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0. Introduction

The primary purpose of this note is to provide proofs for the description of the classical limits of the 
algebras U(n)

q,d and Y(n)
h,β from [4,9]. Here U(n)

q,d and Y(n)
h,β are the quantum toroidal and the affine Yangian 

algebras of sln (if n ≥ 2) or gl1 (if n = 1), while classical limits refer to the limits of these algebras as q → 1
or h → 0, respectively. We also discuss the classical limits of certain constructions for U(n)

q,d .
The case n = 1 has been essentially worked out in [7]. In this note, we follow the same approach to prove 

the n > 1 generalizations. While writing down this note, we found that the n ≥ 3 case has been considered 
in [10] long time ago (to deduce our Theorems 2.1 and 2.2, one needs to combine [10] with [1]). Hence, the 
only essentially new case is n = 2. Meanwhile, we expect our direct arguments to be applicable in some 
other situations of interest.

This paper is organized as follows:
• In Section 1, we recall explicit definitions of the Lie algebras ü(n)

d and ÿ(n)
β , whose universal enveloping 

algebras coincide with the classical limits of U(n)
q,d and Y(n)

h,β . We also recall the notion of n ×n matrix algebras 
over the algebras of difference/differential operators on C× and their central extensions, denoted by d̄(n)

t

and D̄(n)
s , respectively.

• In Section 2, we establish two key isomorphisms relating the classical limit Lie algebras ü(n)
d , ÿ(n)

β to 

the aforementioned Lie algebras d̄(n)
dn , D̄(n)

nβ .
• In Section 3, we discuss the classical limits of the following constructions for U(n)

q,d (n ≥ 2):
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– the vertical and horizontal copies of a quantum affine algebra Uq(ĝln) inside U(n)
q,d from [3],

– the Miki’s automorphism � : U(n)
q,d

∼−→ U
(n)
q,d from [5],

– the commutative subalgebras A(s0, . . . , sn−1) of U(n),+
q,d from [4].

1. Basic constructions

1.1. The quantum toroidal algebra U(n)
q,d and the affine Yangian Y(n)

h,β

For n ∈ N, set [n] := {0, 1, . . . , n − 1} viewed as a set of mod n residues and [n]× := [n]\{0}. For n ≥ 2, 
we set ai,j := 2δi,j − δi,j+1 − δi,j−1 and mi,j := δi,j+1 − δi,j−1 for all i, j ∈ [n].

◦ Given h, β ∈ C, let Y(n)
h,β be the affine Yangian of sln (if n ≥ 2) or gl1 (if n = 1) as considered in [9], where 

it was denoted by Y(n)
β−h,2h,−β−h. These are unital associative C-algebras generated by {x±

i,r, ξi,r}
r∈Z+
i∈[n] (here 

Z+ := {s ∈ Z | s ≥ 0} = N ∪ {0}) and with the defining relations as in [9, Sect. 1.2]. We will list these 
relations only for h = 0, which is of main interest in the current paper.

◦ Given q, d ∈ C
×, let U(n)

q,d be the quantum toroidal algebra of sln (if n ≥ 2) or gl1 (if n = 1) as considered 
in [4] but without the generators q±d1 , q±d2 and with γ±1/2 = q±c/2. These are unital associative C-algebras 
generated by {ei,k, fi,k, hi,k, c}k∈Z

i∈[n] and with the defining relations specified in [4, Sect. 2.1 and 5]. We note 

that algebras U(n)
d
q ,q

2, 1
dq

from [9, Sect. 1.1] are their central quotients.

1.2. The Lie algebra ü(n)
d

In the q → 1 limit, all the defining relations of U(n)
q,d become of Lie type. Therefore, the q → 1 limit 

of U(n)
q,d is isomorphic to the universal enveloping algebra U(ü(n)

d ). The Lie algebra ü(n)
d is generated by 

{ēi,k, f̄i,k, ̄hi,k, ̄c}k∈Z

i∈[n] with c̄ being a central element and the rest of the defining relations (u1–u7.2) to be 
given below in each of the 3 cases of interest: n > 2, n = 2, and n = 1.

