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REPRESENTATIONS OF INFINITESIMAL

CHEREDNIK ALGEBRAS

FENGNING DING AND ALEXANDER TSYMBALIUK

Abstract. Infinitesimal Cherednik algebras are continuous analogues of ra-
tional Cherednik algebras, and in the case of gln, are deformations of universal
enveloping algebras of the Lie algebras sln+1. In the first half of this paper, we
compute the determinant of the Shapovalov form, enabling us to classify all
irreducible finite dimensional representations of Hζ(gln). In the second half,
we investigate Poisson-analogues of the infinitesimal Cherednik algebras and
generalize various results to Hζ(sp2n), including Kostant’s theorem.

Introduction

The main goal of this paper is to study the representation theory of infinitesimal
Cherednik algebras Hζ(gln), a deformation of the representation theory of sln+1

with infinitely many deformation parameters ζ = (ζ0, ζ1, ζ2, ..., ζm, ...). Namely,
sln+1 can be represented as gln ⊕ V ⊕ V ∗, where V, V ∗ are the natural representa-
tions of gln on vectors and covectors. In this representation of sln+1, the elements of
V commute with each other, as do the elements of V ∗. The commutation relations
of gln with V, V ∗ are given by the usual action of matrices on vectors and covectors,
while commutators of V with V ∗ produce elements of gln. To pass to the deforma-
tion Hζ(gln), one needs to change only the last relation: commutators of V and V ∗

will now be not just elements of gln but rather some polynomial ζ0r0+ζ1r1+ · · · of
them, where ζi are the deformation parameters mentioned above and ri are basis
polynomials introduced in [EGG]. This deformation turns out to be very interest-
ing, since it unifies the representation theory of sln+1 with that of degenerate affine
Hecke algebras ([D],[L]) and of symplectic reflection algebras ([EG]).

The main results of this paper are the following. In Section 2, we generalize a
classical result from the representation theory of Kac-Moody algebras by computing
the determinant of the contravariant (or Shapovalov) form, thus determining when
the Verma module over Hζ(gln) is irreducible. This proof requires knowledge of the
quadratic central element and its action on the Verma module. In Section 3, we
find the quadratic central element of Hζ(gln); this extends the work of Tikaradze
[T1], who proved using methods of homological algebra that the center of Hζ(gln)
is a polynomial algebra in n generators, but did not get any explicit formulas for
these generators. In Section 4, we provide a complete classification and character
formulas for finite dimensional representations of Hζ(gln), generalizing Chmutova’s
unpublished work. In Sections 5 to 7, we introduce Poisson analogues of the infin-
itesimal Cherednik algebras, compute their Poisson center, and use them to give a
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558 F. DING AND A. TSYMBALIUK

second proof of the formula for the quadratic central element of Hζ(gln). We also
provide an analogous formula for the center of the Poisson analogue of Hζ(sp2n).
Finally, in Section 8, we investigate an analogue of Kostant’s theorem for Hζ(sp2n).

1. Basic Definitions

Let us formally define the infinitesimal Cherednik algebras of gln, which we
denote by Hζ(gln). Let V = span(y1, . . . , yn) be the basic n-dimensional repre-
sentation of gln and V ∗ = span(x1, . . . , xn) the dual representation. For any gln
invariant pairing ζ : V ×V ∗ → U(gln), define an algebra Hζ(gln) as the quotient of
the semi-direct product algebra U(gln)�T (V ⊕V ∗) by the relations [y, x] = ζ(y, x)
and [x, x′] = [y, y′] = 0 for all x, x′ ∈ V ∗ and y, y′ ∈ V .

Let us introduce an algebra filtration on Hζ(gln) by setting deg(x) = deg(y) = 1
for x ∈ V ∗, y ∈ V , and deg(g) = 0 for g ∈ U(gln). We say that Hζ(gln) satisfies
the PBW property if the natural surjective map U(gln)� S(V ⊕ V ∗) � grHζ(gln)
is an isomorphism, where S denotes the symmetric algebra; we call these Hζ(gln)
the infinitesimal Cherednik algebras of gln. In [EGG], Theorem 4.2, it was shown
that the pairings ζ such that Hζ(gln) satisfy the PBW property are given by ζ =∑k

j=0 ζjrj where ζj ∈ C and rj is the symmetrization of the coefficient of τ j in the

expansion of (x, (1− τA)−1y) det(1− τA)−1.
Note that for ζ = ζ0r0+ζ1r1 with ζ1 �= 0, there is an isomorphism φ : Hζ(gln) →

U(sln+1) given by φ(α) = α for α ∈ sln, φ(yi) =
√
ζ1ei,n+1, φ(xi) =

√
ζ1 en+1,i,

and

φ(Id) =
1

n+ 1

Å
e11 + · · ·+ enn − n en+1,n+1 − n

ζ0
ζ1

ã
.

This isomorphism allows us to view Hζ(gln) for general ζ as an interesting defor-
mation of U(sln+1), even though any formal deformation of U(sln+1) is trivial.

Example 1.1. The infinitesimal Cherednik algebras of gl1 are generated by ele-
ments e, f , and h, satisfying the relations [h, e] = e, [h, f ] = −f , and [e, f ] = φ(h)
for some polynomial φ. In literature, these algebras are known as generalized Weyl
algebras ([S]).

Similarly to the representation theory of sln+1, we define the Verma module of
Hζ(gln) as

M(λ) = Hζ(gln)/{Hζ(gln) · n+ +Hζ(gln)(h− λ(h))}h∈h

where the set of positive root elements n+ is spanned by the positive root elements
of gln (i.e., matrix units eij with i < j) and elements of V ; the set of negative root
elements n− is spanned by the negative root elements of gln (i.e., matrix units eij
with i > j) and elements of V ∗; and the Cartan subalgebra h is spanned by diagonal
matrices. The highest weight, λ, is an element of h∗, and vλ is the corresponding
highest-weight vector.

Let us denote the set of positive roots by Δ+, so that Δ+ = {e∗ii − e∗jj} ∪ {e∗kk}
for 1 ≤ i < j ≤ n, 1 ≤ k ≤ n. To denote the positive roots of gln, we use Δ+ (gln),
and to denote the weights of yi, we use Δ+(V ). We define ρ = 1

2

∑
λ∈Δ+(gln)

λ =(
n−1
2 , n−3

2 , . . . ,−n−1
2

)
, a quasiroot to be an integral multiple of an element in Δ+,

and Q+ to be the set of linear combinations of positive roots with nonnegative
integer coefficients. Finally, U(n−)ν denotes the −ν weight-space of U(n−), where
ν ∈ Q+.
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2. Shapovalov form

As in the classical representation theory of Lie algebras, the Shapovalov form
can be used to investigate the basic structure of Verma modules. Similarly to
the classical case, M(λ) possesses a maximal proper submodule M(λ) and has
a unique irreducible quotient L(λ) = M(λ)/M(λ). Define the Harish-Chandra
projection HC : Hζ(gln) → S(h) with respect to the decomposition Hζ(gln) =
(Hζ(gln)n

+ + n−Hζ(gln)) ⊕ U(h), and let σ : Hζ(gln) → Hζ(gln) be the anti-
involution that takes yi to xi and eij to eji.

Definition 2.1. The Shapovalov form S : Hζ(gln) × Hζ(gln) → U(h) ∼= S(h) ∼=
C[h∗] is a bilinear form given by S(a, b) = HC(σ(a)b). The bilinear form S(λ)
on the Verma module M(λ) is defined by S(λ)(u1vλ, u2vλ) = S(u1, u2)(λ), for
u1, u2 ∈ U(n−).

This definition is motivated by the following two properties (compare with [KK]):

Proposition 2.1. 1. S(U(n−)μ, U(n−)ν) = 0 for μ �= ν,

2. M(λ) = kerS(λ).

Statement 1 of Proposition 2.1 reduces S to its restriction to U(n−)ν ×U(n−)ν ,
which we will denote as Sν . Statement 2 of Proposition 2.1 gives a necessary and
sufficient condition for the Verma module M(λ) to be irreducible, namely that
for any ν ∈ Q+, the bilinear form Sν(λ) is nondegenerate, or equivalently, that
detSν(λ) �= 0, where the determinant is computed in any basis; note that this
condition is independent of basis. For convenience, we choose the basis {fm},
where m runs over all partitions of ν into a sum of positive roots and fm =

∏
fmα
α

with fα ∈ n− of weight −α. We will use the notation a
 b to mean that (a1, . . . , an)
is a partition of b into a sum of n nonnegative integers when b ∈ N, and m
 ν to
mean that m is a partition of ν into a sum of elements of Δ+ when ν ∈ Q+. Then,
the basis we will work with is {fm}m� ν .

Now, we present a formula for the determinant of the Shapovalov form for
Hζ(gln) generalizing the classical result presented in [KK]. This formula uses the
following result proven in Section 3.2: for a deformation ζ = ζ0r0+ζ1r1+· · ·+ζmrm,
the central element t′1 (introduced in Section 3) acts on the Verma module M(λ) by

a constant P (λ) =
∑m+1

j=0 wjHj(λ + ρ), where Hj(λ) =
∑

p� j

∏
1≤i≤n λ

pi

i are the
complete symmetric functions (we take H0(λ) = 1) and wj(ζ0, . . . , ζj) are linearly
independent linear functions on ζk.

Define the Kostant partition function τ as τ (ν) = dimU(n−)ν . Then:

Theorem 2.1. Up to a nonzero constant factor, the Shapovalov determinant com-
puted in the basis {fm}m� ν is given by

detSν(λ) =

Ñ ∏
α∈Δ+(V )

∞∏
k=1

(P (λ)− P (λ− k α))
τ(ν−k α)

é
×

Ñ ∏
α∈Δ+(gln)

∞∏
k=1

((λ+ ρ, α)− k)τ(ν−k α)

é
.

Remark 2.1. In the case ζ = ζ0r0 + ζ1r1 with ζ1 �= 0, we get the classical formula
from [KK].
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560 F. DING AND A. TSYMBALIUK

Proof. The proof of this theorem is quite similar to the classical case with a few
technical details and differences that will be explained below. We begin with the
following lemma, which shows that irreducible factors of detSν(λ) must divide
P (λ)− P (λ− μ) for some μ ∈ Q+.

Lemma 2.1. Suppose detSν(λ) = 0. Then, there exists μ ∈ Q+\{0} such that
P (λ)− P (λ− μ) = 0.

