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0. Introduction

The primary purpose of this note is to provide proofs for the description of the classical limits of the
algebras u((;g and ‘A;:% from [4,9]. Here ugf’g and HEJ% are the quantum toroidal and the affine Yangian
algebras of sl,, (if n > 2) or gl; (if n = 1), while classical limits refer to the limits of these algebras as ¢ — 1
or h — 0, respectively. We also discuss the classical limits of certain constructions for ug’fj.

The case n = 1 has been essentially worked out in [7]. In this note, we follow the same approach to prove
the n > 1 generalizations. While writing down this note, we found that the n > 3 case has been considered
in [10] long time ago (to deduce our Theorems 2.1 and 2.2, one needs to combine [10] with [1]). Hence, the
only essentially new case is n = 2. Meanwhile, we expect our direct arguments to be applicable in some
other situations of interest.

This paper is organized as follows:

e In Section 1, we recall explicit definitions of the Lie algebras iifi") and gjgn), whose universal enveloping

algebras coincide with the classical limits of ufjg and ‘é;;% We also recall the notion of n x n matrix algebras
over the algebras of difference/differential operators on C* and their central extensions, denoted by 5§n)
and z‘)g"), respectively.

e In Section 2, we establish two key isomorphisms relating the classical limit Lie algebras il((in),gj[gn) to

the aforementioned Lie algebras 5&2), @gg

e In Section 3, we discuss the classical limits of the following constructions for U((In; (n>2):
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— the vertical and horizontal copies of a quantum affine algebra Uq(é\[ ) inside u( from [3],
— the Miki’s automorphism w : "u(" - u( from [5],

— the commutative subalgebras A(so, ey Sn—l) of ug’fg’* from [4].

1. Basic constructions

1.1. The quantum toroidal algebra ug’;} and the affine Yangian ‘d;:%

For n € N, set [n] := {0,1,...,n — 1} viewed as a set of mod n residues and [n]* := [n]\{0}. For n > 2,
we set a5 = 261’,]’ — (51‘7]‘4_1 - 5i7j—1 and mg; ‘= (Si7j+1 — 6i,j—1 for all i,j S [’I”L}

o Given h, § € C, let ‘é(n) be the affine Yangian of sl,, (if n > 2) or gl; (if n = 1) as considered in [9], where

it was denoted by 9(;_) h.2h,—B—h- These are unital associative C-algebras generated by {xfr, gi,r}jg[i J]r (here
Zy :={se€Z|s >0} =NU{0}) and with the defining relations as in [9, Sect. 1.2]. We will list these

relations only for h = 0, which is of main interest in the current paper.

o Given ¢q,d € C*, let ufl’g be the quantum toroidal algebra of sl,, (if n > 2) or gl; (if n = 1) as considered
in [4] but without the generators gt g*% and with y*1/2 = ¢*¢/2, These are unital associative C-algebras
generated by {€ik, fik, Pik, c}le[n] and with the defining relations specified in [4, Sect. 2.1 and 5]. We note

that algebras ug" , 1 from [9, Sect. 1.1] are their central quotients.
) sdq

1.2. The Lie algebra iigl)

In the ¢ — 1 limit, all the defining relations of u(") become of Lie type. Therefore, the ¢ — 1 limit

of U ") s 1som0rphlc to the universal enveloping algebra U (i n)) The Lie algebra u( ") s generated by
{€ik, fl k> ik, c}le[n] with ¢ being a central element and the rest of the defining relations (ul—u7.2) to be
given below in each of the 3 cases of interest: n > 2, n =2, and n = 1.

e For n > 2, the defining relations are

[hi ey hja] = kag jd "9 6 e, (ul)

[€ikt1,€50) = d ™€k, €5141), (u2)

[fisks1s Fial = d79 [ fik, Fiaeal, (u3)

[€i,s f10] = 8 jhi gt + ki 0,1, (ud)

(i ks €50]) = @i jd ™ ™9804, (u5)

(hikes F0] = —aijd™ "™ f 14, (u6)

> [Ciskys [Cikyays i1l = 0 and [€; 4, &54] = 0 for j #d,i £ 1, (u7.1)
TEXS

ST itniys Fikngays Frtral) = 0 and [fig, fiu] = 0 for j # i,i+ 1. (u7.2)

TEX
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e For n = 2, the defining relations are

[hiks hit] = 2k0k 16, [Rig, hiv1a] = —k(d™ +d7%)éy, ¢, (ul)

[€i,k415 €i,1) = [Ciks Eiigr]s [Eiprs €igrt] — (A4 d ) [Epr1s Cir41) + [Eigs Ei1042] =0, (u2)

[fier1s fidl = Uik fiurrls igrzs firrd) — (d4+d™ D fine1, firrarr] + i, firriae] =0, (u3)

[€iks Fi1) = 61 ihi k1 + kb4 Ok, i€, (ud)
[hiks €i1] = 2€i04ks [higs Ei10] = —(d + d™")Ei1,04k, (ub)
[higes fidl = =2fia4ns [hig, fivra] = (d* +d7F) fis1iqm (u6)
Z [€ikerry s [Cirkin a5 [€irkn sy Eit1,1]]] = O, (u7.1)

