dimensional if and only if S (the
complement of S) is a finite set.

We now prove part (a). First, suppose that L()) is finite dimensional. The
finiteness of S implies the existence of some [ such that (0,...,0,—1—1) € S (note
that (0,...,0) ¢ S). Let v, be the minimal such I. We define S’ as the set of
vertices that can be reached by walking from (0,...,0,—1, — 1). Because S’ C S,
the Verma module M (\) must possess a submodule M (X — (0,...,0,v, +1)). By
considering the action of the Casimir element on M () and M (A—(0,...,0,v,+1)),
we get P(A) = P(A—(0,...,0,v, + 1)).

Next, suppose that there exists v, € Ny such that P(A) = P(A — (0,...,0,
Un +1)). The determinant formula of Theorem 2] implies that the Verma module
M () contains the submodule M (X — (0,...,0,u)) for some u < v,. Define S’
to be the set of vertices that can be reached by walking from (0,...,0,—p). Its

complement S’ is finite, since for any vertex (—ar, . ., —ay) of our graph, we have
Al —a > Ay —ax > -+ > Ay — a,. Because S C S’ S is finite, finishing
the proof of (a). We note that explicitly, S" = {(—a1,...,—an)|0 < a; < A\, —

Xi+1,0 < a,, < v, } and the corresponding finite dimensional quotient is L'(\) =
Ai—Ai 1 v,
M(A)/(Zgign—l HC(Q[n)eiﬂ,i ot Ch ¥ H((g[n)xn"HU)\)-
Part (b) requires an additional argument. Namely, if L(\) is finite dimen-
sional, then it can also be considered as a lowest weight representation. Let
b = (b1,...,b,) € S be the vertex corresponding to the lowest weight of L(\).

If the statement of (b) was wrong, there would be a vertex € = (e1,...,e,) € S
with two nonzero coordinates, such that (ey,...,e;_1,€; + 1,€;41,...,e,) € S for
any i. Without loss of generality, suppose e1, es # 0. As we can walk along reverse
edges from b to both points (e; + 1,ea,...,€,) and (e1,e2 + 1,e3,...,€e,), we can
also walk along reverse edges to €, which is a contradiction. This proves part (b)
and explains our terminology “rectangular form”. O

The decomposition of L(A) as a gl,, module provides the character formula for
L(\) as the sum of the characters of gl,, modules:

(*) Xae = Z ZweS (

0<A—N<v Pwes, (—1)re

)w w(X\ +p)

As in the classical theory, this character allows us to calculate the decomposition
of finite dimensional representations into irreducible ones.

Example 4.1. Let us illustrate the decomposition of L(\) from the proof of The-
orem [T} for clarity, we will work with sl, representations instead of gl, represen-
tations. Using the notation of the proof, S = S¥(z1,x2) = V4, the irreducible sly
representation of dimension k£ + 1. By the Clebsch-Gordon formula,

Vm ® Vk: = Vm+l<: ® Vm+k—2 D---D Vm+k72 min(k,m)-

We can use the above formula to draw the graph, as in Figure 2, representing the
decomposition of L((2,0)), with v = (0, 3), into sl modules. This representation
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[530]

e
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FIGURE 1. We use a graph to represent the rectangular prism
corresponding to a finite dimensional representation L((5,3,0)) of
H¢(gl3), with the highest weight of each gly module indicated.

VRN
VO VAN
NN\

AN

FIGURE 2. The decomposition of L((2,0)), with v = (0, 3), into sly modules.

is the quotient of M((2,0))/H¢(gly)e3,va by the submodules represented by the
shaded areas of the diagram, and L((2,0)) = Vo ® V3 @ V4 @ Vs as slp modules.

Example 4.2. For H.(gl,), the irreducible finite dimensional representation L(\),
for A € C, has character xx¢c =1 e where v is some nonnegative integer.
If we describe H¢(gl;) as in Example[[T] we can easily calculate the Casimir element
to be fe + g(h), where g satisfies the equation g(z) — g(x — 1) = ¢(z). Then, v is
the smallest nonnegative integer such that g(A) —g(A —v —1) =0.

Example 4.3. For H¢(gl,), the irreducible finite dimensional representations are
necessarily of the form L(A) with A = (A2 +m, A\3), where Ay € C, m € Ny. The
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character of L(\) equals

e(}\g“”m*l/i,)\Q*Vé) _ 6()\271/;71,)\2+m71/1+1)

XXi¢ = Z 1— e(_lvl)
(0,0)<(v1,v5)<(v1,v2)

Let fl(/\,,u) = P()\Q +m + %,)\2 - %) —P()\2—|—m—|— % —[L,/\Q — %) and fQ(A"U,) =
P(Xs +m + %,)\2 - %) — P(A2a+m + %,)\2 — - %) Again, v, is defined as
the minimal nonnegative integer satisfying fo(X,v2 + 1) = 0, while vy is either m
or the minimal nonnegative integer satisfying fi(\,v4 + 1) = 0. For instance, if
¢ = (oro with (o # 0, then fo(A, ) is a multiple of u, and so the only solution to
the equation fo(X, v +1) = 0 is v, = —1, which is negative. Thus, H¢,r,(gly) has
no finite dimensional irreducible representations. If {( = (oo + (171 with (1 # 0,
PN = G+ X2) + QA+ 3)2 + (M + 5) (A2 — 3) + (A2 = 3)?), 50 fa(A, ) =
G (% + A+ 20 — ,u). Thus, L(A) is finite dimensional if and only if g—‘l) + M+
2\ is a positive integer. This agrees with the description of finite dimensional
representations of sls.