Proof. Note that detSν(λ) = 0 implies that the Verma module M(λ) has a critical
vector (a vector on which all elements of n+ act by 0) of weight λ − μ for some
μ ∈ Q+ satisfying 0 < μ < ν. Thus, M(λ− μ) is embedded in M(λ). Since t′1 acts
by constants on both M(λ) and M(λ−μ), which can be considered as a submodule
of M(λ), we get P (λ) = P (λ− μ). �

The top term of the Shapovalov determinant detSν(λ) in the basis {fm}m� ν

comes from the product of diagonal elements, that is,
∏

m� ν

∏
[σ(fα), fα]

mα(λ).
The top term of [eij , eji](λ) for i < j is λi − λj = (λ, α) where α is the weight of
eij . The following lemma gives the top term of [yj , xj ](λ):

Lemma 2.2. The highest term of [yj , xj ](λ) for ζ = ζ0r0+· · ·+ζmrm is ζm
∑

p(pj+

1)
∏

λpi

i , where the sum is over all partitions p of m into n summands.

Proof. From [EGG], Theorem 4.2, we know that the top term of [yj , xj ] for ζ =
ζ0r0 + ζ1r1 + · · · + rm is given by the coefficient of τm in det(1 − τA)−1(xj , (1 −
τA)−1yj). Because the set of diagonalizable matrices is dense in gln, we can assume
A is a diagonal matrix A = diag(λ1, λ2, ..., λn) so that

det(1− τA)−1 =
∏ 1

1− τλi
=
∑
k

∑
p� k

∏
i

λpi

i τk

and

xj(1− τA)−1yj =
1

1− τλj
= 1 + λjτ + · · · .

Multiplying these series gives the statement in the lemma. �
Thus, we see that the top term of the determinant computed in the basis

{fm}m� ν , up to a scalar multiple, is of the formÑ ∏
α∈Δ+(gln)

(λ, α)
∑

m
mα

éÑ ∏
α=wt(yj)∈Δ+(V )

(∑
p

(pj + 1)
∏

λpi

i

)∑
m

mα
é

.

Since τ (μ) is the number of partitions of a weight μ, the sum
∑

mmα over all
partitions m of ν with α fixed must equal

∑∞
k=1 τ (ν−kα), so the expression above

simplifies toÑ ∏
α∈Δ+(gln)

∞∏
k=1

(λ, α)τ(ν−kα)

é
×

Ö ∏
α=wt(yj)∈Δ+(V )

∞∏
k=1

Ñ∑
p�m

(pj + 1)
∏

λpi

i

éτ(ν−kα)
è

.

This highest term comes from the product of the highest terms of factors of
P (λ)− P (λ− μ) for various μ ∈ Q+.
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Lemma 2.3. (1) For all μ �= kα, α ∈ Δ+(gln), P (λ)− P (λ− μ) is irreducible
as a polynomial in λ.

(2) For μ = kα, α ∈ Δ+(gln),
P (λ)−P (λ−kα)

(λ+ρ,α)−k is irreducible.

If Lemma 2.3 is true, then all μ contributing to the above product must be
quasiroots: if μ �= kα for some α ∈ Δ+(gln), the highest term of the irreducible
polynomial P (λ) − P (λ − μ),

∑
p�m

∑
j μj(pj + 1)

∏
λpi

i , does not match any
factor in the highest term of the Shapovalov determinant unless μ is a V -quasiroot.

Moreover, if μ = kα for α ∈ Δ+(gln), since
P (λ)−P (λ−kα)

(λ+ρ,α)−k is irreducible for α ∈
Δ+(gln), comparison with the highest term of the determinant shows that only
the linear factor (λ + ρ, α) − k of P (λ) − P (λ − kα) appears in the Shapovalov
determinant.

Proof. We will prove that P (λ)−P (λ−μ) is irreducible for μ �= kα (α ∈ Δ+(gln));

similar arguments will show that P (λ)−P (λ−kα)
(λ+ρ,α)−k is irreducible for any α ∈ Δ+(gln),

k ∈ N.
Consider the parameters wi as formal variables. Then, we have P (λ)−P (λ−μ) =∑
i≥0 wi(Hi(λ+ ρ)−Hi(λ+ ρ−μ)). We can absorb the ρ vector into the λ vector.

For this polynomial to be reducible in wi and λj , the coefficient of w1 should
be zero: H1(λ) − H1(λ − μ) = H1(μ) = 0. Also, since the coefficient of w2 is
linear in λj , it must divide the coefficients of every other wi. In particular, the
highest term of H2(λ) − H2(λ − μ) must divide that of H3(λ) − H3(λ − μ). The
highest term of H2(λ) −H2(λ − μ) is

∑
i λi(μi +

∑
j μj) = (λ, μ) and the highest

term of H3(λ) − H3(λ − μ) is given by H ′
3(λ)(μ), the evaluation of the gradient

H ′
3(λ) at μ. Since this term is quadratic and is divisible by (λ, μ), we can write

H ′
3(λ)(μ) = (λ, μ)(λ, ξ) for some ξ ∈ h∗. Now, let us match coefficients of λiλj

for i �= j and of λ2
i on both sides of the equation. By doing so (and using the

fact that
∑

μi = 0), we obtain μiξj + μjξi = μi + μj and μiξi = 2μi. Since
μ1 + · · ·+ μn = 0 and μ �= 0, at least two of μi are nonzero, say μi1 and μi2 . From
the two equations, we obtain μi1 + μi2 = 0. If μi3 �= 0, then by similar arguments,
μi1 + μi3 = μi2 + μi3 = μi1 + μi2 = 0, which is impossible since μi1 , μi2 , μi3 �= 0.
Thus, P (λ) − P (λ − μ) is reducible only if exactly two of the μi are nonzero and
opposite to each other; that is, μ = kα for α ∈ Δ+(gln). �

To prove that the power of each factor in the determinant formula of Theorem 2.1
is correct, we use an argument involving the Jantzen filtration, which we define as in
[KK], page 101 (for our purposes, we switch U(g) toHζ(gln)). The Jantzen filtration
is a technique to track the order of zero of a bilinear form’s determinant. Instead
of working over the complex numbers, we consider the ring of localized polynomials

C〈t〉 = {p(t)
q(t) | p(t), q(t) ∈ C[t], q(0) �= 0}. A word-to-word generalization of [KK],

Lemma 3.3, proves that the power of P (λ) − P (λ − kα) for α ∈ Δ+(V ) and of
(λ + ρ, α) − k for α ∈ Δ+(gln) is given by τ (ν − kα), completing the proof of
Theorem 2.1. �

3. The Casimir element of Hζ(gln)

Let Q1,Q2,Q3, ...,Qn ∈ S(gl∗n) (which can be identified as elements of S(gln)
under the trace-map) be defined by the power series

det(tId−X) =
n∑

j=0

(−1)jtn−jQj(X),
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562 F. DING AND A. TSYMBALIUK

and let βi be the image of Qi under the symmetrization map from S(gln) to U(gln).
The center of U(gln) is a polynomial algebra generated by these βi. Define ti =∑

j xj [βi, yj ]. According to [T1], Theorems 2.1 and 1.1, the center of H0(gln)
is a polynomial algebra in {ti}1≤i≤n, and there exist unique (up to a constant)
ci ∈ z(U(gln)) such that the center of Hζ(gln) is a polynomial algebra in t′i = ti+ci,
1 ≤ i ≤ n.

Definition 3.1. The Casimir element of Hζ(gln) is defined (up to a constant) as
t′1.

We will construct the Casimir element of Hζ(gln) and prove that its action on

the Verma module M(λ) is given by P (λ) =
∑m+1

j=0 wjHj(λ + ρ), where wj are
linear functions in ζi.

3.1. Center. Let us switch to the approach elaborated in [EGG], Section 4, where
all deformations satisfying the PBW property were determined. Define δ(m) =
(i∂)mδ with δ being a standard delta function at 0, i.e.,

∫
δ(θ)φ(θ)dθ = φ(0). Let

f(z) be a polynomial satisfying f(z) − f(z − 1) = ∂n(znζ(z)), where ζ(z) is the
generating series of the deformation parameters: ζ(z) = ζ0+ζ1z+ζ2z

2+ · · · . Since
f(z) is defined up to a constant, we can specify f(0) = 0. Recall from [EGG],

Section 4.2, that for f̂(θ) =
∑

m≥0 fmδ(m)(θ),

[y, x] =
1

2πn

∫
v∈Cn:|v|=1

(x, (v ⊗ v̄)y)

∫ π

−π

(
1− e−iθ

)
f̂(θ)eiθ(v⊗v̄) dθ dv.

Theorem 3.1. Let g(z) =
∑

gmzm =
∑ fm

(m+1)(m+2)···(m+n−1)z
m. The Casimir

element of Hζ(gln) is given by t′1 =
∑

xjyj +Resz=0g(z
−1) det (1− zA)

−1
dz/z.

Proof. Define C ′ = Resz=0g(z
−1) det (1− zA)−1 dz/z. Let us compute [y, t1+C ′] =∑

j [y, xj ]yj + [y, C ′]. The first summand is:∑
j

[y, xj ]yj =
1

2πn

∑
j

∫
v∈Cn:|v|=1

∫ π

−π

(1− e−iθ)f̂(θ)eiθ(v⊗v̄)(xj , (v ⊗ v̄)y)yj dθ dv

=
1

2πn

∫
|v|=1

∫ π

−π

(1− e−iθ)f̂(θ)eiθ(v⊗v̄) ⊗ (v ⊗ v̄)y dθ dv.

Following [EGG], Section 4.2, we define Fm(A)=
∫
|v|=1

〈Av, v〉m+1 dv =
∫
|v|=1

(v⊗
v̄)m+1 dv. There, it was proven that∑

m

fmFm−1(A) = 2πnResz=0g(z
−1) det(1− zA)−1z−1dz = 2πnC ′.

Thus, we can write

C ′ =
1

2πn

∑
m

fm

∫
|v|=1

(v ⊗ v̄)mdv =
1

2πn

∫
|v|=1

∫ π

−π

f̂(θ)eiθ(v⊗v̄) dθ dv,

which implies that [y, C ′] = 1
2πn

∫
|v|=1

∫ π

−π
f̂(θ)[y, eiθ(v⊗v̄)] dθ dv. Since

e−iθ(v⊗v̄)[y, eiθ(v⊗v̄)] = e−iθ(v⊗v̄)yeiθ(v⊗v̄)−y = e−iθad(v⊗v̄)y−y = (e−iθ−1)(v⊗v̄)y,

we get [y, C ′]= 1
2πn

∫
|v|=1

∫ π

−π
f̂(θ)eiθ(v⊗v̄)(e−iθ−1)(v⊗v̄)y dθ dv, and so

∑
i[y, xi]yi+

[y, C ′] = 0 as desired. By using the anti-involution σ defined in the beginning of
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Section 2, this implies [x, t1 + C ′] = 0 for any x ∈ V ∗, while [eij , t1 + C ′] = 0 by
[T1], and hence, t′1 = t1 + C ′. �
Remark 3.1. This proof resembles calculations in [EGG], Section 4. In particular,
Proposition 5.3 of [EGG] provides a formula for the Casimir element of continu-
ous Cherednik algebras. However, adopting this formula for the specific case of
infinitesimal Cherednik algebras is nontrivial and requires the above computations.