TEY3
Z [fi,kﬂu)’ [ﬁykw(2)’ [ﬁ,kw(s) ) .fiJrl,lm =0. (U7'2>

TEY3

e For n = 1, the defining relations are

[ho,ks hoy) = k(2 — d¥ —d™%)o, ¢, (ul)
[€0.k43,€01] — (1+d+d ")[€okras€0u41] + (1 +d+d )€ rr1,€0142] — [€0.k, €01+3] =0, (u2)
[fokt3, foul = (L +d+d ) fortz, forr1) + (L +d+d [forr1, foire] — [for fours] =0, (u3)
[€0.x, for) = ho kst + KOk, i€, (ud)
[ho.k, €01] = (2 — dr — dik)éoﬂ_k, (ub)
[ho,ks fou] = —(2 = d* —d™F) fourn, (u6)
Z (€0, r (1) 5 [€0, k(29 +15 €0k sy —1]] = 0, (u7.1)
ness
Z [fo,k,,(l), [fo,k,,(mﬂ,fo,kﬂ(g)—ﬂ] =0. (u7.2)
mes;

In the above relations [, k, k1, k2, k3 € Z and X, is the symmetric group on s letters.



2636 A. Tsymbaliuk / Journal of Pure and Applied Algebra 221 (2017) 2633-2646

1.8. The Lie algebra gjén)

All the defining relations of ‘d;:% are well-defined for A = 0 and become of Lie type. Therefore, Hgg ~
rely

icn) With the defining relations (y1-y6) to be

U ( ) where the Lie algebra y( ") g generated by {xz & ,}
given below. The first two of them are independent of n € N:

[gi,r;gj,s] =0, (yl)

[, 25 ) = 01 j&irss (v2)

Let us now specify (y3—y6) in each of the 3 cases of interest: n > 2, n =2, and n = 1.
e For n > 2, the defining relations are

[‘i.z:",:r—&-l?jji,s} - [‘/Z.i:r’ j;%sﬂ] —m;,;B[7; r?x_;ts] (y3)

Cirr1: %y 5] = [Eirs Tygpa] = —ma i Bléir, ), (v4)
[6i0,27,] = %a;;35,, (¥5)

Do T [T o i) = 0 and (77,75, = 0 for j #di £ 1. (v6)

TEYS

e For n = 2, the defining relations are

—+ —+ -+ =t
[%,r+1»mi,s] = [xi,r’xi,s-&-l}’

-+ —+ -+ + o 2zt zt
[Zi7r+27xi+17s] - 2[xi,r+1’ i+1, s+1] + [z ) i+1,s+2] =p [%,w i+1, s (y3)

[£i77‘+17£7;j,:s] = [giyr’a_j'fsul»l]’

z - z =+
[§i,r+2,3€i_175] - 2[€i,r+1,$i+1,s+1] [51 T 2+1 s+2] /82[‘51 T z+1 sh (v4)
= - F o= —+
[51‘,0’55;5} = iai,jxji,y [giJ?xii—&-l,s] = F2T;11 5415 (¥5)
—+ —+ —+ —+
Z [xi,r,r(n’ [xi,r,r@)’ ['ri,r,r(g) ’ J"iJrl,s]]] = 0. (y6)
TEX3

e For n = 1, the defining relations are
—t —+ — —+ — —t -+ =+ _
[xO,T—H’)’ xO,s] - 3[x07r+2’x0,s+1] + 3[x0,r+17‘r0,s+2] - [xo,rvxo s+3] =

52([',5(:)‘:7"-&-17173:5} [jf)t,rajf)t,s+1])7 (y3)

(€043, Tp ) — 3lEo,r42, T ap1) + 3l€0.r11: Fip g yn] — [Eours Tgops] =

B%([éo,r+1 533[,5] — &, fisﬂ})v (v4)

€00, %5.5] = 0, [€0,1,%5,] = 0, [€o,2, ] = F26%25,, (¥5)
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—+ + :I:
Z [xO,r,r(U’ [ 0,77 (2)” Lo r,r(d)Jrl]] 0. (yG)
TEY3

In the above relations s,r,r1,79,73 € Z4 and 4,5 € [n].

Remark 1.1. For 8 # 0, the assignment a’ci’ — BEE

isomorphism of Lie algebras y/g ) y%n).

Eir = BT, (with i € [n],r € Z) provides an

ZT"

1.4. Difference operators on C*

For t € C*, define the algebra of t-difference operators on C*, denoted by 0y, to be the unital associative
C-algebra generated by Z*!', D*! with the defining relations

Z¥z¥ =1, D¥'DF =1, DZ =t-ZD.