4.2. Existence of L()\) with a given shape.

Theorem 4.2. For any gl,, dominant weight X and v € N{ such that v; < \j —
Ait1 for all 1 < i < mn —1, there exists a deformation (, such that the irreducible
representation L(\) of He(gl,) is finite dimensional and its character is given by
(%)

Proof. Let X = XA+ p. We can write X, = X, + k; for ky > ko > kg > -+ > k1 >
kn, = 0 (we have strict inequalities because of the shift by p). Recall that P(\) =
S> W Hp (') for w; defined as in Theorem Let p; = (0,...,v; +1,0,...,0).
We will find w; such that P(\) — P(XN — p;) = 0, while for all 0 < p} < p,
P(XN)— P(N — p}) # 0. This implies that there are embeddings of M (\ — ;) into
M(X') with an irreducible quotient L(X') = M(X')/ S>>, M(X —p;), due to Theorem

£l
Define P,,; = P(\')—P(XN —p) for p=(0,...,m+1,0,...,0) with the m+1 at
the j-th location. We must prove that there exist w such that P,;; =--- =P, , =0
and Pyry,..., Purp # 0 forall 0 < v] < v;. We can write P,; = 50 wiRinj, where
RY;= D (k)™ (N, k)
i1+ +in=N

(O )" = (X, Ky —m = 1)9) (X, A+ k)7 (A 4 )™
Note that the condition Pj; =0 determines a hyperplane Il ; in the space (wo, w1, .. .)
(IIx; might in fact be the entire space, but the following argument would be unaf-
fected). Hence, the intersection (II,,; belongs to the union Uj’0<,,;<yj IT,, ; if and
only if it belongs to some H,,; - Thus, it suffices to show that {P,,1,..., Py n, Pl,l/l}

are linearly independent as functions of w; forall 1 <l <nand0 < ul’ < v;. This
condition of linear independence is satisfied if

1 2 n+1
RO L
n
RV22 Rl/22 T Ru22
det : SR £0.
1 2 n
Rul’l RV{I T Ru{l
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Now we shall prove that using column transformations, we can reduce the above
matrix to its evaluation at A/, = 0. We proceed by induction on the column number.
The elements of the first column, Rinj, are of degree zero with respect to A/, so
R}nj = Rinj(O). Suppose that using column transformations, all columns before
column p are reduced to their constant terms. Now, we note that

OR; ;(\,)
aN,

9 ‘ i i i
‘aN< > (A;+k1)“-~((A;+kj)”—(A;+kj—m—1)f)~%">

" \ig+.. 4in=p

S (intiz . i+ )N, +E)"
P14 Fin=p—1

(N ) = (N, Ay —m = 1)) A
(p+n—1)RE-HN,).

Thus, we see that R} . — R} .(0) is a linear combination of an_ji(O), the entries of
the other columns:

D I\ ! mj _ !/ D—1
i oI\ =0 i
ptn—1 —i i
—Z( . )anj (0)N2,
By selecting pivots of (p+’;_l))\ﬁ, we can eliminate every term except Rﬁj(O). By

repeating this step, we reduce the matrix to its evaluation at A/, = 0:

RLANG) REA(N) - RN
RVQQ()‘n) Ru22(>\n) T RV22 (An)
det : : :
R, () Ry .(\,) - RN
RL () RE(N) - BRI

Ry 1(0) RY,(0) - RUSHO)
R,5(0) R7,(0) - Ry5N(0)

= det . S
Ri{l(o) Rl%l’l(o) RZ’?(O)
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Let us now rewrite RJY;(0):

RNGO)= 3 K KSR Oy 00K R
i1+...+in=N

N-1
=Y Hy ;o (K = (kj—m—1)*!
] J
i=0

N

N—-1
=" Hyoioa (K = (k= m = 1) = (k] — (k; —m — 1)7))
1=0
N—-1 .
= HN—i—l ((m—l— 1)(]{1] —m — 1)1)
=0

. = i1 s blin / — —~ i1
where Hy_; = Y, o« i —n_i K} kyr and Hy_, = Zi1+.‘.+ij+.‘.+in:N7i k]

. k';J -+« kin. The third equality is because Hy_, = Hy_; — kjHn_;—1. It is easy
to see that the above determinant can be reduced further to

I/1+1 (1/1+1)(]€1—l/1—1) (I/1+1)(]€1—l/1—1)n
vy +1 (Vg-i—l)(k’g—yg—l) (Vg-i-l)(k’g—yg—l)n
det
Un+1 (wp+Dkp—vn—1) -+ (wp+ 1)k, —v, — 1"
v+l WA Dk -1 - @Dk 1"
1 kl—l/l—l (kl—l/l— )n
1 k‘g—l/g—l (kg—l/g—l)n
1 kp—vp—1 -+ (kyp—v,—1)"
1 kl—l/l/—l (kl—l/l/—l)n

where T = (11 + 1)(v2 + 1)--- (v + 1)(¥) + 1) and the last determinant is
[Tiei(kr — ki + vi — v)) [T1<icj<n(kj — ki + vi — v;) by the Vandermonde deter-
minant formula. Now, recalling the conditions 0 < v; < \; — \jy1 =k — kg1 — 1
we get kj — k; +v; —v; <0 for any i < j and 50 [[1<;cj<n(bkj — ki +vi —v;) is
nonzero. Similarly, we get [[i=, (ki — ki +v; — 1) # 0. Hence, the determinant is
nonzero, and so {Py, 1,..., P, n, PV{J} are linearly independent as desired. (]