3.2. Action of the Casimir element on the Verma module. In this section,
we justify our claim that the action of the Casimir element t′1 is given by P (λ) =∑m+1

j=0 wjHj(λ+ρ). Obviously, t′1 acts by a scalar onM(λ−ρ), which we will denote

by t′1(λ). Since t′1 =
∑

xiyi +C ′, C ′ ∈ z(U(g)) ∼= S(g)G, we see that t′1(λ) = C ′(λ)
where C ′(λ) denotes the constant by which C ′ acts on M(λ− ρ).

Theorem 3.2. Let w(z) be the unique degree m+ 1 polynomial satisfying

f(z) = (2 sinh(∂/2))n−1zn−1w(z).

Then
t′1(λ) =

∑
p≥0

wpHp(λ).

Proof. Because C ′(λ) is a polynomial in λ, we can consider a finite-dimensional
representation of U(gln) instead of the Verma module M(λ − ρ) of Hζ(gln). For
a dominant weight λ − ρ (so that the highest weight gln-module Vλ−ρ is finite

dimensional) we define the normalized trace T (λ, θ) = trVλ−ρ
(eiθ(v⊗v̄))/ dimVλ−ρ

for any v satisfying |v| = 1 (note that T (λ, θ) does not depend on v). To compute

T (λ, θ), we will use the Weyl character formula (see [FH]): χλ−ρ =

∑
w∈W

(−1)wewλ∑
w∈W

(−1)wewρ ,

whereW denotes the Weyl group (which is Sn for gln). However, direct substitution
of eiθ(v⊗v̄) into this formula gives zero in the denominator, so instead we compute
limε→0 χλ−ρ(e

iθ(v⊗v̄)+εμ) for a general diagonal matrix μ.
Without loss of generality, we may suppose v = y1, so that

v ⊗ v̄ = q =

á
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

ë
.

Then

lim
ε→0

χλ−ρ(e
iθ(v⊗v̄)+εμ) = lim

ε→0

∑
w∈Sn

(−1)we〈wλ,iθq+εμ〉∑
w∈Sn

(−1)we〈wρ,iθq+εμ〉

= lim
ε→0

∑
w∈Sn

(−1)we〈wλ,iθq+εμ〉∏
α∈Δ+(gln)

(e〈α/2,iθq+εμ〉 − e−〈α/2,iθq+εμ〉)
.

Partition Δ+(gln) into Δ1 �Δ2 = Δ+(gln), where Δ1 = {e∗11 − e∗jj : 1 < j ≤ n}.
For α ∈ Δ1,

lim
ε→0

Ä
e〈α/2,iθq+εμ〉 − e−〈α/2,iθq+εμ〉

ä
= eiθ/2 − e−iθ/2 = 2i sin

Å
θ

2

ã
,

so limε→0
∏

α∈Δ1
(e〈α/2,iθq+εμ〉 − e−〈α/2,iθq+εμ〉)−1 =

(
2i sin

(
θ
2

))1−n
.

Next, we compute the numerator. We can divide Sn =
⊔

1≤j≤n Bj , where Bj =
{w ∈ Sn|w(j) = 1}. Note that Bj = σj · Sn−1, where σj = (1 2 . . . j) and Sn−1
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denotes the subgroup of Sn corresponding to permutations of {1, 2, . . . , j − 1, j +
1, . . . , n}. We can then write∑

w∈Bj

(−1)we〈wλ,iθq+εμ〉 =
∑

σ∈Sn−1

(−1)σj (−1)σeiθλjeε〈σj◦σ(λ),μ〉

= (−1)j−1eiθλjeελjμ1

∑
σ∈Sn−1

(−1)σeε〈σ(λ̃j),μ̃〉,

where λ̃j = (λ1, . . . , λj−1, λj+1, . . . , λn) and μ̃ = (μ2, . . . , μn).
Combining the results of the last two paragraphs, we get

lim
ε→0

∑
w∈Sn

(−1)we〈wλ,iθq+εμ〉∏
α∈Δ+(gln)

(e〈α/2,iθq+εμ〉 − e−〈α/2,iθq+εμ〉)

= lim
ε→0

∑
1≤j≤n

(−1)j−1 eiθλj+ελjμ1

(2i sin θ
2 )

n−1

∑
σ∈Sn−1

(−1)σeε〈σ(λ̃j),μ̃〉∏
α∈Δ2

(e〈α/2,iθq+εμ〉 − e−〈α/2,iθq+εμ〉)
.

Using the Weyl character formula again, we see that∑
σ∈Sn−1

(−1)σeε〈σ(λ̃j),μ̃〉∏
α∈Δ2

(e〈α/2,εμ〉 − e−〈α/2,εμ〉)
= trVλ̃j−ρ̃

(eεμ̃)

where ρ̃ is half the sum of all positive roots of gln−1. Thus,

lim
ε→0

∑
σ∈Sn−1

(−1)σeε〈σ(λ̃j),μ̃〉∏
α∈Δ2

(e〈α/2,iθq+εμ〉 − e−〈α/2,iθq+εμ〉)
= trVλ̃j−ρ̃

(1) = dimVλ̃j−ρ̃.

We substitute to obtain

trVλ−ρ
(eiθ(v⊗v̄)) =

∑
1≤j≤n

(−1)j−1
eiθλj dimVλ̃j−ρ̃

(2i sin θ
2 )

n−1
.

Our original goal was to calculate T (λ, θ) = trVλ−ρ
(eiθ(v⊗v̄))/ dimVλ−ρ. We obtain

T (λ, θ) =
∑

1≤j≤n

(−1)j−1
eiθλj dimVλ̃j−ρ̃

(2i sin θ
2 )

n−1 dimVλ−ρ

.

Using the dimension formula ([FH], Equation 15.17):

dimVλ−ρ =
∏

1≤i<j≤n

λi − λj

j − i
,

we get T (λ, θ)=(2i sin(θ/2))1−n(n− 1)!
∑n

j=1
eiλjθ∏

k �=j
(λj−λk)

.

Since
∑n

j=1
xm
j∏

k �=j
(xj−xk)

= Hm−n+1(x1, ..., xn), we have

T (λ, θ) = (2i sin(θ/2))1−n(n− 1)!
∑

p≥0
Hp(λ)(iθ)

p+n−1

(p+n−1)! .

Thus, we get

t′1(λ)=C ′(λ)=

Ç
1

2πn

∫
|v|=1

∫ π

−π

f̂(θ)eiθ(v⊗v̄)dθdv

å
(λ)=

1

(n− 1)!

∫ π

−π

f̂(θ)T (λ, θ)dθ

=

∫ π

−π

f̂(θ)(2i sin(θ/2))1−n
∑
p≥0

Hp(λ)(iθ)
p+n−1

(p+ n− 1)!
dθ =

∑
p≥0

w′
pHp(λ),
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where w′
p =

∫ π

−π
f̂(θ)(2i sin(θ/2))1−n (iθ)p+n−1

(p+n−1)! dθ. Let w′(z) =
∑

w′
pz

p. We verify

that Ä
e∂/2 − e−∂/2

än−1
zn−1w′(z)

=

∫ π

−π

f̂(θ)
∑
p≥0

(2i sin(θ/2))1−n
Ä
e∂/2 − e−∂/2

än−1 (izθ)p+n−1

(p+ n− 1)!
dθ

=

∫ π

−π

f̂(θ)(2i sin(θ/2))1−n
Ä
e∂/2 − e−∂/2

än−1
eizθ dθ

=

∫ π

−π

f̂(θ)(2i sin(θ/2))1−n
Ä
eiθ/2 − e−iθ/2

än−1
eizθ dθ

=

∫ π

−π

f̂(θ)eizθ dθ = f(z),

and it is easy to see that the polynomial solution to f(z)=(2 sinh(∂/2))n−1zn−1w(z)
is unique. �

4. Finite dimensional representations

In this section, we investigate when the irreducible Hζ(gln) representation L(λ)
is finite dimensional. As in the case of classical Lie algebras, any finite dimensional
irreducible representation is isomorphic to L(λ) for a unique weight λ. Theorem
4.1 provides a necessary and sufficient condition for L(λ) to be finite dimensional.
In particular, all such representations have a rectangular form.

In Section 4.2, we prove that for any allowed rectangular form there exists a
deformation ζ such that the representation L(λ) of Hζ(gln) has exactly that shape.

4.1. Rectangular nature of irreducible representations.

Theorem 4.1. (a) The representation L(λ) is finite dimensional if and only if
λ is a dominant gln weight and there exists νn ∈ N0 such that P (λ) = P (λ −
(0, . . . , 0, νn + 1)).

For every 1 ≤ i ≤ n− 1 let ki ∈ N0 be the smallest nonnegative integer such that
P (λ) = P (λ − (0, . . . , 0, ki + 1, 0, . . . , 0)) (we set ki = ∞ if no such nonnegative
integer exists). We define parameters νi = min(ki, λi − λi+1).

(b) If L(λ) is finite dimensional, then as a gln module it decomposes into

L(λ) =
⊕

0≤λ−λ′≤ν

Vλ′ ,

where ν = (ν1, . . . , νn) are the parameters defined above (depending on ζ and λ).