• For n > 2, the defining relations are 

[h̄i,k, h̄j,l] = kai,jd
−kmi,jδk,−lc̄, (u1)

[ēi,k+1, ēj,l] = d−mi,j [ēi,k, ēj,l+1], (u2)

[f̄i,k+1, f̄j,l] = d−mi,j [f̄i,k, f̄j,l+1], (u3)

[ēi,k, f̄j,l] = δi,j h̄i,k+l + kδi,jδk,−lc̄, (u4)

[h̄i,k, ēj,l] = ai,jd
−kmi,j ēj,l+k, (u5)

[h̄i,k, f̄j,l] = −ai,jd
−kmi,j f̄j,l+k, (u6)

∑
π∈Σ2

[ēi,kπ(1) , [ēi,kπ(2) , ēi±1,l]] = 0 and [ēi,k, ēj,l] = 0 for j �= i, i± 1, (u7.1)

∑
[f̄i,kπ(1) , [f̄i,kπ(2) , f̄i±1,l]] = 0 and [f̄i,k, f̄j,l] = 0 for j �= i, i± 1. (u7.2)
π∈Σ2
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• For n = 2, the defining relations are 

[h̄i,k, h̄i,l] = 2kδk,−lc̄, [h̄i,k, h̄i+1,l] = −k(dk + d−k)δk,−lc̄, (u1)

[ēi,k+1, ēi,l] = [ēi,k, ēi,l+1], [ēi,k+2, ēi+1,l] − (d + d−1)[ēi,k+1, ēi+1,l+1] + [ēi,k, ēi+1,l+2] = 0, (u2)

[f̄i,k+1, f̄i,l] = [f̄i,k, f̄i,l+1], [f̄i,k+2, f̄i+1,l] − (d + d−1)[f̄i,k+1, f̄i+1,l+1] + [f̄i,k, f̄i+1,l+2] = 0, (u3)

[ēi,k, f̄j,l] = δi,j h̄i,k+l + kδi,jδk,−lc̄, (u4)

[h̄i,k, ēi,l] = 2ēi,l+k, [h̄i,k, ēi+1,l] = −(dk + d−k)ēi+1,l+k, (u5)

[h̄i,k, f̄i,l] = −2f̄i,l+k, [h̄i,k, f̄i+1,l] = (dk + d−k)f̄i+1,l+k, (u6)

∑
π∈Σ3

[ēi,kπ(1) , [ēi,kπ(2) , [ēi,kπ(3) , ēi+1,l]]] = 0, (u7.1)

∑
π∈Σ3

[f̄i,kπ(1) , [f̄i,kπ(2) , [f̄i,kπ(3) , f̄i+1,l]]] = 0. (u7.2)

• For n = 1, the defining relations are 

[h̄0,k, h̄0,l] = k(2 − dk − d−k)δk,−lc̄, (u1)

[ē0,k+3, ē0,l] − (1 + d + d−1)[ē0,k+2, ē0,l+1] + (1 + d + d−1)[ē0,k+1, ē0,l+2] − [ē0,k, ē0,l+3] = 0, (u2)

[f̄0,k+3, f̄0,l] − (1 + d + d−1)[f̄0,k+2, f̄0,l+1] + (1 + d + d−1)[f̄0,k+1, f̄0,l+2] − [f̄0,k, f̄0,l+3] = 0, (u3)

[ē0,k, f̄0,l] = h̄0,k+l + kδk,−lc̄, (u4)

[h̄0,k, ē0,l] = (2 − dk − d−k)ē0,l+k, (u5)

[h̄0,k, f̄0,l] = −(2 − dk − d−k)f̄0,l+k, (u6)

∑
π∈Σ3

[ē0,kπ(1) , [ē0,kπ(2)+1, ē0,kπ(3)−1]] = 0, (u7.1)

∑
π∈Σ3

[f̄0,kπ(1) , [f̄0,kπ(2)+1, f̄0,kπ(3)−1]] = 0. (u7.2)

In the above relations l, k, k1, k2, k3 ∈ Z and Σs is the symmetric group on s letters.