5. POISSON INFINITESIMAL CHEREDNIK ALGEBRAS

Now we will study infinitesimal Cherednik algebras by using their Poisson ana-
logues. The Poisson infinitesimal Cherednik algebras are as natural as H¢(gl,), and
their theory goes along the same lines with some simplifications. Although these
algebras have not been defined before in the literature, the authors of [EGG] were
aware of them, and technical calculations with these algebras are similar to those
made in [TT]. This approach provides another proof of Theorem [B11

Let ¢ be a deformation parameter, ¢ : V x V* — S(gl,,). The Poisson infinitesi-
mal Cherednik algebra H/(gl,) is defined to be the algebra Sgl, ® S(V @ V*) with
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a bracket defined on the generators by:
{a,b} = [a,b] for a,b € gl,,,
{g;v} =g(v) forgegl,,veVaoV",
{y,y'} ={z,2'} =0 for y,y/ € V,w, 2’ € V*,
{y,2} =((y,x) for y e V,x € V*.

This bracket extends to a Poisson bracket on Hé(g[n) if and only if the Jacobi
identity {{z,y}, 2} + {{v, 2z}, 2} + {{z, 2}, y} = 0 holds for any z,y,z € gl,, x (V@
V*). As can be verified by computations analogous to [EGG], Theorem 4.2, the
Jacobi identiy holds iff { = Z?:O ¢jr; where (; € C and v; is the coefficient of 77
in the expansion of (z,(1 —7A4) ty)det(1 — 7A4)~!. Actually, we can consider the
infinitesimal Cherednik algebras of gl,, as quantizations of H é(g[n).

Remark 5.1 (Due to Pavel Etingof). Note that

otr(S+tA
oy = 3 Gl g) = Y0624,
Ji

this follows from

0 _ tr(rB(1 —7A)™1)
—(det(1 —7A)™1) =
gp\detd —mA) ) = — A=A
when B = y; ® z;. In fact, if {y;,z;} = Fj;(A), the Jacobi identity implies that
Fi;(A) = daeljj for some GL(n) invariant function F, and that A2D4(F) = 0,

where Dy is the matrix with (Da),, = % One can then show that the only
ij

GL(n) invariant functions F satisfying this partial differential equation are linear
combinations of tr(S'A).

Our main goal is to compute explicitly the Poisson center of the algebra H é (g1,,).
As before, we set Qy to be the coefficient of (—)* in the expansion of det(1 —tA),
Tk = Z?ZI xi{Qk7yi}> and C(Z) = CO + Clz + C222 + -

Theorem 5.1. The Poisson center 3pois(Hé(g[n)) =Clri+ec,m+ea,...,Th+enl,
where (—1)%c; is the coefficient of t' in the series
det(1 —tA) 1 dz

() = Res:=o C(Z_l)det(l —zA)1—t"1z 2

Proof. First, we claim that zpos(Hj(gl,)) = C[r,...,m]. The inclusion
Clri,y ..., 7] C 3pois(H{(gl,)) is straightforward, while the reverse inclusion fol-
lows from the structure of the coadjoint action of the Lie group corresponding to
gl, x (V& V™) (as in the proof of [T1], Theorem 2).

We prove that the Poisson center of H{(gl,,) can be lifted to the Poisson center of
H{(gl,) by verifying that 7;+c; are indeed Poisson central. Since 74 € jpois(Ho(gl,,))
and ¢ € 3pois(S(gh)), Tk + ¢ Poisson-commutes with elements of S(gl,,). We can
define an anti-involution on H, é(g[n) that acts on basis elements by taking e;; to ej;
and y; to x;. By using the arguments explained in the proof of Theorem 2 in [T1],
we can show that 73 is fixed by this anti-involution, while ¢y is also fixed since it
lies in 3peis(S(gln)). Applying this anti-involution, we see that it suffices to show
that ¢y, satisfies {7 + ¢, y;} = 0 for basis elements y; € V.
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First, notice that if g € S(gl,,), then {g,yi1} = >, %{eij,yl}, and together
; i
with the equation {{Qk,v:}, ¥} = 0 (see the proof of Lemma 2.1 in [T1]), we get

n

{meui} = {Z wi{mei}’yl} = {znuH Qe v}

i=1

= —Z (Resz 0C(z 1)tr(zc1(et(_1iA;A)yl)dZ) {9k, ui}

Thus, we have

- dc rz; —zZA
{Titces ut= Z i{ewyz} Z(Resz 0¢( _1)t (,fd(elt(lz— )A)yl)dz){Qk,yz}-
ij= | dei

Hence, {Tk + ¢k, y1} = 0 is equivalent to the system of partial differential equations:

dcy - _ (@1 = 24) " y)
Oe;j Beyy iU} = Z (Reszzo = zdet(1 — zA) dZ) {Qe-wil

i=1

ij=1
Multiplying both sides by (—t)* and summing over k = 1,...,n, we obtain an
equivalent single equation