Proof. In order for L(λ) to be finite dimensional, it is clearly necessary for λ to
be a dominant gln weight. Recalling the PBW property and the definition of the
Verma module M(λ), we see that as a gln module, M(λ) decomposes as M(λ) =

Vλ ⊕ (Vλ ⊗ S1)⊕ (Vλ ⊗ S2)⊕ · · · , where Sk = Symk(x1, x2, ..., xn). We can further
decompose each Vλ ⊗ Si into irreducible modules of gln; once we do so, we find
that M(λ) has a simple gln spectrum. Note that Vμ ⊗ S1 can be decomposed as
Vμ−e∗11

⊕Vμ−e∗22
⊕· · ·⊕Vμ−e∗nn

(taking Vμ−e∗
ii
= {0} if μ−e∗ii is not dominant). We can

thus associate each Vμ for μ = λ−a1e
∗
11−· · ·−ane

∗
nn in the decomposition of M(λ)

with a lattice point Pμ = (−a1,−a2, . . . ,−an) ∈ Zn. We draw a directed edge from
Pμ to Pμ′ if Vμ′ is in the decomposition of Vμ⊗S1, and we say Pμ′ is smaller than Pμ.
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A key property of this graph is that any Hζ(gln)-submodule of M(λ) intersecting
the module Vμ must necessarily contain Vμ and all Vμ′ such that Pμ′ is reachable

from Pμ by a walk along directed edges. Recall that L(λ) = M(λ)/M(λ), where

M(λ) is the maximal proper Hζ(gln)-submodule of M(λ). The aforementioned

property guarantees that as a gln module, M(λ) =
⊕

s∈S Vs for some set S of
vertices closed under walks, so that L(λ) is finite dimensional if and only if S̄ (the
complement of S) is a finite set.

We now prove part (a). First, suppose that L(λ) is finite dimensional. The
finiteness of S̄ implies the existence of some l such that (0, . . . , 0,−l− 1) ∈ S (note
that (0, . . . , 0) /∈ S). Let νn be the minimal such l. We define S′ as the set of
vertices that can be reached by walking from (0, . . . , 0,−νn − 1). Because S′ ⊆ S,
the Verma module M(λ) must possess a submodule M(λ− (0, . . . , 0, νn + 1)). By
considering the action of the Casimir element on M(λ) and M(λ−(0, . . . , 0, νn+1)),
we get P (λ) = P (λ− (0, . . . , 0, νn + 1)).

Next, suppose that there exists νn ∈ N0 such that P (λ) = P (λ − (0, . . . , 0,
νn +1)). The determinant formula of Theorem 2.1 implies that the Verma module
M(λ) contains the submodule M(λ − (0, . . . , 0, μ)) for some μ ≤ νn. Define S′

to be the set of vertices that can be reached by walking from (0, . . . , 0,−μ). Its
complement S̄′ is finite, since for any vertex (−a1, . . . ,−an) of our graph, we have
λ1 − a1 ≥ λ2 − a2 ≥ · · · ≥ λn − an. Because S̄ ⊆ S̄′, S̄ is finite, finishing
the proof of (a). We note that explicitly, S̄′ = {(−a1, . . . ,−an)|0 ≤ ai ≤ λi −
λi+1, 0 ≤ an ≤ νn} and the corresponding finite dimensional quotient is L′(λ) =

M(λ)/(
∑

1≤i≤n−1Hζ(gln)e
λi−λi+1+1
i+1,i vλ +Hζ(gln)x

νn+1
n vλ).

Part (b) requires an additional argument. Namely, if L(λ) is finite dimen-
sional, then it can also be considered as a lowest weight representation. Let
b̄ = (b1, . . . , bn) ∈ S̄ be the vertex corresponding to the lowest weight of L(λ).
If the statement of (b) was wrong, there would be a vertex ē = (e1, . . . , en) ∈ S
with two nonzero coordinates, such that (e1, . . . , ei−1, ei + 1, ei+1, . . . , en) ∈ S̄ for
any i. Without loss of generality, suppose e1, e2 �= 0. As we can walk along reverse
edges from b̄ to both points (e1 + 1, e2, . . . , en) and (e1, e2 + 1, e3, . . . , en), we can
also walk along reverse edges to ē, which is a contradiction. This proves part (b)
and explains our terminology “rectangular form”. �

The decomposition of L(λ) as a gln module provides the character formula for
L(λ) as the sum of the characters of gln modules:

(∗) χλ;ζ =
∑

0≤λ−λ′≤ν

∑
w∈Sn

(−1)wew(λ′+ρ)∑
w∈Sn

(−1)wewρ
.

As in the classical theory, this character allows us to calculate the decomposition
of finite dimensional representations into irreducible ones.

Example 4.1. Let us illustrate the decomposition of L(λ) from the proof of The-
orem 4.1; for clarity, we will work with sl2 representations instead of gl2 represen-
tations. Using the notation of the proof, Sk = Sk(x1, x2) ∼= Vk, the irreducible sl2

representation of dimension k + 1. By the Clebsch-Gordon formula,

Vm ⊗ Vk
∼= Vm+k ⊕ Vm+k−2 ⊕ · · · ⊕ Vm+k−2min(k,m).

We can use the above formula to draw the graph, as in Figure 2, representing the
decomposition of L((2, 0)), with ν = (0, 3), into sl2 modules. This representation
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Figure 1. We use a graph to represent the rectangular prism
corresponding to a finite dimensional representation L((5, 3, 0)) of
Hζ(gl3), with the highest weight of each gl3 module indicated.

Figure 2. The decomposition of L((2, 0)), with ν = (0, 3), into sl2 modules.

is the quotient of M((2, 0))/Hζ(gl2)e
3
21vλ by the submodules represented by the

shaded areas of the diagram, and L((2, 0)) ∼= V2 ⊕ V3 ⊕ V4 ⊕ V5 as sl2 modules.

Example 4.2. For Hζ(gl1), the irreducible finite dimensional representation L(λ),

for λ ∈ C, has character χλ,ζ =
∑ν

ν′=0 e
λ−ν′

, where ν is some nonnegative integer.
If we describeHζ(gl1) as in Example 1.1, we can easily calculate the Casimir element
to be fe + g(h), where g satisfies the equation g(x)− g(x− 1) = φ(x). Then, ν is
the smallest nonnegative integer such that g(λ)− g(λ− ν − 1) = 0.

Example 4.3. For Hζ(gl2), the irreducible finite dimensional representations are
necessarily of the form L(λ) with λ = (λ2 +m,λ2), where λ2 ∈ C, m ∈ N0. The
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character of L(λ) equals

χλ;ζ =
∑

(0,0)≤(ν′
1,ν

′
2)≤(ν1,ν2)

e(λ2+m−ν′
1,λ2−ν′

2) − e(λ2−ν′
2−1,λ2+m−ν′

1+1)

1− e(−1,1)
.

Let f1(λ, μ) = P (λ2 +m+ 1
2 , λ2 − 1

2 )− P (λ2 +m+ 1
2 − μ, λ2 − 1

2 ) and f2(λ, μ) =

P (λ2 + m + 1
2 , λ2 − 1

2 ) − P (λ2 + m + 1
2 , λ2 − μ − 1

2 ). Again, ν2 is defined as
the minimal nonnegative integer satisfying f2(λ, ν2 + 1) = 0, while ν1 is either m
or the minimal nonnegative integer satisfying f1(λ, ν1 + 1) = 0. For instance, if
ζ = ζ0r0 with ζ0 �= 0, then f2(λ, μ) is a multiple of μ, and so the only solution to
the equation f2(λ, ν2 + 1) = 0 is ν2 = −1, which is negative. Thus, Hζ0r0(gl2) has
no finite dimensional irreducible representations. If ζ = ζ0r0 + ζ1r1 with ζ1 �= 0,
P (λ) = ζ0(λ1 + λ2) + ζ1((λ1 +

1
2 )

2 + (λ1 +
1
2 )(λ2 − 1

2 ) + (λ2 − 1
2 )

2), so f2(λ, μ) =

ζ1μ
Ä
ζ0
ζ1

+ λ1 + 2λ2 − μ
ä
. Thus, L(λ) is finite dimensional if and only if ζ0

ζ1
+ λ1 +

2λ2 is a positive integer. This agrees with the description of finite dimensional
representations of sl3.

4.2. Existence of L(λ) with a given shape.

Theorem 4.2. For any gln dominant weight λ and ν ∈ N
n
0 such that νi ≤ λi −

λi+1 for all 1 ≤ i ≤ n − 1, there exists a deformation ζ, such that the irreducible
representation L(λ) of Hζ(gln) is finite dimensional and its character is given by
(∗).
Proof. Let λ′ = λ+ ρ. We can write λ′

i = λ′
n + ki for k1 > k2 > k3 > · · · > kn−1 >

kn = 0 (we have strict inequalities because of the shift by ρ). Recall that P (λ) =∑
wmHm(λ′) for wi defined as in Theorem 3.2. Let μi = (0, . . . , νi + 1, 0, . . . , 0).

We will find wi such that P (λ′) − P (λ′ − μi) = 0, while for all 0 < μ′
i < μi,

P (λ′)−P (λ′ − μ′
i) �= 0. This implies that there are embeddings of M(λ′ − μi) into

M(λ′) with an irreducible quotient L(λ′) = M(λ′)/
∑

i M(λ′−μi), due to Theorem
4.1.

Define Pmj = P (λ′)−P (λ′−μ) for μ = (0, . . . ,m+1, 0, . . . , 0) with the m+1 at
the j-th location. We must prove that there exist w such that Pν11 = · · · = Pνnn = 0
and Pν′

11
, . . . , Pν′

nn �= 0 for all 0 < ν′i < νi. We can write Pmj =
∑

i>0 wiR
i
mj , where

RN
mj =

∑
i1+...+in=N

(λ′
n + k1)

i1 · · · (λ′
n + kj−1)

ij−1

((λ′
n + kj)

ij − (λ′
n + kj −m− 1)ij )(λ′

n + kj+1)
ij+1 · · · (λ′

n + kn)
in .

Note that the condition Pkj=0 determines a hyperplane Πkj in the space (w0, w1, . . .)
(Πkj might in fact be the entire space, but the following argument would be unaf-
fected). Hence, the intersection

⋂
Πνjj belongs to the union

⋃
j,0<ν′

j
<νj

Πν′
j
,j if and

only if it belongs to some Πν′
j
,j . Thus, it suffices to show that {Pν11, . . . , Pνnn, Pν′

l
l}

are linearly independent as functions of wi for all 1 ≤ l ≤ n and 0 < ν′l < νl. This
condition of linear independence is satisfied if

det

â
R1

ν11 R2
ν11 · · · Rn+1

ν11

R1
ν22 R2

ν22 · · · Rn+1
ν22

...
...

. . .
...