Define the associative algebra a§"> = M, ® 0;, where M, stands for the algebra of n X n matrices (so

that o\ is the algebra of n x n matrices with values in d;). We will view 2\™ as a Lie algebra with the

natural commutator-Lie bracket [-,-]. It is easy to check that the following formulas define two 2-cocycles
o, 6™ € 20", C):

oWV (M @ DM 20 My @ DF2Z'2) = 11t*%11 8y, 1,61, 1, tr (M) M),
¢ (M, @ DM 21 My @ D*2 2'2) = kyt*1h 6y, 1,0, 1, tr(My M)

for any My, My € M, and kq, ko, lq,1l> € Z.
This endows 5,57") = a§") ®&C- cgl) ®&C- 0(02) with the Lie algebra structure via

(X + Al + 0P Y + el + ppel?] = XY — VX + 60 (X, V)l + 63 (X, V)P

(n),0

for any X,Y € Dt ) and A1, A2, i1, pio € C. We also define a Lie subalgebra 0, C 5§”) via

51(5”)’0 = {Z Ak leZl + /\16(1) + )\QC S at")|)\1, Ao € C, Ak:l S Mn,tr(Ao 0) = 0}
1.5. Differential operators on C*

For s € C, define the algebra of s-differential operators on C*, denoted by D, to be the unital associative
C-algebra generated by 0, z%! with the defining relations

eFaFl =1, 0x = 2(0 + s).

Define the associative algebra o = M, ® D4 (so that o is the algebra of n x n matrices with values
in ;). We will view D" as a Lie algebra with the natural commutator-Lie bracket. Following [2, Formula
(2.3)], consider a 2-cocycle ¢ € C2(D™, C) given by

tr(My My) - S0 fi(as) fa((a — 1)) ifl; = —ly >0
¢(My @ f1(0)a", My ® f2(0)x"2) = —tr(My M) - Z_ll ! falas) filla+1y)s) ifly =—-la <0
0 otherwise

for arbitrary polynomials fi, fo and any My, My € M,,, 11,15 € Z.
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This endows @2”) = Qﬁ”) @ C - cp with the Lie algebra structure via
(X 4+ Ao, Y +pep]| = XY =YX +0(X,Y)ep
for any XY € @2") and A\, u € C.
2. Key isomorphisms
2.1. Main results

Our first main result establishes a relation between the Lie algebras ilgn) and 5tn).

Theorem 2.1. For d € C* not a root of unity (we will denote this by d # /1), the assignment
éO,k — En,l (24 DkZ, JFO,k — El,n X Zﬁle, i_l(),k — En,n (24 DF — dnkELl X DF + 50,k(}gl), c+— C;Q),

€ik d(nii)kEi,iH ® Dk, fi,k — d(nii)kEiH,i ® Dk, Bi,k — d(nfi)k(Ei,i —FEit1i+1)® D

i =y (0

(with i € [n]*, k € Z) provides an isomorphism of Lie algebras 6" :
Our second main result establishes a relation between the Lie algebras y ) and D(n)

Theorem 2.2. For 3 # 0, the assignment

Il = Eng ®@0"w, T, — E1 @2 0", o Bpnpn®0" — E11 ©(04nB)" + do.rco,

i = B @ 0+ (m—)8)" %, — Eip1,© (04 (n—9)B)", &ir = (Bii — Biy101) ® (0+ (n—i)B)"
(with i € [n)*,r € Z, ) provides an isomorphism of Lie algebras ﬁg”) : yé") S 2‘5%)

For n = 1, these isomorphisms have been essentially established in [7]. In the rest of this section, we
adapt arguments from [7] to prove the above results for n > 2.

Remark 2.3. These two theorems played a crucial role in [9], while their proofs were missing. In the [9], w
considered the quotients i, (n) /(¢) and 0, (r).0 /(c (2)) and had a different 2-cocycle. Nevertheless, Theorem 2. 8
from [9] is equivalent to the above Th(,(n(m 2.1.

2.2. Proof of Theorem 2.1

It is straightforward to see that the assignment from Theorem 2.1 preserves all the defining relations
(ul—u7.2), hence, it provides a Lie algebra homomorphism 0(") (n) — D((;fl . We also con81der the induced

(), v _, o(m-0

homomorphism 6, , where u( " (" /(€ hi 0) is a central quotient of ii, (n) . Clearly, it

suffices to show that Q dn) is an isomorphism.
Let @ be the root lattice of ;[n The Lie algebras @gn) and Dgfl) are () X Z-graded via

deg(é; k) = (ay; k), deg(ﬁ’k) = (—ay; k), deg(ﬁi,k) = (0; k),

deg( W7 ®Dk ) (1(5+(a1+ +01j_1)—(041—|-...+04i_1);k‘),
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where ag, aq, ..., a,_1 are the simple positive roots of g[n, while 6 = ag+...4+ @, _1 is the minimal positive
imaginary root. Note that inn) is Q x Z-graded, and it is easy to see that Ql(in) is surjective for d # /1.
Therefore, it suffices to prove

Aim (@) (asm) < dim@5%) (aey (1)
for any a € @, k € Z. Note that
0 if « is nonzero and is not a root of f/,\[n
1 if « is a real root of 5A[n

dim 0(2)’0 k) =
@ty if a€Zdand (a; k) # (0;0)

n—1 if (a;k)=(0;0)

For o ¢ 7§, the inequality (1) can be proved analogously to [6, Proposition 3.2]* by viewing il&n) as a
module over the horizontal subalgebra generated by {€; o, fw, Bi,O}ie[ which is isomorphic to sl,,. Hence,
it remains to handle the case o = 6. The case | = 0 is obvious since (i, i ))(0 & is spanned by {h;x }ic[n-
For the rest of the proof, we can assume [ € N.