Z 836( ){ewyz} = Z(Resz:o C(Zfl)tr(xi(l . ZA)ilyl)dz) {det(L = £4). il

< zdet(1 — zA)
i,5=1 i=1
Since all terms above are GL(n) invariant and diagonalizable matrices are dense
in gl,, we can set A = diag(ay,...,a,):
de(t) ( ¢z >
= | Res.— dz | {det(1 —tA),
Oa; u Fz=0 2(1 — za;) det(1 — zA) 2 ) 1detl ) uid
¢(z7h ) ddet(l —tA)
= | Res,— dz
( Bz=0 2(1 — za;) det(1 — zA) Oay u
¢(z7h) ) tdet(1 —tA)
= — | Res,— d ,
( 92=0 z(1 — za;) det(1 — zA) : 1—tay o
and it is easy to see that c(t) satisfies the above equation. (]
Example 5.1. In particular, ¢; = Zz 0 Gitr STHLA.
Remark 5.2. Another way of writing the formula for ¢y is
_ dz
e = Res,—o((z 1)Gk(2);7
where Gi(2) = > 2™yYm i (A) and yp, x(A) = x (m,1,...,1), the character of an
—_———

k
irreducible gl,, module corresponding to a hook Young diagra. This provides a
better insight for the quantization construction.

Remark 5.3. We expect that for any aq,...,a, € C, the induced symplectic struc-
ture on Spec(S(gl,,) ® S(VeV*)/(t1+c1 —ai,...,Tn + ¢y — ayp)) has only finitely
many symplectic leaves.

IThis formula follows from the fact that in the Grothendieck ring of finite dimensional al,

representations, [/\k V®smV]— [/\IH_1 VeSm V] +.. + (71)m[/\k+m V1= Vimt1,1,...,1)]
due to Pieri’s formula.
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6. PASSING FROM COMMUTATIVE TO NONCOMMUTATIVE ALGEBRAS

Note that {g,y} € S(gl,) ® V for g € S(gl,)) and y € V; we can thus identify
{9y} =221 hi ®y; € Hl(gl,,) with the element Y 7i* ; Sym(h;)y; € H(gl,,).

Lemma 6.1.
k .
-1 [(k+n+1 .
tr SFTTA o] = =D tr SFHIIA y b .
[or ST 4,9l {jzok+n+1 jr1 ) Y

Proof. Tt is enough to consider the case y = y;. Recall that tr S¥T1(A) can be
written as a sum of degree k41 monomials of form ey ;,- - €1,i0,€2,i0 417" €200, 1oy
T Cnyig g ey where s; 4+ -+ + s, = k+ 1 and the sequence {i;} is a permutation
of the sequence of s; ones, so twos, and so forth; for conciseness, we will denote the
above monomial by €1, - €,4,,,. The only terms of tr S**1 4 that contribute to
[tr S*+1 A, ;] and to {tr S¥T1 A y;} have s; > 1. Since to compute [tr S¥T1 A, y;] we
first symmetrize tr S*¥*1 A4, we will compute [Sym(eq;, - €n ., ), y1] — {Sym(eq,;,
“*€n,ip.. ), y1}. For both the Lie bracket and the Poisson bracket, we use Leibniz’s
rule to compute the bracket, but whereas in the Poisson case we can transfer the
resulting elements of V' to the right since the Poisson algebra is commutative, in
the Lie case when we do so extra terms appear.

Consider a typical term that may appear after we use Leibniz’s rule to compute

[tr SFHLA, y]:

Yot €higo  Cagn T Cgngn1 T
When we move y;, to the right, we get, besides - --€j,0 " €jojs " €inin_1 " Yjos
additional residual terms like —---e€j,5 - €jyjn s " Yjn aDd “- - €jjs = Cinin_1
©++Yj,, Up to (—)N .. Yjn- Without loss of generality, we can consider only the
last expression, since the others will appear in the smaller chains

—_—

" YjoChrgo T Chaga " Chaga T Cinin—a

and

" Yjor Chrjo " Cain eJ/3726jNJ/N\—17
and so forth, with the same coefficients. For notational convenience, we let z;
denote the coefficient of y;, in the residual term, i.e., the term represented by the
ellipsis: (—1)Ng-,;/yjN. Then, 21y, is a term in the expression (—1)N{z1€;,1,1},

21
which appears in (—1)N{tr S¥*1=N A y;}. Thus, we can write

k

[t]." SIH_IAv yl] = { Z (_1)NCN tr Sk+1_NAa yl}
N=0

for some coefficients C'y.

Next, we compute Cxn. We first count how many times z1y;, appears in
{tr S*+H1=N A y1}. Notice that since z; is the product of k — N ej;’s, we can insert
ejy1 in k — N + 1 places to obtain 2y such that {22, y:} contains z1y;, .

Now we compute the coefficient of zp in tr S*¥*'=VA. As noted before,
tr SKT1=N(A) can be written as a sum of degree k + 1 — N monomials of form
€1,y " €l €200 11 T €250 ey T Cnika N Any term that is a permutation of
those k + 1 — N unit matrices will appear in the symmetrization of tr S¥T1=N A,
We count the number of sequences i1, ...,ix+1—n such that 2o is the product
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of the elements ey ;,...,€n4,,, , (in some order); this tells us the multiplic-
ity of 2z in the symmetrization of tr S¥T1=NA. Suppose Zo = €14, Cnipyin

for a certain sequence i1, ...,i54+1-n. Then, zo =e1 4 - e, R~ if and only if
-/

y . . . .
U gorts; 1410+ bsy 4oegs, 1S @ permutation of 4s, 4ooqg; 41, -+l 4 4s; forall j.
Thus, 2o appears s1!s9! - - - s,,! times in tr S¥*T1~N A. Since each term has coefficient

m in the symmetrization, zo appears with coefficient

s1lso!l--s,!
(k—N+1)!
in the symmetrization of tr S¥*1=N A. In conjunction with the previous paragraph,
we see that z1y;, appears
5180l s,
(k—N+1)!
times in {tr SKF1=NA ;1.
It remains to calculate how many times z1y;, appears in [tr S¥71A4,y1]. Recall
that z; is obtained from a term like:

s1lsg!l---s,!