R1
νnn R2

νnn · · · Rn+1
νnn

R1
ν′
l
l R2

ν′
l
l · · · Rn+1

ν′
l
l

ì
�= 0.
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Now we shall prove that using column transformations, we can reduce the above
matrix to its evaluation at λ′

n = 0. We proceed by induction on the column number.
The elements of the first column, R1

mj , are of degree zero with respect to λ′
n, so

R1
mj = R1

mj(0). Suppose that using column transformations, all columns before
column p are reduced to their constant terms. Now, we note that

∂Rp
mj(λ

′
n)

∂λ′
n

=
∂

∂λ′
n

( ∑
i1+...+in=p

(λ′
n + k1)

i1 · · · ((λ′
n + kj)

ij − (λ′
n + kj −m− 1)ij ) · · ·λ′in

n

)
=

∑
i1+...+in=p−1

(i1 + i2 + . . .+ in + n)(λ′
n + k1)

i1

· · · ((λ′
n + kj)

ij − (λ′
n + kj −m− 1)ij ) · · ·λ′in

n

= (p+ n− 1)Rp−1
mj (λ′

n).

Thus, we see that Rp
mj − Rp

mj(0) is a linear combination of Rp−i
mj (0), the entries of

the other columns:

Rp
mj(λ

′
n) =

∑
i

1

i!
λ′i
n

∂iRp
mj

∂λ′i
n

∣∣∣∣∣
λ′
n=0

=
∑
i

(p+ n− 1) · · · (p+ n− i)

i!
λ′i
nR

p−i
mj (0)

=
∑
i

Ç
p+ n− 1

i

å
Rp−i

mj (0)λ
′i
n.

By selecting pivots of
(
p+n−1

i

)
λ′i
n, we can eliminate every term except Rp

mj(0). By

repeating this step, we reduce the matrix to its evaluation at λ′
n = 0:

det

â
R1

ν11(λ
′
n) R2

ν11(λ
′
n) · · · Rn+1

ν11
(λ′

n)
R1

ν22(λ
′
n) R2

ν22(λ
′
n) · · · Rn+1

ν22
(λ′

n)
...

...
. . .

...
R1

νnn(λ
′
n) R2

νnn(λ
′
n) · · · Rn+1

νnn (λ
′
n)

R1
ν′
l
l(λ

′
n) R2

ν′
l
l(λ

′
n) · · · Rn+1

ν′
l
l (λ′

n)

ì

= det

â
R1

ν11(0) R2
ν11(0) · · · Rn+1

ν11
(0)

R1
ν22(0) R2

ν22(0) · · · Rn+1
ν22

(0)
...

...
. . .

...
R1

νnn(0) R2
νnn(0) · · · Rn+1

νnn (0)
R1

ν′
l
l(0) R2

ν′
l
l(0) · · · Rn+1

ν′
l
l (0)

ì
.
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Let us now rewrite RN
mj(0):

RN
mj(0) =

∑
i1+...+in=N

ki11 · · · kij−1

j−1 (k
ij
j − (kj −m− 1)ij )k

ij+1

j+1 · · · kinn

=
N−1∑
i=0

H ′
N−i−1

Ä
ki+1
j − (kj −m− 1)i+1

ä
=

N−1∑
i=0

HN−i−1

Ä
ki+1
j − (kj −m− 1)i+1 − kj(k

i
j − (kj −m− 1)i)

ä
=

N−1∑
i=0

HN−i−1

(
(m+ 1)(kj −m− 1)i

)
where HN−i =

∑
i1+...+in=N−i k

i1
1 · · · kinn and H ′

N−i =
∑

i1+...+îj+...+in=N−i
ki11

· · ·”kijj · · · kinn . The third equality is because H ′
N−i = HN−i − kjHN−i−1. It is easy

to see that the above determinant can be reduced further to

det

â
ν1 + 1 (ν1 + 1)(k1 − ν1 − 1) · · · (ν1 + 1)(k1 − ν1 − 1)n

ν2 + 1 (ν2 + 1)(k2 − ν2 − 1) · · · (ν2 + 1)(k2 − ν2 − 1)n

...
...

. . . · · ·
νn + 1 (νn + 1)(kn − νn − 1) · · · (νn + 1)(kn − νn − 1)n

ν′l + 1 (ν′l + 1)(kl − ν′l − 1) · · · (ν′l + 1)(kl − ν′l − 1)n

ì

= T · det

â
1 k1 − ν1 − 1 · · · (k1 − ν1 − 1)n

1 k2 − ν2 − 1 · · · (k2 − ν2 − 1)n

...
...

. . . · · ·
1 kn − νn − 1 · · · (kn − νn − 1)n

1 kl − ν′l − 1 · · · (kl − ν′l − 1)n

ì
,

where T = (ν1 + 1)(ν2 + 1) · · · (νn + 1)(ν′l + 1) and the last determinant is∏n
i=1(kl − ki + νi − ν′l)

∏
1≤i<j≤n(kj − ki + νi − νj) by the Vandermonde deter-

minant formula. Now, recalling the conditions 0 ≤ νi ≤ λi − λi+1 = ki − ki+1 − 1
we get kj − ki + νi − νj < 0 for any i < j and so

∏
1≤i<j≤n(kj − ki + νi − νj) is

nonzero. Similarly, we get
∏n

i=1(kl − ki + νi − ν′l) �= 0. Hence, the determinant is
nonzero, and so {Pν1,1, . . . , Pνn,n, Pν′

l
,l} are linearly independent as desired. �

5. Poisson infinitesimal Cherednik algebras

Now we will study infinitesimal Cherednik algebras by using their Poisson ana-
logues. The Poisson infinitesimal Cherednik algebras are as natural as Hζ(gln), and
their theory goes along the same lines with some simplifications. Although these
algebras have not been defined before in the literature, the authors of [EGG] were
aware of them, and technical calculations with these algebras are similar to those
made in [T1]. This approach provides another proof of Theorem 3.1.

Let ζ be a deformation parameter, ζ : V × V ∗ → S(gln). The Poisson infinitesi-
mal Cherednik algebra H ′

ζ(gln) is defined to be the algebra Sgln ⊗S(V ⊕V ∗) with
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a bracket defined on the generators by:

{a, b} = [a, b] for a, b ∈ gln,

{g, v} = g(v) for g ∈ gln, v ∈ V ⊕ V ∗,

{y, y′} = {x, x′} = 0 for y, y′ ∈ V, x, x′ ∈ V ∗,

{y, x} = ζ(y, x) for y ∈ V, x ∈ V ∗.

This bracket extends to a Poisson bracket on H ′
ζ(gln) if and only if the Jacobi

identity {{x, y}, z}+ {{y, z}, x}+ {{z, x}, y} = 0 holds for any x, y, z ∈ gln � (V ⊕
V ∗). As can be verified by computations analogous to [EGG], Theorem 4.2, the

Jacobi identiy holds iff ζ =
∑k

j=0 ζjrj where ζj ∈ C and rj is the coefficient of τ j

in the expansion of (x, (1− τA)−1y) det(1− τA)−1. Actually, we can consider the
infinitesimal Cherednik algebras of gln as quantizations of H ′

ζ(gln).

Remark 5.1 (Due to Pavel Etingof). Note that

{yi, xj} =
∑

ζlrl(yi, xj) =
∑

ζl
∂ tr(Sl+1A)

∂eji
;

this follows from

∂

∂B
(det(1− τA)−1) =

tr(τB(1− τA)−1)

det(1− τA)

when B = yi ⊗ xj . In fact, if {yi, xj} = Fji(A), the Jacobi identity implies that

Fij(A) = ∂F
∂eij

for some GL(n) invariant function F , and that Λ2DA(F ) = 0,

where DA is the matrix with (DA)ij = ∂
∂eij

. One can then show that the only

GL(n) invariant functions F satisfying this partial differential equation are linear
combinations of tr(SlA).

Our main goal is to compute explicitly the Poisson center of the algebra H ′
ζ(gln).

As before, we set Qk to be the coefficient of (−t)k in the expansion of det(1− tA),
τk =

∑n
i=1 xi{Qk, yi}, and ζ(z) = ζ0 + ζ1z + ζ2z

2 + · · · .

Theorem 5.1. The Poisson center zPois(H
′
ζ(gln)) = C[τ1+c1, τ2+c2, . . . , τn+cn],

where (−1)ici is the coefficient of ti in the series

c(t) = Resz=0 ζ(z
−1)

det(1− tA)

det(1− zA)

1

1− t−1z

dz

z
.

Proof. First, we claim that zPois(H
′
0(gln)) = C[τ1, . . . , τn]. The inclusion

C[τ1, . . . , τn] ⊆ zPois(H
′
0(gln)) is straightforward, while the reverse inclusion fol-

lows from the structure of the coadjoint action of the Lie group corresponding to
gln � (V ⊕ V ∗) (as in the proof of [T1], Theorem 2).

We prove that the Poisson center of H ′
0(gln) can be lifted to the Poisson center of

H ′
ζ(gln) by verifying that τi+ci are indeed Poisson central. Since τk ∈ zPois(H0(gln))

and ck ∈ zPois(S(gln)), τk + ck Poisson-commutes with elements of S(gln). We can
define an anti-involution on H ′

ζ(gln) that acts on basis elements by taking eij to eji
and yi to xi. By using the arguments explained in the proof of Theorem 2 in [T1],
we can show that τk is fixed by this anti-involution, while ck is also fixed since it
lies in zPois(S(gln)). Applying this anti-involution, we see that it suffices to show
that ck satisfies {τk + ck, yl} = 0 for basis elements yl ∈ V .
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First, notice that if g ∈ S(gln), then {g, yl} =
∑n

i,j=1
∂g
∂eij

{eij , yl}, and together

with the equation {{Qk, yi}, yl} = 0 (see the proof of Lemma 2.1 in [T1]), we get

{τk, yl} =

{
n∑

i=1

xi{Qk, yi}, yl

}
=

n∑
i=1

{xi, yl}{Qk, yi}

= −
n∑

i=1

Å
Resz=0 ζ(z

−1)
tr(xi(1− zA)−1yl)

z det(1− zA)
dz

ã
{Qk, yi}.

Thus, we have

{τk+ck, yl}=
n∑

i,j=1

∂ck
∂eij

{eij , yl}−
n∑

i=1

Å
Resz=0 ζ(z

−1)
tr(xi(1− zA)−1yl)

z det(1− zA)
dz

ã
{Qk, yi}.

Hence, {τk+ ck, yl} = 0 is equivalent to the system of partial differential equations:
n∑

i,j=1

∂ck
∂eij

{eij , yl} =
n∑

i=1

Å
Resz=0 ζ(z

−1)
tr(xi(1− zA)−1yl)

z det(1− zA)
dz

ã
{Qk, yi}.

Multiplying both sides by (−t)k and summing over k = 1, . . . , n, we obtain an
equivalent single equation

n∑
i,j=1

∂c(t)

∂eij
{eij , yl} =

n∑
i=1

Å
Resz=0 ζ(z

−1)
tr(xi(1− zA)−1yl)

z det(1− zA)
dz

ã
{det(1− tA), yi}.