2636 A. Tsymbaliuk / Journal of Pure and Applied Algebra 221 (2017) 2633–2646
1.3. The Lie algebra ÿ(n)
β

All the defining relations of Y(n)
h,β are well-defined for h = 0 and become of Lie type. Therefore, Y(n)

0,β �
U(ÿ(n)

β ) where the Lie algebra ÿ(n)
β is generated by {x̄±

i,r, ξ̄i,r}
r∈Z+
i∈[n] with the defining relations (y1–y6) to be 

given below. The first two of them are independent of n ∈ N:

[ξ̄i,r, ξ̄j,s] = 0, (y1)

[x̄+
i,r, x̄

−
j,s] = δi,j ξ̄i,r+s. (y2)

Let us now specify (y3–y6) in each of the 3 cases of interest: n > 2, n = 2, and n = 1.
• For n > 2, the defining relations are 

[x̄±
i,r+1, x̄

±
j,s] − [x̄±

i,r, x̄
±
j,s+1] = −mi,jβ[x̄±

i,r, x̄
±
j,s], (y3)

[ξ̄i,r+1, x̄
±
j,s] − [ξ̄i,r, x̄±

j,s+1] = −mi,jβ[ξ̄i,r, x̄±
j,s], (y4)

[ξ̄i,0, x̄±
j,s] = ±ai,j x̄

±
j,s, (y5)

∑
π∈Σ2

[x̄±
i,rπ(1)

, [x̄±
i,rπ(2)

, x̄±
i±1,s]] = 0 and [x̄±

i,r, x̄
±
j,s] = 0 for j �= i, i± 1. (y6)

• For n = 2, the defining relations are

[x̄±
i,r+1, x̄

±
i,s] = [x̄±

i,r, x̄
±
i,s+1],

[x̄±
i,r+2, x̄

±
i+1,s] − 2[x̄±

i,r+1, x̄
±
i+1,s+1] + [x̄±

i,r, x̄
±
i+1,s+2] = β2[x̄±

i,r, x̄
±
i+1,s], (y3)

[ξ̄i,r+1, x̄
±
i,s] = [ξ̄i,r, x̄±

i,s+1],

[ξ̄i,r+2, x̄
±
i+1,s] − 2[ξ̄i,r+1, x̄

±
i+1,s+1] + [ξ̄i,r, x̄±

i+1,s+2] = β2[ξ̄i,r, x̄±
i+1,s], (y4)

[ξ̄i,0, x̄±
j,s] = ±ai,j x̄

±
j,s, [ξ̄i,1, x̄±

i+1,s] = ∓2x̄±
i+1,s+1, (y5)

∑
π∈Σ3

[x̄±
i,rπ(1)

, [x̄±
i,rπ(2)

, [x̄±
i,rπ(3)

, x̄±
i+1,s]]] = 0. (y6)

• For n = 1, the defining relations are

[x̄±
0,r+3, x̄

±
0,s] − 3[x̄±

0,r+2, x̄
±
0,s+1] + 3[x̄±

0,r+1, x̄
±
0,s+2] − [x̄±

0,r, x̄
±
0,s+3] =

β2([x̄±
0,r+1, x̄

±
0,s] − [x̄±

0,r, x̄
±
0,s+1]), (y3)

[ξ̄0,r+3, x̄
±
0,s] − 3[ξ̄0,r+2, x̄

±
0,s+1] + 3[ξ̄0,r+1, x̄

±
0,s+2] − [ξ̄0,r, x̄±

0,s+3] =

β2([ξ̄0,r+1, x̄
±
0,s] − [ξ̄0,r, x̄±

0,s+1]), (y4)

[ξ̄0,0, x̄±
0,s] = 0, [ξ̄0,1, x̄±

0,s] = 0, [ξ̄0,2, x̄±
0,s] = ∓2β2x̄±

0,s, (y5)



A. Tsymbaliuk / Journal of Pure and Applied Algebra 221 (2017) 2633–2646 2637
∑
π∈Σ3

[x̄±
0,rπ(1)

, [x̄±
0,rπ(2)

, x̄±
0,rπ(3)+1]] = 0. (y6)

In the above relations s, r, r1, r2, r3 ∈ Z+ and i, j ∈ [n].

Remark 1.1. For β �= 0, the assignment x̄±
i,r 
→ βrx̄±

i,r, ξ̄i,r 
→ βr ξ̄i,r (with i ∈ [n], r ∈ Z+) provides an 

isomorphism of Lie algebras ÿ(n)
β

∼−→ ÿ
(n)
1 .

1.4. Difference operators on C×

For t ∈ C
×, define the algebra of t-difference operators on C×, denoted by dt, to be the unital associative 

C-algebra generated by Z±1, D±1 with the defining relations 

Z±1Z∓1 = 1, D±1D∓1 = 1, DZ = t · ZD.