x (k=N +1) = 2

" €jol tt€higo €y T CGngN1 T
where the ordered union of the ellipsis equals z;. Thus, z; comes from terms of the
following form: we choose arbitrary numbers jo, ..., jn—1, and insert €;,1, €550, - - - 5
€jnjin_. into z1. There are

(k+1)(k)---(k+1—N)

(N+1)!
ways for this choice for any fixed jg,...,jn_1. Any such term z3 appears in
tr S¥*t1 A with coefficient
shle..sl!
1 n
(k+1)!

where s] is the total number of e;;’s (for some %) in z3, i.e., s; +number of j;’s with
ji=10<i<N.

Combining the results of the last two paragraphs, we see that {tr S¥*1=N A 4}
must appear with coefficient

(k+1)(k)---(k+1—N) CARRRE A silsole st
( (N +1)! Z (k:—l—l)!)/ (k—N)!

N+1'Zsl|52 1’

where the summation is over all length-N sequences {j;} of integers from 1 to n.
We claim that

Lot =(k+n)--(k+n—-—N+1).

31!~~~sn!

...
To see this, notice that z;jlfs," is the coefficient of ¢tV in the expression

(5i+1)(5i+2)t2+._.).

N!ﬁ(l—i—(si—i—l)t—l— 51

i=1
The above generating function equals N7, (1—¢)~(+D) = N1(1—¢)~(k+1=N+n)
and the coefficient of +/V in this expression is (k+mn)---(k+n— N +1).
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Finally, we arrive at the simpliﬁed coefficient of {tr S¥*1-NA 4 }:
Z s)! (k+n)---(k+n—N+1)
N—|— 1)! 51'52 (N +1)! ’
as desired. 0

Cn =

Now we will give an alternative proof of Theorem B1]

Proof. Let f(z) be the polynomial satisfying f(z) — f(z — 1) = 9"(2"((z)) and
g(z) = 2" 51 f(z) (in the expression for g(z), we discard any negative powers
of z). Note that if g(z) = grt125Tt + -+ + g12, then

k+1j5—1 j+’I’L
SED ) DEE (hY SOV

j=1 =0

A J
e - - —1)gi1,.
G-t ; j+i+n< i1 >( )'5+

Lemma [6.] allows us to write

k+1 k+175—1 J+TL
Qi _ C1Yig 4 G
Smiesiag] (S X (1) comesian)

Jj=1 j=11i=0
k+1k—j+1 o
JF+i+n , ,
—1)ig;itr STA,
{Z 2 J+H—n< i+1 >( )'gititr y}
j=1 =0
k+1 _
- {Zgj_ltrm,y}_
j=1
Hence,
n k+1 - k41 ‘
[t1, 9] Z‘T“ 91yi= Z{xuy}yz— {ZCj_ltrSjA,y}__[ZgjtrsjA’y
i=1 i=1 = =

where the third equality follows from the fact that 7 —|—Zk+1 j—1tr S7A is Poisson-
central in H{(gl,,) (see Example B.T)). Thus, we get ¢} = ¢1 + C’, where

k+1
= Zgj trSTA = Res,_g g(z_l) det(1 — zA)_lz_ldz. O
=1

Remark 6.1. Comparing the formula for ¢; in Example[5.Ilto the one from Theorem
[B1] we see that they differ only by a change z((z) ~ g(z). We expect that a similar
twist of the formula for ¢(t) given in Theorem B will provide the formulas for the
actions of the generators of 3(H(gl,,)) on the Verma module M (X — p).

7. ALGEBRAS Hc¢(spy,) AND H((spy,)

Let V be the standard 2n-dimensional representation of sp,, with symplectic
form w, and let ¢ : V x V. — U(spy,) be an sp,, invariant bilinear form. The
infinitesimal Cherednik algebra H.(sp,,,) is defined as the quotient of U(sp,,,) X
T(V) by the relation [z,y] = ((z,y) for all z,y € V, such that H(sp,,,) satisfies
the PBW property. In [EGG], Theorem 4.2, it was shown that H¢(sp,,,) satisfies
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the PBW property if and only if ( = Z?:O (2472 where r; is the symmetrization
of the coefficient of 27 in the expansion of

w(x, (1 — Z2A2)_1y) det(1 — zA)_l =ro(x,y) + ra(z, y)z2 4

Note that for A € sp,,,, the expansion of det(1 — zA)™! contains only even powers
of z.

Remark 7.1. For (o # 0, there is an isomorphism He,r,(5pg,) = U(spy,) X An,
where A,, is the n-th Weyl algebra (see [EGG] Example 4.11). Thus, we can regard
H¢(sp,,,) as a deformation of U(sp,,) X A,.