Since all terms above are GL(n) invariant and diagonalizable matrices are dense
in gln, we can set A = diag(a1, . . . , an):

∂c(t)

∂al
yl =

Å
Resz=0

ζ(z−1)

z(1− zal) det(1− zA)
dz

ã
{det(1− tA), yl}

=

Å
Resz=0

ζ(z−1)

z(1− zal) det(1− zA)
dz

ã
∂ det(1− tA)

∂al
yl

= −
Å
Resz=0

ζ(z−1)

z(1− zal) det(1− zA)
dz

ã
t det(1− tA)

1− tal
yl,

and it is easy to see that c(t) satisfies the above equation. �

Example 5.1. In particular, c1 =
∑k

i=0 ζi trS
i+1A.

Remark 5.2. Another way of writing the formula for ck is

ck = Resz=0 ζ(z
−1)Gk(z)

dz

z2
,

where Gk(z) =
∑

zmym,k(A) and ym,k(A) = χ (m, 1, . . . , 1)︸ ︷︷ ︸
k

, the character of an

irreducible gln module corresponding to a hook Young diagram1. This provides a
better insight for the quantization construction.

Remark 5.3. We expect that for any a1, . . . , an ∈ C, the induced symplectic struc-
ture on Spec(S(gln)⊗S(V ⊕ V ∗)/(τ1 + c1 − a1, . . . , τn + cn − an)) has only finitely
many symplectic leaves.

1This formula follows from the fact that in the Grothendieck ring of finite dimensional gln
representations, [

∧k V ⊗ SmV ]− [
∧k+1 V ⊗ Sm−1V ] + · · ·+ (−1)m[

∧k+m V ] = [V(m+1,1,...,1)]

due to Pieri’s formula.
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6. Passing from commutative to noncommutative algebras

Note that {g, y} ∈ S(gln) ⊗ V for g ∈ S(gln) and y ∈ V ; we can thus identify
{g, y} =

∑n
i=1 hi ⊗ yi ∈ H ′

ζ(gln) with the element
∑n

i=1 Sym(hi)yi ∈ Hζ(gln).

Lemma 6.1.

[trSk+1A, y] =

{
k∑

j=0

(−1)j

k + n+ 1

Ç
k + n+ 1

j + 1

å
trSk+1−jA, y

}
.

Proof. It is enough to consider the case y = y1. Recall that trSk+1(A) can be
written as a sum of degree k+1 monomials of form e1,i1 · · · e1,is1e2,is1+1

· · · e2,is1+s2

· · · en,is1+···+sn
where s1 + · · ·+ sn = k + 1 and the sequence {ik} is a permutation

of the sequence of s1 ones, s2 twos, and so forth; for conciseness, we will denote the
above monomial by e1,i1 · · · en,ik+1

. The only terms of trSk+1A that contribute to

[trSk+1A, y1] and to {trSk+1A, y1} have s1 ≥ 1. Since to compute [trSk+1A, y1] we
first symmetrize trSk+1A, we will compute [Sym(e1,i1 · · · en,ik+1

), y1]− {Sym(e1,i1
· · · en,ik+1

), y1}. For both the Lie bracket and the Poisson bracket, we use Leibniz’s
rule to compute the bracket, but whereas in the Poisson case we can transfer the
resulting elements of V to the right since the Poisson algebra is commutative, in
the Lie case when we do so extra terms appear.

Consider a typical term that may appear after we use Leibniz’s rule to compute
[trSk+1A, y1]:

· · · yj0 · · · ej1j0 · · · ej2j1 · · · ejN jN−1
· · ·

When we move yj0 to the right, we get, besides · · · ej1j0 · · · ej2j1 · · · ejN jN−1
· · · yj0 ,

additional residual terms like − · · · ej2j1 · · · ejN jN−1
· · · yj1 and · · · ej3j2 · · · ejN jN−1

· · · yj2 , up to (−1)N · · · yjN . Without loss of generality, we can consider only the
last expression, since the others will appear in the smaller chains

· · · yj0 · · · ej1j0 · · · ‘ej2j1 · · · ‘ej3j2 · · · ◊�ejN jN−1

and

· · · yj0 · · · ej1j0 · · · ej2j1 · · · ‘ej3j2 · · · ◊�ejN jN−1
,

and so forth, with the same coefficients. For notational convenience, we let z1
denote the coefficient of yjN in the residual term, i.e., the term represented by the
ellipsis: (−1)N · · ·︸︷︷︸

z1

yjN . Then, z1yjN is a term in the expression (−1)N{z1ejN1, y1},

which appears in (−1)N{trSk+1−NA, y1}. Thus, we can write

[trSk+1A, y1] =

{
k∑

N=0

(−1)NCN trSk+1−NA, y1

}
for some coefficients CN .

Next, we compute CN . We first count how many times z1yjN appears in
{trSk+1−NA, y1}. Notice that since z1 is the product of k−N ejl’s, we can insert
ejN1 in k −N + 1 places to obtain z2 such that {z2, y1} contains z1yjN .

Now we compute the coefficient of z2 in trSk+1−NA. As noted before,
trSk+1−N(A) can be written as a sum of degree k + 1 − N monomials of form
e1,i1 · · · e1,is1 e2,is1+1

· · · e2,is1+s2
· · · en,ik+1−N

. Any term that is a permutation of

those k + 1 − N unit matrices will appear in the symmetrization of trSk+1−NA.
We count the number of sequences i1, . . . , ik+1−N such that z2 is the product
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of the elements e1,i1 , . . . , en,ik+1−N
(in some order); this tells us the multiplic-

ity of z2 in the symmetrization of trSk+1−NA. Suppose z2 = e1,i1 · · · en,ik+1−N

for a certain sequence i1, . . . , ik+1−N . Then, z2 = e1,i′1 · · · en,i′k+1−N
if and only if

i′s1+···+sj−1+1, . . . , i
′
s1+···+sj is a permutation of is1+···+sj−1+1, . . . , is1+···+sj for all j.

Thus, z2 appears s1!s2! · · · sn! times in trSk+1−NA. Since each term has coefficient
1

(k−N+1)! in the symmetrization, z2 appears with coefficient

s1!s2! · · · sn!
(k −N + 1)!

in the symmetrization of trSk+1−NA. In conjunction with the previous paragraph,
we see that z1yjN appears

s1!s2! · · · sn!
(k −N + 1)!

× (k −N + 1) =
s1!s2! · · · sn!
(k −N)!

times in {trSk+1−NA, y1}.
It remains to calculate how many times z1yjN appears in [trSk+1A, y1]. Recall

that z1 is obtained from a term like:

· · · ej01 · · · ej1j0 · · · ej2j1 · · · ejN jN−1
· · ·

where the ordered union of the ellipsis equals z1. Thus, z1 comes from terms of the
following form: we choose arbitrary numbers j0, . . . , jN−1, and insert ej01, ej1j0 , . . . ,
ejN jN−1

into z1. There are

(k + 1)(k) · · · (k + 1−N)

(N + 1)!

ways for this choice for any fixed j0, . . . , jN−1. Any such term z3 appears in
trSk+1A with coefficient

s′1! · · · s′n!
(k + 1)!

where s′l is the total number of eli’s (for some i) in z3, i.e., sl+number of ji’s with
ji = l, 0 ≤ i < N .

Combining the results of the last two paragraphs, we see that {trSk+1−NA, y1}
must appear with coefficientÅ

(k + 1)(k) · · · (k + 1−N)

(N + 1)!

∑ s′1! · · · s′n!
(k + 1)!

ã ¡
s1!s2! · · · sn!
(k −N)!

=
1

(N + 1)!

∑ s′1! · · · s′n!
s1!s2! · · · sn!

,

where the summation is over all length-N sequences {jl} of integers from 1 to n.
We claim that ∑

s′1! · · · s′n!
s1! · · · sn!

= (k + n) · · · (k + n−N + 1).

To see this, notice that
∑

s′1!···s′n!
s1!···sn! is the coefficient of tN in the expression

N !
n∏

i=1

Å
1 + (si + 1)t+

(si + 1)(si + 2)

2!
t2 + · · ·

ã
.

The above generating function equals N !
∏n

i=1(1−t)−(si+1) = N !(1−t)−(k+1−N+n),
and the coefficient of tN in this expression is (k + n) · · · (k + n−N + 1).
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Finally, we arrive at the simplified coefficient of {trSk+1−NA, y1}:

CN =
1

(N + 1)!

∑ s′1! · · · s′n!
s1!s2! · · · sn!

=
(k + n) · · · (k + n−N + 1)

(N + 1)!
,

as desired. �

Now we will give an alternative proof of Theorem 3.1.

Proof. Let f(z) be the polynomial satisfying f(z) − f(z − 1) = ∂n(znζ(z)) and
g(z) = z1−n 1

∂n−1 f(z) (in the expression for g(z), we discard any negative powers

of z). Note that if g(z) = gk+1z
k+1 + · · ·+ g1z, then

ζ(z) =
k+1∑
j=1

j−1∑
i=0

1

j + n

Ç
j + n

i+ 1

å
(−1)igjz

j−1−i,

ζj−1 =

k−j+1∑
i=0

1

j + i+ n

Ç
j + n+ i

i+ 1

å
(−1)igj+i.

Lemma 6.1 allows us to write[
k+1∑
j=1

gj trS
jA, y

]
=

{
k+1∑
j=1

j−1∑
i=0

1

j + n

Ç
j + n

i+ 1

å
(−1)igj trS

j−iA, y

}

=

{
k+1∑
j=1

k−j+1∑
i=0

1

j + i+ n

Ç
j + i+ n

i+ 1

å
(−1)igj+i trS

jA, y

}

=

{
k+1∑
j=1

ζj−1 trS
jA, y

}
.

Hence,

[t1, y]=
n∑

i=1

[xi, y]yi=
n∑

i=1

{xi, y}yi = −
{

k+1∑
j=1

ζj−1 trS
jA, y

}
= −

[
k+1∑
j=1

gj trS
jA, y

]
,

where the third equality follows from the fact that τ1+
∑k+1

j=1 ζj−1 trS
jA is Poisson-

central in H ′
ζ(gln) (see Example 5.1). Thus, we get t′1 = t1 + C ′, where

C ′ =
k+1∑
j=1

gj trS
jA = Resz=0 g(z

−1) det(1− zA)−1z−1dz. �

Remark 6.1. Comparing the formula for c1 in Example 5.1 to the one from Theorem
3.1, we see that they differ only by a change zζ(z) � g(z). We expect that a similar
twist of the formula for c(t) given in Theorem 5.1 will provide the formulas for the
actions of the generators of z(Hζ(gln)) on the Verma module M(λ− ρ).