Define the associative algebra d(n)
t := Mn ⊗ dt, where Mn stands for the algebra of n × n matrices (so 

that d(n)
t is the algebra of n × n matrices with values in dt). We will view d(n)

t as a Lie algebra with the 
natural commutator-Lie bracket [·, ·]. It is easy to check that the following formulas define two 2-cocycles 
φ(1), φ(2) ∈ C2(d(n)

t , C):

φ(1)(M1 ⊗Dk1Zl1 ,M2 ⊗Dk2Zl2) = l1t
k1l1δk1,−k2δl1,−l2tr(M1M2),

φ(2)(M1 ⊗Dk1Zl1 ,M2 ⊗Dk2Zl2) = k1t
k1l1δk1,−k2δl1,−l2tr(M1M2)

for any M1, M2 ∈ Mn and k1, k2, l1, l2 ∈ Z.
This endows d̄(n)

t := d
(n)
t ⊕ C · c(1)d ⊕ C · c(2)d with the Lie algebra structure via 

[X + λ1c
(1)
d + λ2c

(2)
d , Y + μ1c

(1)
d + μ2c

(2)
d ] = XY − Y X + φ(1)(X,Y )c(1)d + φ(2)(X,Y )c(2)d

for any X, Y ∈ d
(n)
t and λ1, λ2, μ1, μ2 ∈ C. We also define a Lie subalgebra d̄(n),0

t ⊂ d̄
(n)
t via 

d̄
(n),0
t :=

{∑
Ak,lD

kZl + λ1c
(1)
d + λ2c

(2)
d ∈ d̄

(n)
t |λ1, λ2 ∈ C, Ak,l ∈ Mn, tr(A0,0) = 0

}
.

1.5. Differential operators on C×

For s ∈ C, define the algebra of s-differential operators on C×, denoted by Ds, to be the unital associative 
C-algebra generated by ∂, x±1 with the defining relations 

x±1x∓1 = 1, ∂x = x(∂ + s).

Define the associative algebra D(n)
s := Mn ⊗Ds (so that D(n)

s is the algebra of n × n matrices with values 
in Ds). We will view D(n)

s as a Lie algebra with the natural commutator-Lie bracket. Following [2, Formula 
(2.3)], consider a 2-cocycle φ ∈ C2(D(n)

s , C) given by 

φ(M1 ⊗ f1(∂)xl1 ,M2 ⊗ f2(∂)xl2) =

⎧⎪⎪⎨⎪⎪⎩
tr(M1M2) ·

∑l1−1
a=0 f1(as)f2((a− l1)s) if l1 = −l2 > 0

−tr(M1M2) ·
∑−l1−1

a=0 f2(as)f1((a + l1)s) if l1 = −l2 < 0

0 otherwise

for arbitrary polynomials f1, f2 and any M1, M2 ∈ Mn, l1, l2 ∈ Z.
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This endows D̄(n)
s := D

(n)
s ⊕ C · cD with the Lie algebra structure via

[X + λcD, Y + μcD] = XY − Y X + φ(X,Y )cD

for any X, Y ∈ D
(n)
s and λ, μ ∈ C.

2. Key isomorphisms

2.1. Main results

Our first main result establishes a relation between the Lie algebras ü(n)
d and d̄(n)

t .

Theorem 2.1. For d ∈ C
× not a root of unity (we will denote this by d �=

√
1), the assignment 

ē0,k 
→ En,1 ⊗DkZ, f̄0,k 
→ E1,n ⊗ Z−1Dk, h̄0,k 
→ En,n ⊗Dk − dnkE1,1 ⊗Dk + δ0,kc
(1)
d , c̄ 
→ c

(2)
d ,

ēi,k 
→ d(n−i)kEi,i+1 ⊗Dk, f̄i,k 
→ d(n−i)kEi+1,i ⊗Dk, h̄i,k 
→ d(n−i)k(Ei,i −Ei+1,i+1) ⊗Dk

(with i ∈ [n]×, k ∈ Z) provides an isomorphism of Lie algebras θ(n)
d : ü(n)

d
∼−→ d̄

(n),0
dn .

Our second main result establishes a relation between the Lie algebras ÿ(n)
β and D̄(n)

s .