Remark 2.4. For n > 2, this step is different from the argument in [10, Sect. 13], where the authors prove
that ii((i") is the universal central extension of D((;,)’O by showing that the former does not admit non-split
central extensions.

2(n),> (n)

be the subalgebra of i, generated by {&;x, h; k} Z . It is isomorphic to an abstract Lie alge-
subject to the defining relations (ul,u2,u5,u7.1) with¢=0and }_, hz‘,O =0.

Let i,

bra generated by {&; x, h; k}z cln]

It suffices to show that dlm(ufi )2 Jasiky < n forany [ € Nk € Z.

Introduce the length N commutator: [ai;as;...;an—1;an]|N = [a1, a2, [ .. [an—-1,an]...]]]. We say that
this commutator starts from a;. The degree (18; k) subspace of ii;"’= is spanned by length In commutators
[€iy k15 - - -5 iy ey Jin SUCh that ky 4+ ...+ Ky, = k and oy, + ... + oy, = 10. Define

Uc(fbl) = [€i a3 €itr1,05 - - -3 €i—2,0 €im1,b]In-
Note that v} € (i{"") dvl 20 05" (") Together with dim (" <
b J (16:a+b) Al vab # 0 since (v,’) # 0. Together with dim(ii," J(16—ai, sk—k1) <

(n),> a€Z

1, this implies that (ud )(i5;k) is spanned by {va A a}le[n]. It remains to show that the rank of this system

is at most n.

e Case k= 0.
Define v; = U(()lol),...,vn_l = véno L l),vn = 11%0 D and set V(1;0) := spanc(vy,...,v,). We prove
v((f;’i)a € V(1;0) for all ¢ € [n],a € Z by induction on |a|. The case a = 0 follows from
o0 e - oy =0, ()

which is obvious once the horizontal subalgebra of Q&n) is identified with sl,,[Z, Z71].
To proceed further, we need the following technical result based on non-degeneracy of the matrices

(a; jd*™ J)JEE[[”]] (for n > 2) and (26; ; — (d* + d*k)5¢7j+1)zg[ ! for any d # v/1,k # 0.

! The argument in the [6] used the extra relation [€; 4, ;] = O for any j € [n],a,b € Z (with n > 1). However, this relation is a
simple consequence of (u2).
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Lemma 2.5. For any fized i € [n],k # 0, there exists an element l_Lch € spang(ho ks, hn_1.1) such that
[h(i7k7éj,l} = (Si’jéj’prk fO?" all j € [’I’LLZ € Z.

First, we prove ’U(j’ll’)l € V(1;0). Applying ad(ﬁ§7_1) ad(h( ;) to the equality (), we get a sum of I°n
length In commutators being zero. Among those, I°n — [ + 0i,0 belong to V(I;0) as they start either from
€y o (1" € [n]) or ég,1. The remaining [ — §; o commutators start from €; _; and therefore are multiples of

(2 l) . It remains to show that the sum of these | —§; ¢ terms is nonzero.’ For the latter, it suffices to verify

that the image of this sum under in ") s nonzero, which is a straightforward computation based on the
assumption d # /1. To prove vﬁf)l € V(1;0), we apply ad(i_zgvl) ad(ﬁ§+1,71) to () and follow the same
arguments.

To perform the inductive step, we assume that v((ll;’i)a € V(1;0) for all ¢ € [n],]a] < N and we shall prove

1,0 . T T
v(i(]ifﬂ) (N+1) € V(1;0). Applying ad (R} oy 1)) ad(Riyo 1) ad(h;Jrl =) to ({), we get a sum of °n length
In commutators being zero. By the induction hypothesis, all of them, except for those starting from ; +(ny41),

belong to V'(I;0). The remaining (I — d,, 2) terms are multiples of vgz’(ljz,ﬂ) +(N+1)- For (n,1) # (2,1), it is
easy to see that the sum of their images under QEI is nonzero, implying vi(]i,_H) F(N+1) € V(1;0). In the

remaining case (n,l) = (2,1), the inclusion vﬂé’(lj)\,ﬂ) =vin € V(G 0) follows from the relation (u2).

This completes our induction step. Hence, @Eln),z)(l&o) =V(;0) = dim(@&”)’z)(l(g;o) <n.

e Case 0 < k < L.
Define vy := vélkl), e Up1 = v(()"k LY Uy 1= v[()?,;l) and set V(I; k) := spanc(vy, ..., v,). We claim that
((Iz,i) o € V(L; k) for any i € [n],a € Z. We will prove this in three steps.
Step 1: Proof of v(z D e V(i;k) for any i € [n).
Applying ad(h; k) to the equality ({), we immediately get U(” e V(l;k).
Step 2: Proof of v(l D . €V(I;k) for any i € [n],0 < a < k.
It is known that any degree k symmetric polynomial in {z;}}_; is a polynomial in {3 2%}¥_,. Choose

Py, ; such that Sym(zjxs---xx) = Pk,l(zj Tjyeno, Z ) Define L;;;; € End(ii, ;™ )’—) via

Ly = Pey(ad(hy ), ..., ad(R] ).