7. Algebras Hζ(sp2n) and H ′
ζ(sp2n)

Let V be the standard 2n-dimensional representation of sp2n with symplectic
form ω, and let ζ : V × V → U(sp2n) be an sp2n invariant bilinear form. The
infinitesimal Cherednik algebra Hζ(sp2n) is defined as the quotient of U(sp2n) �
T (V ) by the relation [x, y] = ζ(x, y) for all x, y ∈ V , such that Hζ(sp2n) satisfies
the PBW property. In [EGG], Theorem 4.2, it was shown that Hζ(sp2n) satisfies

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



576 F. DING AND A. TSYMBALIUK

the PBW property if and only if ζ =
∑k

j=0 ζ2jr2j where rj is the symmetrization

of the coefficient of zj in the expansion of

ω(x, (1− z2A2)−1y) det(1− zA)−1 = r0(x, y) + r2(x, y)z
2 + · · · .

Note that for A ∈ sp2n, the expansion of det(1− zA)−1 contains only even powers
of z.

Remark 7.1. For ζ0 �= 0, there is an isomorphism Hζ0r0(sp2n)
∼= U(sp2n) � An,

where An is the n-th Weyl algebra (see [EGG] Example 4.11). Thus, we can regard
Hζ(sp2n) as a deformation of U(sp2n)�An.

Choose a basis vj of V , so that

ω(x, y) = xTJy,

with

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
−1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0

0 0 −1 0
. . .

...
...

...
...

...
. . .

. . .
...

...
0 0 0 0 · · · 0 1
0 0 0 0 · · · −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As before, we study the noncommutative infinitesimal Cherednik algebra Hζ(sp2n)
by considering its Poisson analogue H ′

ζ(sp2n). We define
∑n

i=0 Qiz
2i = det(1−zA)

and

τi = (−1)i−1
2n∑
j=1

{Qi, vj}v∗j ,

where {v∗j } is dual to {vj} (that is, ω(vi, v
∗
j ) = δij). When viewed as an element of

C[sp2n � V ],

τi = −
i−1∑
j=0

Qjω(A
2i−1−2jv, v),

so τi is sp2n invariant and independent of the choice of basis {vi}.
Proposition 7.1. The Poisson center of H ′

0(sp2n) is C[τ1, . . . , τn].

Proof. We will follow a similar approach as in the proof of Theorem 2.1, [T1]. Let
L be the Lie algebra sp2n � V and S be the Lie group of L. We need to verify
that C[τ1, . . . , τn] = zPois(H

′
0(sp2n)), the latter being identified with C[L∗]S . Let

M ⊂ L be the 2n-dimensional subspace consisting of elements of the form

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 y12 0 · · · 0 0

y21
. . .

. . .
. . .

...
...

0
. . . 0 y2n−3,2n−2 0 0

0 0 y2n−2,2n−3 0 0 0
0 · · · 0 0 0 y2n−1,2n

0 · · · 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
0
y2n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where all the y’s belong to C. In what follows, we identify L∗ and L via the
nondegenerate pairing, so that the coadjoint action of S is on L. We use the
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following two facts proved in [K]: first, that the orbit of M under the coadjoint
action of S on L∗ is dense in L∗; and second, that C[L∗]S ∼= C[f1, . . . , fn], where

fi|M (y) = σi−1(y2,1y1,2, y3,2y2,3, . . . , y2n−2,2n−3y2n−3,2n−2)y2n−1,2ny
2
2n

and σj is the j-th elementary symmetric polynomial. It is straightforward to see
that τi|M = fi, and so C[L∗]S ∼= C[τ1, . . . , τn] as desired. �

As before, let ζ(z) = ζ0 + ζ2z
2 + ζ4z

4 + · · · .

Theorem 7.1. The Poisson center zPois(H
′
ζ(sp2n)) = C[τ1+c1, τ2+c2, . . . , τn+cn],

where (−1)i−1ci is the coefficient of t2i in the series

c(t) = 2Resz=0 ζ(z
−1)

det(1− tA)

det(1− zA)

z−1

1− z2t−2
dz.

Proof. Since ci ∈ zPois(S(sp2n)), {τi + ci, g} = 0 for any g ∈ S(sp2n), and so it
suffices to show that {τi + ci, v} = 0 for all v ∈ V . By the Jacobi rule,

{τi, v} = (−1)i−1
∑
j

{Qi, vj}{v∗j , v}+ (−1)i−1
∑
j

{{Qi, vj}, v}v∗j .

Thus,
(7.1)

{τi + ci, v} = (−1)i−1
∑
j

{Qi, vj}{v∗j , v}+ (−1)i−1
∑
j

{{Qi, vj}, v}v∗j + {ci, v}.

In the case of H ′
ζ(gln),

∑
j{{Qi, yj}, y}xj = 0 by straightforward application of

properties of the determinant. However, for H ′
ζ(sp2n),

∑
j{{Qi, vj}, v}v∗j �= 0.

To calculate this sum, let B be a basis of sp2n (the basis elements are given in
the Appendix, but for the purposes of this section, the specific elements are not
needed). Write

∑
j

{{Qi, vj}, v}v∗j =
∑
j

{∑
e∈B

∂Qi

∂e
e(vj), v

}
v∗j

=
∑
j

(∑
e∈B

∂Qi

∂e
{e(vj), v}v∗j +

ß
∂Qi

∂e
, v

™
e(vj)v

∗
j

)
.

Lemma 7.1. ∑
j

∑
e∈B

ß
∂Qi

∂e
, v

™
e(vj)v

∗
j = 0.

The proof of this lemma is quite technical and is provided in the Appendix.
Using the fact that

∑
j{{Qi, vj}, v}v∗j =

∑
j

∑
e∈B

∂Qi

∂e {e(vj), v}v∗j , we can re-
strict (7.1) to diagonal matrices, which are spanned by elements ei = diag(0, . . . , 1,
−1, 0, . . . , 0) with 1 at the 2i−1-th coordinate. Thus, the condition {τi+ ci, v} = 0
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is equivalent to:

0 = (−1)i−1
∑
j

∑
k

∂Qi

∂ek
{ek, vj}{v∗j , v}

+ (−1)i−1
∑
k

Å
∂Qi

∂ek
{v2k−1, v}v2k +

∂Qi

∂ek
{v2k, v}v2k−1

ã
+
∑
k

∂ci
∂ek

{ek, v}

= 2(−1)i−1
∑
k

∂Qi

∂ek
(v2k−1{v2k, v}+ v2k{v2k−1, v}) +

∑
k

∂ci
∂ek

{ek, v}.

Multiplying the above equation by (−1)i−1t2i and summing over i for i = 1, . . . , n,
the required condition transforms into:

0 = 2
∑
k

∂ det(1− tA)

∂ek
(v2k−1{v2k, v}+ v2k{v2k−1, v}) +

∑
k

∂c(t)

∂ek
{ek, v}.

It suffices to check this condition for basis vectors v = v2s−1 and v = v2s.
Substituting, we get

0 = 2
∑
k

∂ det(1− tA)

∂ek
(v2k−1{v2k, v2s−1}+ v2k{v2k−1, v2s−1}) +

∂c(t)

∂es
v2s−1

and

0 = 2
∑
k

∂ det(1− tA)

∂ek
(v2k−1{v2k, v2s}+ v2k{v2k−1, v2s})−

∂c(t)

∂es
v2s.

These last two formulas both reduce to

∂c(t)

∂es
= −2

∂ det(1− tA)

∂es
{v2s, v2s−1}

= −2
∂ det(1− tA)

∂es

(
Resz=0 ζ(z

−1)ω(v2s, (1− z2A2)−1v2s−1)

× det(1− zA)−1z−1dz
)

= 2Resz=0 ζ(z
−1)

∂ det(1− tA)

∂es

1

1− z2λ2
s

det(1− zA)−1z−1dz,

and it is straightforward to verify that c(t) satisfies the above equation. �

We now briefly consider the center of Hζ(sp2n). Let βi ∈ U(sp2n) be the sym-
metrization of Qi, and let

ti = (−1)i−1
2n∑
j=1

[βi, vj ]v
∗
j .

Clearly, ti is independent of the choice of basis {vj} and sp2n invariant.

Conjecture 7.1.2 The center of Hζ(sp2n) is z(Hζ(sp2n))=C[t1 +C1, . . . , tn +Cn]
for some Ci ∈ z(U(sp2n)).

2This conjecture was recently proved in [LT], using another presentation of Hζ(sp2n).
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8. Kostant’s Theorem

Recall Kostant’s theorem in the classical case ([BL]):

Theorem. Let g be a reductive Lie algebra with an adjoint-type Lie group G, and
let J ⊂ C[g∗] be the ideal generated by the homogeneous elements of C[g∗]G of
positive degree. Then:

(1) U(g) is a free module over its center z(U(g));
(2) the subscheme of g defined by J is a normal reduced irreducible subvariety

that corresponds to the set of nilpotent elements in g.

In [T2], Kostant’s theorem was generalized toHζ(gln). In this section, we provide
a similar generalization forHζ(sp2n) assuming Conjecture 7.1: z(Hζ(sp2n)) = C[t1+
C1, . . . , tn + Cn]. As in Section 3, we define t′i = ti + Ci.

Introduce a filtration on Hζ(sp2n) with deg g = 1 for all g ∈ sp2n and deg v =
m + 1

2 for all v ∈ V , where m is half the degree of ζ(z); this choice of filtration is
also clarified by [LT]. Let

Bm = S(V ⊕ sp2n)/

(
(−1)i−1

∑
j

{Qi, vj}v∗j + ctopi

)
1≤i≤n

,

where τ ′i := τi + ctopi are the generators of z(H ′
rm(sp2n)) given in Theorem 7.1; if

Conjecture 7.1 is true, ctopi is also the highest term of Ci.

Theorem 8.1. (1) Assuming that Conjecture 7.1 is true, Hζ(sp2n) is a free module
over its center.

(2) Bm is a normal complete-intersection integral domain.