Theorem 2.2. For β �= 0, the assignment 

x̄+
0,r 
→ En,1 ⊗ ∂rx, x̄−

0,r 
→ E1,n ⊗ x−1∂r, ξ̄0,r 
→ En,n ⊗ ∂r − E1,1 ⊗ (∂ + nβ)r + δ0,rcD,

x̄+
i,r 
→ Ei,i+1 ⊗ (∂ + (n− i)β)r, x̄−

i,r 
→ Ei+1,i ⊗ (∂ + (n− i)β)r, ξ̄i,r 
→ (Ei,i −Ei+1,i+1) ⊗ (∂ + (n− i)β)r

(with i ∈ [n]×, r ∈ Z+) provides an isomorphism of Lie algebras ϑ(n)
β : ÿ(n)

β
∼−→ D̄

(n)
nβ .

For n = 1, these isomorphisms have been essentially established in [7]. In the rest of this section, we 
adapt arguments from [7] to prove the above results for n ≥ 2.

Remark 2.3. These two theorems played a crucial role in [9], while their proofs were missing. In the [9], we 
considered the quotients ü(n)

d /(c̄) and d̄(n),0
dn /(c(2)d ) and had a different 2-cocycle. Nevertheless, Theorem 2.8 

from [9] is equivalent to the above Theorem 2.1.

2.2. Proof of Theorem 2.1

It is straightforward to see that the assignment from Theorem 2.1 preserves all the defining relations 
(u1–u7.2), hence, it provides a Lie algebra homomorphism θ(n)

d : ü(n)
d → d̄

(n),0
dn . We also consider the induced 

homomorphism θ(n)
d : ü(n)

d → d
(n),0
dn , where ü(n)

d := ü
(n)
d /(c̄, 

∑
i h̄i,0) is a central quotient of ü(n)

d . Clearly, it 
suffices to show that θ(n)

d is an isomorphism.
Let Q be the root lattice of ŝln. The Lie algebras ü(n)

d and d(n)
dn are Q × Z-graded via 

deg(ēi,k) = (αi; k), deg(f̄i,k) = (−αi; k), deg(h̄i,k) = (0; k),

deg(Ei,j ⊗DkZl) = (lδ + (α1 + . . . + αj−1) − (α1 + . . . + αi−1); k),
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where α0, α1, . . . , αn−1 are the simple positive roots of ŝln, while δ = α0 + . . .+αn−1 is the minimal positive 
imaginary root. Note that θ(n)

d is Q × Z-graded, and it is easy to see that θ(n)
d is surjective for d �=

√
1. 

Therefore, it suffices to prove 

dim(ü(n)
d )(α;k) ≤ dim(d(n),0

dn )(α;k) (†)

for any α ∈ Q, k ∈ Z. Note that 

dim(d(n),0
dn )(α;k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if α is nonzero and is not a root of ŝln
1 if α is a real root of ŝln
n if α ∈ Zδ and (α; k) �= (0; 0)
n− 1 if (α; k) = (0; 0)

.

For α /∈ Zδ, the inequality (†) can be proved analogously to [6, Proposition 3.2]1 by viewing ü(n)
d as a 

module over the horizontal subalgebra generated by {ēi,0, f̄i,0, ̄hi,0}i∈[n], which is isomorphic to ŝln. Hence, 
it remains to handle the case α = lδ. The case l = 0 is obvious since (ü(n)

d )(0;k) is spanned by {h̄i,k}i∈[n]. 
For the rest of the proof, we can assume l ∈ N.

Remark 2.4. For n > 2, this step is different from the argument in [10, Sect. 13], where the authors prove 
that ü(n)

d is the universal central extension of d(n),0
dn by showing that the former does not admit non-split 

central extensions.

Let ü(n),≥
d be the subalgebra of ü(n)

d generated by {ēi,k, ̄hi,k}k∈Z

i∈[n]. It is isomorphic to an abstract Lie alge-
bra generated by {ēi,k, ̄hi,k}k∈Z

i∈[n] subject to the defining relations (u1,u2,u5,u7.1) with c̄ = 0 and 
∑

i h̄i,0 = 0. 
It suffices to show that dim(ü(n),≥

d )(lδ;k) ≤ n for any l ∈ N, k ∈ Z.
Introduce the length N commutator : [a1; a2; . . . ; aN−1; aN ]N := [a1, [a2, [. . . [aN−1, aN ] . . .]]]. We say that 

this commutator starts from a1. The degree (lδ; k) subspace of ü(n),≥
d is spanned by length ln commutators 

[ēi1,k1 ; . . . ; ̄eiln,kln
]ln such that k1 + . . . + kln = k and αi1 + . . . + αiln = lδ. Define 

v
(i,l)
a,b := [ēi,a; ēi+1,0; . . . ; ēi−2,0; ēi−1,b]ln.