Applying L;j,; to the equality (), we get a sum of ( ,lf) -n length In commutators being zero. Each of these
terms starts either from ey ¢ (i’ € [n]) or €; 1. In the former case the commutator belongs to V(I; k), while
(@ l) . There are (k 1) terms starting from €; ; and the

sum of their images under Qd is nonzero. Therefore, v?}?_l e V(l;k).

in the latter case the commutator is a multiple of U1

Applying the same arguments to the symmetric function Sym(zfxs---xg_q+1), we analogously get
U(Zkl) o € V(LK) for any i € [n],0 < a < k.
Step 3: Proof of v(z % o €V(LE) for any i € [n] and a ¢ {0,1,...,k}.

We prove v'” N)HN,UI(;J:])\, N € V(I;k) for all i € [n], N € Z by induction on N. The case N = 0 is clear.
Assume v\ € V(Il;k) for any i € [n],—N < a < k+ N. Applying ad(h _N— 1)ad(hz+2 1)ad(herl )

a,k—a
to ({), we get a sum of [®n length In commutators being zero. Each of these terms either belongs to V(I; k)

by the induction hypothesis or is a multiple of vgﬁ_17k+N+1. There are I(I — d0,,2) summands of the latter

form and the sum of their images under an) is nonzero if (n,1) # (2,1). This implies v?}?_Ll&NH e V(;k)

for (n,l) # (2,1).

2 This argument does not apply when (i,1) = (0,1). If n = 2, then the latter case follows from (u2). If n > 2, then we first prove
§L e V(1;0) for any %, and then deduce v(o 1) € V(1;0).
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The latter inclusion also holds for (n,l) = (2,1), due to Step 2 and (u2).
To prove v,(ﬁz_;_lj)v_s_l’_N_l € V(l; k), we apply ad(ﬁ27k+N+1) ad(iL;+27_1) ad(ﬁ§+17_N) to (<) and follow the
same arguments.

e Case of an arbitrary k.

It is clear that L;;; induces an isomorphism (Q;")’Z)(l(;;k,) = (g&")’z)(lé;k,ﬂ) for any k' € Z. In partic-

ular, dim(@&n)’z)(w;k) = dim(ggn)’z)(l(;;k mod 1) < M, due to the previous two cases. W

2.8. Proof of Theorem 2.2

It is straightforward to see that the assignment from Theorem 2.2 preserves all the defining relations
(y1-y6), hence, it provides a Lie algebra homomorphism 19(5") : jjg") — 355:2 We also consider the induced

homomorphism Q(") c g ’D("), where §( = " & o) is a central quotient of y(”). Clearly, it
8 Ys np Ys Ys AL 8
suffices to show that ﬁgl) is an isomorphism.

The Lie algebra (") is Q-graded via deg,(zF) = +ay, deg;(& ) = 0 and Z_-filtered as a quotient of
=8 1\Fgr 1(&s,
ZTGG[iJ]r graded via deg, (j;‘,:r) = r, degy(&;,,) = r. The Lie algebra @El%) is

also Q-graded via deg; (E;; ® 0"z!) =10+ (a1 + ...+ aj_1) — (a1 + ... + ;1) and Zfiltered with the
filtration < k subspace consisting of the finite sums Zéiﬂ p Ai ;0" where A;, 6 M, and tr(Ag ;) = 0 for

the free Lie algebra on {:zj;,éw}

any j € Z. Let (¢ 53 ))(a <k) and (Dnﬂ))(a <k) denote the subspaces of y (") and @ ﬂ , respectively, consisting
of the degree « and filtration < k elements.
Note that an)((g(ﬁn))(a;gk)) C (ang))(a;gk) for any @ € Q,k € Z;. Hence, we get linear maps

Q(Bn(lk : (Q(ﬁ"))(a;gk)/(g(ﬁn))(a;gkq) — (5‘3%))(a;gk)/(ggz;))(a;gkq)- We claim that all the maps Q(ﬁnc)yk are

isomorphisms. To prove this, it suffices to show that Q(B"glk is surjective and

dim (5 sy = A (S ) @p1) < AMON) (ascr) — dim(DY) @k (1)
B np B

for any a € Q, k € Zy. The right-hand side of (1) can be simplified as follows:

0 if « is nonzero and is not a root of E[n
dim(@i%))(aggk) — dim(@iﬁ?)(a;gk,l) =<1 if « is a real root of 5A[n

n— 0o if «isan imaginary root or zero

For a ¢ 74, the inequality (f) and the surjectivity of 196 ok can be deduced in the same way as ().
Hence, it remains to handle the case a = [§. The [ = 0 case is obvious since the degree 0 subspace of y(”)

is spanned by 51 ». For the rest of the proof, we can assume [ € N.

Let y(")’ be the subalgebra of y(”) generated by {331 L& T}:ee%;]r

algebra generated by {z; r,& ,«}Zee[nir subject to the defining relations (yl,y3,y47y5,y6) and >, &0 = 0. It

It is isomorphic to an abstract Lie

suffices to show that dim(j (") >)(l(5;§k) — dim(g ( )2 Jas;<k—1) < M — Ox0 and 195 is,; 1S surjective for any
leNkeZy.