Choose a basis v; of V, so that

w(z,y) =" Jy,

with
0 1 0 0 0 0
-1 0 O 0 0 0
0 0 O 1 0 0
J=10 0 -1 0
0 0 0 o --- 0 1
0 0 0 o --- =10

As before, we study the noncommutative infinitesimal Cherednik algebra H(sp,,,)
by considering its Poisson analogue H{(sp,,). We define Y77  Q; 2%t = det(1—zA)

and
) 2n
T, = (_1)171 Z{Qi’ vj}’U;,
j=1
where {v;} is dual to {v;} (that is, w(v;,v}) = d;j). When viewed as an element of
(C[EPQH X V]’
i—1
T, = — Z ij(A2i7172j/U7 U),
7=0

SO T; is 8P, invariant and independent of the choice of basis {v; }.
Proposition 7.1. The Poisson center of Hj(sps,) is C[T1,...,Tps].

Proof. We will follow a similar approach as in the proof of Theorem 2.1, [T1]. Let
L be the Lie algebra sp,y,, x V and S be the Lie group of L. We need to verify
that C[ty,...,Tn] = 3pois(H}(5py,)), the latter being identified with C[L*]°. Let
M C L be the 2n-dimensional subspace consisting of elements of the form

0 Y12 0 s O 0 O
Y21 ’ : 0
Y= 0 0 Yon—3.2n—2 0 0 N ;
0 0  Yon—22n-3 0 0 0
o - 0 0 0 Yon—1.2n 0
0 0 0 0 0 Yan

where all the y’s belong to C. In what follows, we identify L* and L via the
nondegenerate pairing, so that the coadjoint action of S is on L. We use the
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following two facts proved in [K|: first, that the orbit of M under the coadjoint
action of S on L* is dense in L*; and second, that C[L*]® = C[fi,..., f.], where

fi|M (y) = Uif1(y2,1y1,2, Y3,2Y2.3, .- - ay2n72,2n73y2n73,2n72)anf1,2ny§n
and o; is the j-th elementary symmetric polynomial. It is straightforward to see
that t;|,, = fi, and so C[L*]® = C[ty,...,Ty] as desired. O
As before, let ((2) = (o + (2% + (2t + -,

Theorem 7.1. The Poisson center;,pois(Hé (8psy,)) = Clti+c1, Tatca, ..., Tn+cnl,
where (—1)""L¢; is the coefficient of t** in the series

det(1—tA) 27!
det(l — zA) 1 — 22t—2

c(t) = 2Res,—o C(z7 1) dz.

Proof. Since ¢; € 3pois(S(899y,)), {Ti + ¢iyg} = 0 for any g € S(spy,), and so it
suffices to show that {T; + ¢;,v} = 0 for all v € V. By the Jacobi rule,

{Tivv}_ Z IZ{Q“’U‘?}{’U],U}—F ,L 12{{Q17UJ} U}U

Thus,
(7.1)

{Ti+ciﬁv}_ Z 12{91,’0]}{11],’0}4- Z IZ{{Q”’UJ} U}U +{clav}

In the case of Hi(gl,), > ;{{Qiy;},y}z; = 0 by straightforward application of
properties of the determinant. However, for H/(sps,), > ;{{Qi,v;},v}vi # 0.
To calculate this sum, let B be a basis of sp,, (the basis elements are given in

the Appendix, but for the purposes of this section, the specific elements are not
needed). Write

2 Qb vhy =3 {Z %W’”} i

7 ecB

=Y (Z 3Q’{e (vj), v}v} + {aagei v} e(vj)v;> .

7 eeB

Lemma 7.1.
09; .
Z Z {E,v} e(vj)v; =0.
j e€eB

The proof of this lemma is quite technical and is provided in the Appendix.

Using the fact that }°{{Qi,v;},v}v] =3, > cen %{e(vj),v}v;‘, we can re-
strict (7)) to diagonal matrices, which are spanned by elements e; = diag(0,...,1,
—1,0,...,0) with 1 at the 2i — 1-th coordinate. Thus, the condition {t; +¢;,v} =0
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is equivalent to:
- 09Q;
= IZZ {ekavj}{vgav}

i 0Q; 0Q; ac;
1—1 7 1 7
HEDTE (S tvarmr, b+ 52 fumg vhomes ) + > g fewer)

= 2= 1) 30 G a1 {ak v} sk {va,v}) + D 5 e vl
k k

Multiplying the above equation by (—1)*~!t? and summing over i for i = 1,...,n,
the required condition transforms into:

e(t)

Odet(1—tA
o2y Q1= 1) ZCT

8ek

(var—1{var, v} + vor{van—1,v}) + Z
k k

It suffices to check this condition for basis vectors v = v9s_1 and v = wvg,.
Substituting, we get

Odet(l —tA Oc(t
0=2 Z #(7&1@71{7&1@7@2571} + vop{vor—1,V2s—1}) + %S)UQSA
and
0 det( 1 —tA Oc(t
0=2 Z )(UZk—l{UZka Vs } + Vop{vak_1,v2s}) — 825) Vos.

These last two formulas both reduce to

Jc(t) 8det( tA)
8—65 = 8—65{0237023—1}
8 det(1 —tA)

— 3— (Reszzo C(z7Hw(vas, (1 — 224%) "Ly, 1)
€s

x det(1 — zA)"'271dz)
ddet(l1—tA) 1

=2 ReSZ:() C(z_l) 86 1— 22)\2

det(1 — zA) 127 ldz,
and it is straightforward to verify that c(t) satisfies the above equation. O

We now briefly consider the center of H¢(sp,,,). Let 8; € U(sp,,) be the sym-
metrization of Q;, and let

t; = l 12617”]

Clearly, t; is independent of the choice of basis {v;} and sp,,, invariant.
Conjecture 7.1.7 The center of H¢(8poy,) 15 3(He(spy,))=Clt1 + C1, ..., tn + Cy]
for some C; € 5(U (spy,)).