Note that v(i,l)
a,b ∈ (ü(n),≥

d )(lδ;a+b) and v(i,l)
a,b �= 0 since θ(n)

d (v(i,l)
a,b ) �= 0. Together with dim(ü(n)

d )(lδ−αi1 ;k−k1) ≤
1, this implies that (ü(n),≥

d )(lδ;k) is spanned by {v(i,l)
a,k−a}a∈Z

i∈[n]. It remains to show that the rank of this system 
is at most n.

• Case k = 0.
Define v1 := v

(1,l)
0,0 , . . . , vn−1 := v

(n−1,l)
0,0 , vn := v

(0,l)
1,−1 and set V (l; 0) := spanC〈v1, . . . , vn〉. We prove 

v
(i,l)
a,−a ∈ V (l; 0) for all i ∈ [n], a ∈ Z by induction on |a|. The case a = 0 follows from 

v
(0,l)
0,0 + v

(1,l)
0,0 + . . . + v

(n−1,l)
0,0 = 0, (♦)

which is obvious once the horizontal subalgebra of ü(n)
d is identified with sln[Z, Z−1].

To proceed further, we need the following technical result based on non-degeneracy of the matrices 
(ai,jdkmi,j )j∈[n]

i∈[n] (for n > 2) and (2δi,j − (dk + d−k)δi,j+1)j∈[2]
i∈[2] for any d �=

√
1, k �= 0.

1 The argument in the [6] used the extra relation [ēj,a, ̄ej,b] = 0 for any j ∈ [n], a, b ∈ Z (with n > 1). However, this relation is a 
simple consequence of (u2).
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Lemma 2.5. For any fixed i ∈ [n], k �= 0, there exists an element h̄′
i,k ∈ spanC〈h̄0,k, . . . , ̄hn−1,k〉 such that 

[h̄′
i,k, ̄ej,l] = δi,j ēj,l+k for all j ∈ [n], l ∈ Z.

First, we prove v(i,l)
−1,1 ∈ V (l; 0). Applying ad(h̄′

i,−1) ad(h̄′
0,1) to the equality (♦), we get a sum of l2n

length ln commutators being zero. Among those, l2n − l + δi,0 belong to V (l; 0) as they start either from 
ēi′,0 (i′ ∈ [n]) or ē0,1. The remaining l − δi,0 commutators start from ēi,−1 and therefore are multiples of 
v
(i,l)
−1,1. It remains to show that the sum of these l− δi,0 terms is nonzero.2 For the latter, it suffices to verify 

that the image of this sum under θ(n)
d is nonzero, which is a straightforward computation based on the 

assumption d �=
√

1. To prove v(i,l)
1,−1 ∈ V (l; 0), we apply ad(h̄′

i,1) ad(h̄′
i+1,−1) to (♦) and follow the same 

arguments.
To perform the inductive step, we assume that v(i,l)

a,−a ∈ V (l; 0) for all i ∈ [n], |a| ≤ N and we shall prove 

v
(i,l)
±(N+1),∓(N+1) ∈ V (l; 0). Applying ad(h̄′

i,±(N+1)) ad(h̄′
i+2,∓1) ad(h̄′

i+1,∓N ) to (♦), we get a sum of l3n length 
ln commutators being zero. By the induction hypothesis, all of them, except for those starting from ēi,±(N+1), 
belong to V (l; 0). The remaining l(l − δn,2) terms are multiples of v(i,l)

±(N+1),∓(N+1). For (n, l) �= (2, 1), it is 
easy to see that the sum of their images under θ(n)

d is nonzero, implying v(i,l)
±(N+1),∓(N+1) ∈ V (l; 0). In the 

remaining case (n, l) = (2, 1), the inclusion v(i,l)
±(N+1),∓(N+1) ∈ V (l; 0) follows from the relation (u2).

This completes our induction step. Hence, (ü(n),≥
d )(lδ;0) = V (l; 0) ⇒ dim(ü(n),≥

d )(lδ;0) ≤ n.

• Case 0 < k < l.
Define v1 := v

(1,l)
0,k , . . . , vn−1 := v

(n−1,l)
0,k , vn := v

(0,l)
0,k and set V (l; k) := spanC〈v1, . . . , vn〉. We claim that 

v
(i,l)
a,k−a ∈ V (l; k) for any i ∈ [n], a ∈ Z. We will prove this in three steps.