Case n = 2.
5, such that

+
Lig, kzl]

The degree 1§ subspace of g(;)’z is spanned by all length 2] commutators [iz,kﬁ c T
i, + ...+ a;,, =16. For any i € [2] and a,b € Z,, we define

2 e .zt
Wy p = [xi,mxiJrl,O""? 1,0 z+1b]l
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Due to our description of the degree I6 — «; subspace of y(;)’z, we see that (Q(;)’z)m is spanned by

{w((j@bl)}feb[e]Z* Moreover, (y( )'2)15,<k) is spanned by {w, o l)}?eb[g]z+ with @ + b < k. Therefore, the in-

equality dim(j ( ); —)(ltg;gk) — dlm(gfi) —)(15;§,€_1) < 2 — 00 and the surjectivity of ﬁ(ﬁ?é,k follow from our
next result:

Proposition 2.6. Define W(l; N) := spandwélﬁ)?g[%[QV forleN, NeZ;.

(a) We have w(”) eW(l;a+0b) forany i€ [2],l € N,a,beZy.

(b) The images of {Q;)(ww\,))}ie[g] in the quotient space (@fﬁ))( 15; <N)/( 24 )(l6 <n—1) are linearly indepen-
dent for any I, N € N.

Proof of Proposition 2.6. (a) Our proof is based on the following simple equalities:

Z wo 0 =0, (1)
[H3’ 7,7"] - ij_,,,+1, [H4"7_:j: ] - xj_rJrQ? (2)

where Hj := 675%2 Zie f_l 3, Hy= % ZiG[Z] &,4 + % ZiG[Q] 5_12
o Proof of w(Z e W(l;1+0b).

We prove this by induction on b. Applying ad(Hs) or ad(3&;1) to (1), we get w§° % +w§101 € W(l;1) and
wgzol) (ZH D¢ W (l; 1), respectively. Hence, w%) € W (l; 1), which is the basis of induction. To perform the
mductlve step, we assume wgzbl) € W(l;1+0) for any 0 < b < M. In particular, wgzlf} = jYGS[QI]VIH cj Nwéjji,)
for some ¢; v € C. Applying 19(2) to this equality, we find ¢; p41 = MM+—_~1_1_1, Cit1,M+1 = M_+1' Hence

wgzjf/)[ — MJiIlwélJ@H + Ml_Hw(()zJAr/Ilﬁ € W(l; M). Applying ad(Hs + %&H,l) to this inclusion, we get

lwgf}ejﬂ + Mlﬂwgzﬂﬁ € W(; M + 2). For M > 0, this yields wif}f/)fﬂ e W(; M +2) as wgzﬁﬂ €

l +1,1
Spanc<lw§JA}+1 + M+1w§jM+1)>JE[ 2]

It remains to treat separately the case M = 0. We can assume [ > 1 as the case [ = 1 is simple. Applying

ad(Hs+1¢;.1) to the inclusion w(Z Dp-1 )w((fll)+lw LD W(150), we get 2(1—1 )wglll)+w(’ Dew;2).

On the other hand, applying ad(Hy + 3&;2) to (1), we find wéfbl) € W (l;2). This implies wL1 e W(l;2).
o Proof ofw(Z e W(l;a+0b) fora>1.
We prove this by induction on a. The base cases of induction a = 0,1 have been already treated. To

perform the inductive step, we assume w(zbl) e W(l;a+0b) for all 0 < a < M and b € Z,. In particular,

E\Zlg Z;VGS[QJ]M% d;, Nwé]]? for some d; y € C. Applying ad(Hs) to this equality and using the induction

hypothesis, we immediately get wg&ﬂglb eW(l,M+b+1).
(b) Straightforward computations yield

19(2 (wolz\lf)) 2N"HEyq — Bop) ® 0Va! +lout.,

19532)(10(() N) + w(l l)) —27INB - (Erq + Eap) ® 0N 2! + Lo,
where l.o.t. denote summands with lower power of 0. The result follows. O

This completes our proof of Theorem 2.2 for n = 2.

Case n > 2.
The proof for n > 2 is completely analogous and crucially uses the same equalities (1) and (2); we leave
details to the interested reader. W
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3. Consequences
3.1. Classical limits of the vertical and horizontal quantum affine gl,,

For n > 2, the algebra u("d contains two subalgebras U s Ué’ isomorphic to the quantum affine U, (gln)

Here U” is generated by {e; i, fi.x: ik, chke while U(? is generated by {e; 0, fi,0, hi,0 }iem]- The following

ze[n] X0
result is obvious.

Lemma 3.1. For d # /1, the isomorphism HEI”) identifies the ¢ — 1 limils of the subalgebms U; and U(?
with the universal enveloping algebras of sl,,[D, D] & C - cg2) and s1,[Z,Z7 1 & C - c ) respectively.

According to [3], the algebra U((:d) also contains two Heisenberg subalgebras h* and h”, which commute
with U(;’ and U;, respectively. This yields two copies of the quantum affine Uq(gA[n) inside Ug"i, which will

be called the vertical and horizontal quantum affine gl,,, denoted by Ug’/ and U;’/, respectively.