2This conjecture was recently proved in [LT], using another presentation of H¢(sps,,).
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8. KOSTANT’S THEOREM

Recall Kostant’s theorem in the classical case ([BL]):

Theorem. Let g be a reductive Lie algebra with an adjoint-type Lie group G, and
let J C Clg*] be the ideal generated by the homogeneous elements of Clg*]¢ of
positive degree. Then:

(1) U(g) is a free module over its center 3(U(g));

(2) the subscheme of g defined by J is a normal reduced irreducible subvariety
that corresponds to the set of nilpotent elements in g.

In [T2], Kostant’s theorem was generalized to H¢(gl,). In this section, we provide
a similar generalization for H¢(sp,,,) assuming Conjecture[ZIk 3(Hc(spy,)) = Clt1+
Cy, ..., tp + Cy]. As in Section B we define ¢, =t; + C;.

Introduce a filtration on H¢(sp,,,) with degg = 1 for all g € sp,,, and degv =
m + 5 for all v € V, where m is half the degree of ((z); this choice of filtration is
also clarified by [LT]. Let

By = S(V @ 5py,)/ ((—1)“ > _{Qi vt + cE"") )

1<i<n

top

where 7] := 7; + ¢;°" are the generators of 3(H, (spy,)) given in Theorem [Z.T} if

Conjecture [T is true, ¢;°” is also the highest term of C;.

Theorem 8.1. (1) Assuming that Conjecture [Tl is true, H¢(sp,,,) is a free module
over its center.
(2) B, is a normal complete-intersection integral domain.

Proof. (1) Introduce a filtration on B, with degg = 1 for g € sp,, and degv =
0 for v € V. Define BY by BY = grB,, = S(V @ spy,)/(c)1<i<n. The
formula in Theorem [l implies that C[\q,...,\,]°" is a free and finite module
over Clgrct®, ... gretP]) so C[h]W is finite and free over C[c}°P, ..., cfoP]. Since

S(spy,) is free over C[h]" by the classical Kostant’s theorem, S(sps,,), and hence
S(spy,) @ SV, is free over C[c}°P, ..., ctP]. Thus, S(V @ sp,,,) is free over C[r; +

’rn

AP . Tn + ctOP], implying the result.
(2) To show that B,, is a normal integral domain, it suffices to show that the
smooth locus of the zero set of 71, 74,..., 7, has codimension 2 and is irreducible.

Let Z = Spec(By,) be a closed subscheme of V' @ sp,,, defined by 7/ = 0, and let
U:=2\Zsm ={(v,A) €V @ sp,y,|(v,A) € Z and rank(Jac) < n},

where Jac is the Jacobi matrix of 74,74, ...,7), at (v, A) with respect to some basis
of V and sp,,,. It suffices to show that U is a codimension 2 subvariety of Z and
that the latter is irreducible.

Now, recall that

Z(—l)i_l{Qi, v }v; = —(w(A* 0, 0) + Qw(A* Pv,v) + Qow(A¥ v, v) + -+ ).

By changing basis, we can rewrite ((—=1)""1 32 {Q;, v;}v +¢;°P)1<i<n 85 (S5)1 <j<
where -

S = —w(A* 1y v) + fi(ci()p, .. ,CEOP, Q1,...,9i1)
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and f;(c{°?, Q;) are polynomial expressions in ¢\®,...,c°” and Qy,...,Q; 1 (in
particular, there is no dependence on v). We can and will use the Jacobian of S;
instead of 7] to describe U.

Let us calculate the derivatives of w(A*~1v,v) with respect to y; € V and

V€ SPoy:
9 2i—1 2i—1
A (A7 0, 0) = 2047 o),
j
g(w(Azi_lv, v)) = w(A¥ 2y + AZ 3y Av + -+ v AT ).
Y
Thus, if

puigrad(Sy) + pograd(Sse) + - - - + ppgrad(S,) =0
for some p1, po, - .., 1y € C, then

w(p Av, y;) + w(p2A%v,y;) + - + w(pa A" o, y;) = 0

for all 1 < j < 2n. Equivalently, (uy A + A3 + -+ + p, A"~ v = 0.

Now we will consider the situation in B,(ﬁ) = gr B,,. We know that dim Z =
dim Z, where Z = Spec BT(,}L) =V x N and N is the nilpotent cone of sp,,,. Since V'
and N are irreducible, Z , and hence Z, is irreducible. Recall that U was defined as
the locus of points (v, A) € Z C V@sp,,, such that rank(Jac) < n, or in other words,
all n x n minors of the Jacobian matrix have determinant 0. Since each of those
determinants is homogeneous with respect to our second filtration, it is natural to
define U C Z as a locus of points where rank(Jac) < n. Then, dimU < dimU.
Note that U = U, LI Uy, where U; = U N {(v, A)|A is regular nilpotent} and U, =
UnN{(v, A)|A is not a regular nilpotent}. The codimension of a regular nilpotent’s
orbit is 2, so codim ;(Us) > 2. Tt suffices to show that codim(U;) > 2 as well. We
shall do this by showing that given a regular nilpotent A, dim(Va sing) < 21 — 2,
where Vi sing = {v € V|(v, A) € U}.