Proof. (1) Introduce a filtration on Bm with deg g = 1 for g ∈ sp2n and deg v =

0 for v ∈ V . Define B
(1)
m by B

(1)
m = grBm = S(V ⊕ sp2n)/(c

top
i )1≤i≤n. The

formula in Theorem 7.1 implies that C[λ1, . . . , λn]
Sn is a free and finite module

over C[gr ctop1 , . . . , gr ctopn ], so C[h]W is finite and free over C[ctop1 , . . . , ctopn ]. Since
S(sp2n) is free over C[h]W by the classical Kostant’s theorem, S(sp2n), and hence

S(sp2n) ⊗ SV , is free over C[ctop1 , . . . , ctopn ]. Thus, S(V ⊕ sp2n) is free over C[τ1 +

ctop1 , . . . , τn + ctopn ], implying the result.
(2) To show that Bm is a normal integral domain, it suffices to show that the

smooth locus of the zero set of τ ′1, τ
′
2, . . . , τ

′
n has codimension 2 and is irreducible.

Let Z = Spec(Bm) be a closed subscheme of V ⊕ sp2n defined by τ ′i = 0, and let

U := Z\Zsm = {(v,A) ∈ V ⊕ sp2n|(v,A) ∈ Z and rank(Jac) < n},

where Jac is the Jacobi matrix of τ ′1, τ
′
2, . . . , τ

′
n at (v,A) with respect to some basis

of V and sp2n. It suffices to show that U is a codimension 2 subvariety of Z and
that the latter is irreducible.

Now, recall that∑
(−1)i−1{Qi, vj}v∗j = −(ω(A2i−1v, v)+Q1ω(A

2i−3v, v)+Q2ω(A
2i−5v, v) + · · · ).

By changing basis, we can rewrite ((−1)i−1∑
j{Qi, vj}v∗j +ctopi )1≤i≤n as (Si)1≤i≤n,

where

Si = −ω(A2i−1v, v) + fi(c
top
1 , . . . , ctopi ,Q1, . . . ,Qi−1)
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and fi(c
top
i ,Qi) are polynomial expressions in ctop1 , . . . , ctopi and Q1, . . . ,Qi−1 (in

particular, there is no dependence on v). We can and will use the Jacobian of Si

instead of τ ′i to describe U .
Let us calculate the derivatives of ω(A2i−1v, v) with respect to yj ∈ V and

γ ∈ sp2n:

∂

∂yj
(ω(A2i−1v, v)) = 2ω(A2i−1v, yj),

∂

∂γ
(ω(A2i−1v, v)) = ω(A2i−2γv +A2i−3γAv + · · ·+ γA2i−2v, v).

Thus, if

μ1grad(S1) + μ2grad(S2) + · · ·+ μngrad(Sn) = 0

for some μ1, μ2, . . . , μn ∈ C, then

ω(μ1Av, yj) + ω(μ2A
3v, yj) + · · ·+ ω(μnA

2n−1v, yj) = 0

for all 1 ≤ j ≤ 2n. Equivalently, (μ1A+ μ2A
3 + · · ·+ μnA

2n−1)v = 0.

Now we will consider the situation in B
(1)
m = grBm. We know that dimZ =

dim Z̃, where Z̃ = SpecB
(1)
m = V ×N and N is the nilpotent cone of sp2n. Since V

and N are irreducible, Z̃, and hence Z, is irreducible. Recall that U was defined as
the locus of points (v,A) ∈ Z ⊂ V ⊕sp2n such that rank(Jac) < n, or in other words,
all n × n minors of the Jacobian matrix have determinant 0. Since each of those
determinants is homogeneous with respect to our second filtration, it is natural to
define Ũ ⊂ Z̃ as a locus of points where rank(Jac) < n. Then, dimU ≤ dim Ũ .

Note that Ũ = Ũ1 � Ũ2, where Ũ1 = Ũ ∩ {(v,A)|A is regular nilpotent} and Ũ2 =

Ũ ∩ {(v,A)|A is not a regular nilpotent}. The codimension of a regular nilpotent’s

orbit is 2, so codimZ̃(Ũ2) ≥ 2. It suffices to show that codimZ̃(Ũ1) ≥ 2 as well. We
shall do this by showing that given a regular nilpotent A, dim(VA,sing) ≤ 2n − 2,

where VA,sing = {v ∈ V |(v,A) ∈ Ũ}.
Let us switch to a basis of sp2n where the skew symmetric form is represented

by the matrix

J ′ =

â
0 · · · 0 0 −1
0 · · · 0 1 0
0 · · · −1 0 0
... . .

. ...
...

...
1 0 0 · · · 0

ì
.

If we define

A =

â
0 1 0 · · · 0
0 0 1 · · · 0
...

... · · · . . . 0
0 0 0 · · · 1
0 0 0 · · · 0

ì
,

then AJ ′+J ′AT = 0, implying A ∈ sp2n. Now, suppose that
∑

1≤j≤n μjgrad(Sj) =

0 at (A, v), for v = (a1, . . . , a2n). By examining the ∂
∂yj

components of grad(Sj), we

get a2n = 0; moreover, either a2n−1 = 0, or μ1 = · · · = μn−1 = 0. The conditions
a2n = a2n−1 = 0 define a codimension two subspace as desired. We thus need to
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show that if a2n = 0 and μ1 = · · · = μn−1 = 0, then
∑

1≤j≤n μjgrad(Sj) = 0
implies a nontrivial condition on v. To find such a condition, note that

∂

∂γ
(ω(A2n−1v, v)) = ω(A2n−2γv, v) + ω(A2n−3γAv, v) + · · ·+ ω(γA2n−2v, v),

and that ∂
∂γ fi(c

top
1 , . . . , ctopi ,Q1, . . . ,Qi−1) does not depend on v. Now, let us

take γ = e2n,1; we can verify that e2n,1J
′ + J ′eT2n,1 = 0, so e2n,1 ∈ sp2n. We

note that e2n,1A
2n−2 = e2n,2n−1, Ae2n,1A

2n−3 = e2n−1,2n−2, A2e2n,1A
2n−4 =

e2n−2,2n−3 and so forth. Thus, ∂
∂γ (ω(A

2n−1v, v)) = ω(AT v, v). However, setting

v = (a1, . . . , a2n−1, 0), we get ω(AT v, v) = ω((0, a1, . . . , a2n−1), (a1, . . . , a2n−1, 0)),
which is a nontrivial degree two polynomial in a1, . . . , a2n−1 that should equal the
number ∂

∂γ (fi(c
top
1 , . . . , ctopi ,Q1, . . . ,Qi−1))(A). This gives the other codimension

1 condition, and so Ũ1 is at least of codimension 2 in Z̃ as desired. �

Appendix: Proof of Lemma 7.1

In this section, we will outline the proof of Lemma 7.1, which states:

(†)
2n∑
j=1

∑
e∈B

ß
∂Qi

∂e
, v

™
e(vj)v

∗
j = 0.

We use the basis for V defined in Section 7, in which ω is represented by the matrix
J .

Let us multiply (†) by t2i and sum over i to get the equivalent assertion that∑
j

∑
e∈B

ß
∂ det(1− tA)

∂e
, v

™
e(vj)v

∗
j = 0.

Since the whole sum is sp2n-invariant (even though each term considered separately
is not), we can look at the restriction of the sum to h. Thus, this sum equals zero
if and only if ∑

j

∑
e∈B

ß
∂ det(1− tA)

∂e
, v

™
e(vj)v

∗
j

∣∣∣∣∣∣
h

= 0.

We choose the following basis B for sp2n: e2j−1,2j , e2j,2j−1, e2j−1,2j−1 − e2j,2j ,
for all 1 ≤ j ≤ n, and for all 1 ≤ k < l ≤ n, the elements e2l−1,2k + e2k−1,2l,
e2l,2k − e2k−1,2l−1, e2l−1,2k−1 − e2k,2l, and e2l,2k−1 + e2k,2l−1. We observe that for
any 1 ≤ j, j′ ≤ 2n, there exists a unique basis vector in B that takes vj to ±vj′ ; we
shall denote this element by vj′,j ∈ B. These vj′,j are not pairwise distinct since
there are basis vectors with two nonzero entries.

Since Sp2n acts transitively on V , we can assume v = v1. Using the above basis,
we get∑

j

∑
e∈B

ß
∂ det(1− tA)

∂e
, v1

™
e(vj)v

∗
j =

∑
j,j′,k

∂2 det(1− tA)

∂vk,1∂vj′,j
vj′vkv

∗
j (−1)ιjj′ ,

where

ιjj′ =

ß
1 if j ≡ j′ mod 2 and j < j′, or if j′ = j and j is even,
0 otherwise.
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We now restrict to h. We have ∂2 det(1−tA)
∂vk,1∂vj′,j

∣∣∣
h
�= 0 only when the matrices for vk,1

and vj′,j have nonzero entries on the diagonal, or if vk,1 and vj′,j have nonzero
entries at the i-th row j-th column and j-th row i-th column, respectively. This
can only happen when vj′vkv

∗
j = v1vav

∗
a for some a. We can list all the ways this

can happen for a = 2b or a = 2b − 1 with b �= 1 (keeping in mind that v∗2b−1 = v2b
and v∗2b = −v2b−1):

(1) ∂2 det(1−tA)
∂v1,1∂v2b−1,2b−1

v1v2b−1v2b,

(2) ∂2 det(1−tA)
∂v1,1∂v2b,2b

v2bv1v2b−1,

(3) ∂2 det(1−tA)
∂v2b−1,1∂v1,2b−1

v1v2b−1v2b,

(4) ∂2 det(1−tA)
∂v2b,1∂v1,2b

(−v1v2bv2b−1),

(5) ∂2 det(1−tA)
∂v2b,1∂v2b−1,2

(−v2b−1v2bv1),

(6) ∂2 det(1−tA)
∂v2b−1,1∂v2b,2

v2b−1v2bv1.

To calculate the derivatives, let A1 be the 4 by 4 matrix formed by the intersections
of the first, second, 2b − 1-th, and 2b-th rows and columns of A, and let A2 be
the 2n − 4 by 2n − 4 matrix formed by the intersections of the remaining rows
and columns. The space of all such A2 is isomorphic to sp2n−4, and we denote
the Cartan subalgebra of diagonal matrices of this space by h(A2). All six of the
above derivatives evaluate to the same polynomial in h(A2) times the corresponding

derivative in sp4; for instance,
∂2 det(1−tA)

∂v1,1∂v2b−1,2b−1
= h∂2 det(1−tA1)

∂v′
1,1∂v

′
3,3

with v′1,1, v
′
3,3 ∈ sp4

and h ∈ S(h(A2))[t]. Thus, we can reduce our problem to sp4, and straightforward
computations verify (†) for sp4. Similarly, when b = 1 (that is, when the term is of
the form v1v1v2), all computations will reduce to analogous ones in sp2.
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