Lemma 3.2. For d # /1, the isomorphism (‘)Eln) identifies the ¢ — 1 limits of the subalgebras U;’/ and
Th" with the universal enve oping algebras of g DT P @ C-cy’ and g L7 P @ C ey’ where
Ul with th I envel lgebras of gl,[D,D"1° ® C - P and g1,[Z,Z71° & C - ", wh
ol[Z,Z7 ) =sl, @1 Pagl, ® Z* and gI[D, D =sl, @ 1 & Pgl, @ D*.

k#0 k#0

Proof of Lemma 3.2. (i) First, we recall the construction of h¥ from [3, Sect. 2.2]. For any k # 0 and

d-kmi g €00 g T if n > 2
i,j € [n], define the constants b, (i,j; k) := qzkiq’i(gq[q ) . b gk , S0 that
%i* Kgmqy ~ St (& + A7) =gy Hin =2

aw-d_kmw ifn>2
2(51”‘ — (dk + d_k)(si,j+1 ifn=2

{cik}ie[n be a unique solution of the system 3 ;1 bn(i, j;k)cik = 0 for all j € [n]* with co = 1. By
c/2

their ¢ — 1 limits are equal to b, (i,j; k) = { . For any fixed k # 0, let

construction, the subalgebra h? is generated by ¢*/“ and the elements {h} := Zie[n] ¢i kN k Hes£0. The image

of the ¢ — 1 limit of A} under Qén) equals

n—1

Hf = (50,k(En,n —d"*Ey 1) + Z Cipd ™ R(B;  — Ei+1,i+1)> ® D*,

i=1

where the constants {¢;} satisfy Zie[n]l; (i,55k)¢i = 0 forall j € [n]* and ¢ = 1. Therefore,

H} = dM - I, ® D* with I,, = Z 1 £ ;. It remains to notice that the Lie subalgebra of 0(”)’ gen-
erated by 5In[D,D NeC- 0(2) and {I,, ® D*}}. o is exactly gl,,[D, D71’ & C - 052).

(ii) According to [3], U;”’ is a preimage of Ué’ " under the Miki’s automorphism . Combining (i) with

Lemma 3.4 below, we get the description of Hgn)(q — 1 limit of Uél’/). O
8.2. Classical limit of the Miki’s automorphism

The natural ‘90 degree rotation’ automorphism of uf;,}l (due to Burban—Schiffmann) admits a generaliza-
tion to the case of ugjg with n > 2 (due to Miki).

Theorem 3.3. /5] For n > 2, there exists an automorphism w of ufz"; such that

w(UY) =U}, w(UM =17, Z hio, (D hig) =

[n] i€[n]
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Our next result provides a description of the ¢ — 1 limit of w, denoted by @, viewed as an automorphism
: : 5(n),0
of the universal enveloping algebra U (d,,"").

Lemma 3.4. @ is induced by an automorphism of the Lie algebra 5(2) defined via
) e?, o eV, A9 DFZ s dT M (—d)MA® 27D ¥ A€M, k€ L. (%)

Proof of Lemma 3.4. Tt is easy to see that the formulas () define a Lie algebra automorphism; we denote

its restriction to 5&2)’0 by @. On the other hand, the action of w on the generators {e; o, fi,0, P +1}ic[n] Was

computed in [8, Proposition 1.4]. Taking the ¢ — 1 limit in these formulas, we get
Wi B iy1®1—E;;11®1, Eiy, 01— B, 01,
@:EBp1 @27+ (—d)"Ep1®D, By, @ Z '+ (=d) "Ey,, @ D™,
@: (B — Eig1,41) ® DE! sy dT(Eii — Eiy1,i+1) ® Z7!
for all 1 <1 < n — 1. Therefore, images of the elements

Eiin®l, Bip1,01, En1®Z, B1,® zZ 1 (Bii — Eit1,i41) ® D* Cgl), 022)

under @ and @ coincide. This completes our proof, since these elements generate 5&2)’0. ]

3.8. Classical limit of the commutative subalgebras A(S)
Let uf]fj " be the subalgebra of u((;g generated by {ei7k}f€€[%]. In [4], we introduced certain ‘large’ commu-
tative subalgebras A(5) of ugjg " via the shuffle realization W : u((;g ™5 §. We refer the interested reader

to [4] for a definition of the shuffle algebra S and its subalgebras A(5), where 5 = (9, 81, . .,8,_1) € (C*)"]
satisfy sgs1---sp—1 = 1 and are generic. Let diag,, C M,, be the subspace of diagonal matrices.

Proposition 3.5. For d # /1 and a generic 5§ = (80y.--,8n—1) satisfying Sg-+-Sn—1 = 1, the isomorphism
Hgn) identifies the ¢ — 1 limit of A(S) with the universal enveloping algebra of the commutative Lie subalgebra
@ diag, @ Z* of 5&2)’0.

k>0

Proof of Proposition 3.5. According to the main result [4, Theorem 3.3], the algebra A(3) is a polynomial
algebra in the generators {F} ; veN |, where F},, is the coefficient of (—u)"~" in F}/(5) defined via

_ k k
[icp Ii<jyran @iy — a7 2@ig0) - Tligpy (50 -+ si 1oy @iy — T2 @ivg)

€ Sis.
[icpm ITi< o< (@i — @it1,5)

Fli(s) :=

First, we compute the ¢ — 1 limit of A(5)s. Choose 31 € Z such that the ¢ — 1 limit of (¢ — 1)%1 - Fg4
is well-defined and is non-zero.”® Define F;; := (¢ — 1)/31Fi’,1 and let F‘i,l denote the ¢ — 1 limit of F; y (if it
exists). According to [4, Corollary 3.12], the element Fy ; is a non-zero multiple of the first generator h of
the Heisenberg subalgebra h”. Combining this with Lemmas 3.2 and 3.4, we see that Qfln)(ﬁo’l) =1, 7
for some pu; € C*.