Let us switch to a basis of sp,, where the skew symmetric form is represented
by the matrix

0o --- 0 0 -1
0o --- 0 1 0
sl 0o =1 0 o0
1 0 0 0
If we define
01 0 0
0 0 1 0
A= : : R 0 )
0 0 O 1
0 0 O 0
then AJ'+.J'AT = 0, implying A € sp,,,. Now, suppose that 3, <<, pjgrad(S;) =
0at (A,v), forv = (ay,...,as,). By examining the 8— components of grad(S;), we
get ag, = 0; moreover, either as,—1 =0, or 3 = --- = pp—1 = 0. The conditions

a2n, = a9,—1 = 0 define a codimension two subspace as desired. We thus need to
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show that if a2, = 0 and 3 = --- = py—1 = 0, then Y7, wigrad(S;) = 0
implies a nontrivial condition on v. To find such a condition, note that
0
o0l
and that d fz( AP, Q). .., Qi 1) does not depend on v. Now, let us
take v = 627—“1, we can verlfy that egn1J + J’egm1 =0, s0 ean,1 € Spy,. We

-2 _ -3 _ 2 m—4 _
note that eg, 14°"™° = egnon—1, A€ 1A = eap_19n-2, A2 1 A*" " =
€2n—2,2n—3 and so forth. Thus, %(w(AM’lv,v)) = w(ATv,v). However, setting

A (WA, 0)) = w(A? 20, 0) + w(AT T A, )+ w(v AT T, ),

v =(a1,...,a2,-1,0), we get w(ATv,v) = w((0,a1,...,a2,_1),(a1,...,a2,-1,0)),
which is a nontrivial degree two polynomial in a1, ...,as,_1 that should equal the
number 8_(f1( AP, P 0y, ..., Qi 1))(A). This gives the other codimension

1 condition, and so U1 is at least of codimension 2 in Z as desired. O

APPENDIX: PROOF OF LEMMA [.1]

In this section, we will outline the proof of Lemma [ZI] which states:

(1) i Z {%,v} e(vj)v;-k =0.

j=le€cB

We use the basis for V defined in Section [7, in which w is represented by the matrix
J.
Let us multiply (f)) by ¢** and sum over i to get the equivalent assertion that

Z Z {WW} e(vj)vy = 0.

j e€eB

Since the whole sum is sp,,,-invariant (even though each term considered separately
is not), we can look at the restriction of the sum to h. Thus, this sum equals zero
if and only if

det(1 —tA
Z Z {%,v} e(vj)vj| =0.
J e€B b

We choose the following basis B for sp,,: €2;-1,25, €25,2j—1, €2j—1,2j—1 — €25.255
forall 1 < j < n,and for all 1 < k <1 < n, the elements ey_1 2k + €2x—1,215
€21,2k — €2k—1,21—1, €21—1,2k—1 — €2k,21, and eoy ok 1 + €2k 21—1. We observe that for
any 1 < j,j' < 2n, there exists a unique basis vector in B that takes v; to Lv;/; we
shall denote this element by v;/ ; € B. These v; ; are not pairwise distinct since
there are basis vectors with two nonzero entries.

Since Sp,,, acts transitively on V, we can assume v = v;. Using the above basis,

we get
ddet(1 —tA) } 02 det(1 — tA) . ,
, U1 ’U'/’Uk’U-(—]_)LJ'J',
; (;3 { Oe Zh Qv 10vj 5 7T
where

L _{ 1 if j=j mod2and j < j, orif j/=jand jis even,
3" 7 1 0 otherwise.
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9% det(1—tA

We now restrict to h. We have o 100, ) b # 0 only when the matrices for vy 1

»J
and v; ; have nonzero entries on the diagonal, or if vy ; and v; ; have nonzero

entries at the i-th row j-th column and j-th row i-th column, respectively. This
can only happen when v; vpv; = v1v,v, for some a. We can list all the ways this
can happen for a = 2b or a = 2b — 1 with b # 1 (keeping in mind that v}, ; = v
and vl = —vgp_1):

1) 9% det(1—tA)

( 61}1,161)21771,21771Ulv%_lv?b’

(2) 82dct(1ftA)U v
Bu1,10v2p,25 26V1U2b—1

(3) 8?2 dct(lftA) v v
vap_1,1001 251 1 2b—1%2b,
9% det(1—tA)

(4) Bozs 100100 (—v1v2pv2p-1),
9% det(1—tA)

(5) 731}2&131}%71,2(—U2b—1'02bvl)7

2
(6) %U%—lU%UL
To calculate the derivatives, let A; be the 4 by 4 matrix formed by the intersections
of the first, second, 2b — 1-th, and 2b-th rows and columns of A, and let A be
the 2n — 4 by 2n — 4 matrix formed by the intersections of the remaining rows
and columns. The space of all such A, is isomorphic to sp,,_,, and we denote
the Cartan subalgebra of diagonal matrices of this space by h(Az). All six of the

above derivatives evaluate to the same polynomial in h(As) times the corresponding
9% det(1—tA) _ h82 det(1—tA;)

81}17181)&3
and h € S(h(Asz))[t]. Thus, we can reduce our problem to sp,, and straightforward
computations verify ([{)) for sp,. Similarly, when b =1 (that is, when the term is of
the form viv1v9), all computations will reduce to analogous ones in sp,.

derivative in sp,; for instance with v} 1,05 3 € spy

? Ov1,10v2p-1,2b—1
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