For 1 <i < n, define a; := sg---s;—1 € C*, A;(d) := Z;;l dl’”‘s-f»iEj,j € M,,, and let e;(y1,...,yn) be
the ith elementary symmetric function in the variables {y; }?:1.

3 According to [8, Lemma 3.4], we have 81 =n — 1.
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Lemma 3.6. (a) The limit Fi,l is well-defined and Hgln)(ﬁiyl) = pmei(a1A1(d),...,anAn(d) @ Z.
(b) The limits {F; 1 }'=} are linearly independent and {9;")(}7‘@1)}?;01 span diag,, ® Z.

Proof of Lemma 3.6. (a) It suffices to show that the image of the ¢ — 1 limit of I;’ill’lFOJ under Hén)

equals 111A;(d) ® Z. Recall the elements R o1 € spang(hot1,. .-, hn_1,+1) from Lemma 2.5 such that
we see that the ¢ — 1 limit of Z:=21 Fy 4

Ti 1

[h;71,éj)l] = 0;,j€5,+1 for any j € [n],I € Z. Since \I'(ej’l) = $§»71,
equals ad(l_zé_l,l) ad(i_z’i7_1)(F0,1). Combining the equality

dj:(2n7i) dj:(nfi)

o (B, ) = <din_1(EL1 b B+ S

7 (Big1i41+ -+ Enn)) ® D*!

with 9&") (Fo1) = 1l ® Z, we find 951”) (ad(l_zg_lyl) ad(ﬁg7_1)(ﬁo,1)) = 1 A;(d) ® Z as claimed.

(b) Let C(d) be an n x n matrix whose rows are the diagonals of {e;(ayAi(d),...,an,A,(d))}i=y. If
d # /1 and a; # a; for i # j (which is the case for generic 3), then det(C(d)) # 0 due to the Vandermonde
determinant. The result follows. O

Let us generalize the above result to k£ > 1. According to [8, Theorems 3.2, 3.5], we have

o0

v (eXp (Z ar(d, Q)w(hér)cT>> = (g—1)F"bi(d, @) Fy ",
r=1

k=0

where ¢ is a formal variable, the ¢ — 1 limits a@,(d) and by(d) of the constants a,(d,q) and by(d,q) are
nonzero for d # 0, and h&r € spang(ho,—r, ..., hn_1,—p) are defined via gp(h({r, hir) = d; 0 with the bilinear
form ¢ given by ¢(hi—r,hjs) = 0ps - %. Following our proof of Lemma 3.2, we see that h(J)_m =
(g — V)M (d,q)h", and the ¢ — 1 limit of A\.(d,q) is nonzero. Combining this with Lemmas 3.2 and 3.4,
we find 9((1") (¢ = 1 limit of (¢ — 1) 'w(hg,)) = & (d) - I, ® Z", where ¢.(d) # 0 for d # 0,v/1. Define
Fip = (qg— 1)’“"‘1Fi’7k and let Fi,k denote the ¢ — 1 limit of F; (if it exists). We also set p, :=
a(d)é,(d)/b.(d) € C*.
The above discussion implies that Hfin)(f?‘oyk) =y - I, ® Z* for any k € N.

Lemma 3.7. (a) The limit F;; is well-defined and 05" (F;x) = prei(a1 Ay (d¥), ..., anAn(d¥) @ ZF.
(b) The elements {651”) (sz) ?:_01 are linearly independent and span diag, @ Z*.

Proof of Lemma 3.7. (a) It suffices to show

k
1T, .
0" (q — 1 limit of MFO,]C> = pAi(d") @ Z" for any 1 <i <n. (3)
j=1%i,j
Recall the elements ﬁ;’ik € spang(ho+k, - -, hn—1,+1) from Lemma 2.5 such that [E;,ikaéj,l] = 0i,j€jlkk

for any j € [n],l € Z and the polynomials Py j, introduced in our proof of Theorem 2.1. Define L;. 1 €
End(u&n)z) via Lixr = Py r(ad(h] 4q),...,ad(h; 1;)). Then, the ¢ — 1 limit of Hle TisLi . Fy x equals

i,

Li,l;kLi;,k(fj‘oyk). To derive (3), one needs to apply the formula

(n) 71 qx@n—i)k dE(n—ik T
O (hi+x) = (W(El,l + A+ Eiy) + W(Eiﬂ,iﬂ o Enn)) ®D

n en 2n c—1)n
together with the identity Pka(ddkn__ll, ddz;n__ll AR ‘fik,m:ll) =ep(1,d,...,d*Dn) = a*e=

(b) This is proved analogously to Lemma 3.6(b). O

It remains to note that Proposition 3.5 follows from Lemma 3.7 by induction on k. O
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