Step 1: Proof of v(i,l)
k,0 ∈ V (l; k) for any i ∈ [n].

Applying ad(h̄′
i,k) to the equality (♦), we immediately get v(i,l)

k,0 ∈ V (l; k).
Step 2: Proof of v(i,l)

a,k−a ∈ V (l; k) for any i ∈ [n], 0 < a < k.
It is known that any degree k symmetric polynomial in {xj}lj=1 is a polynomial in {

∑
j x

r
j}kr=1. Choose 

Pk,l such that Sym(x1x2 · · ·xk) = Pk,l(
∑

j xj , . . . , 
∑

j x
k
j ). Define Li;k,l ∈ End(ü(n),≥

d ) via 

Li;k,l := Pk,l(ad(h̄′
i,1), . . . , ad(h̄′

i,k)).

Applying Li;k,l to the equality (♦), we get a sum of 
(
l
k

)
·n length ln commutators being zero. Each of these 

terms starts either from ēi′,0 (i′ ∈ [n]) or ēi,1. In the former case the commutator belongs to V (l; k), while 
in the latter case the commutator is a multiple of v(i,l)

1,k−1. There are 
(
l−1
k−1

)
terms starting from ēi,1 and the 

sum of their images under θ(n)
d is nonzero. Therefore, v(i,l)

1,k−1 ∈ V (l; k).
Applying the same arguments to the symmetric function Sym(xa

1x2 · · ·xk−a+1), we analogously get 
v
(i,l)
a,k−a ∈ V (l; k) for any i ∈ [n], 0 < a < k.

Step 3: Proof of v(i,l)
a,k−a ∈ V (l; k) for any i ∈ [n] and a /∈ {0, 1, . . . , k}.

We prove v(i,l)
−N,k+N , v(i,l)

k+N,−N ∈ V (l; k) for all i ∈ [n], N ∈ Z+ by induction on N . The case N = 0 is clear. 
Assume v(i,l)

a,k−a ∈ V (l; k) for any i ∈ [n], −N ≤ a ≤ k + N . Applying ad(h̄′
i,−N−1) ad(h̄′

i+2,1) ad(h̄′
i+1,k+N )

to (♦), we get a sum of l3n length ln commutators being zero. Each of these terms either belongs to V (l; k)
by the induction hypothesis or is a multiple of v(i,l)

−N−1,k+N+1. There are l(l − δn,2) summands of the latter 
form and the sum of their images under θ(n)

d is nonzero if (n, l) �= (2, 1). This implies v(i,l)
−N−1,k+N+1 ∈ V (l; k)

for (n, l) �= (2, 1).

2 This argument does not apply when (i, l) = (0, 1). If n = 2, then the latter case follows from (u2). If n > 2, then we first prove 
v
(i,1)
1,−1 ∈ V (1; 0) for any i, and then deduce v(0,1)

−1,1 ∈ V (1; 0).



A. Tsymbaliuk / Journal of Pure and Applied Algebra 221 (2017) 2633–2646 2641
The latter inclusion also holds for (n, l) = (2, 1), due to Step 2 and (u2).
To prove v(i,l)

k+N+1,−N−1 ∈ V (l; k), we apply ad(h̄′
i,k+N+1) ad(h̄′

i+2,−1) ad(h̄′
i+1,−N ) to (♦) and follow the 

same arguments.

• Case of an arbitrary k.
It is clear that Li;l,l induces an isomorphism (ü(n),≥

d )(lδ;k′)
∼−→ (ü(n),≥

d )(lδ;k′+l) for any k′ ∈ Z. In partic-
ular, dim(ü(n),≥

d )(lδ;k) = dim(ü(n),≥
d )(lδ;k mod l) ≤ n, due to the previous two cases. �

2.3. Proof of Theorem 2.2

It is straightforward to see that the assignment from Theorem 2.2 preserves all the defining relations 
(y1–y6), hence, it provides a Lie algebra homomorphism ϑ(n)

β : ÿ(n)
β → D̄

(n)
nβ . We also consider the induced 

homomorphism ϑ(n)
β : ÿ(n)

β
→ D

(n)
nβ , where ÿ(n)

β
:= ÿ

(n)
β /(

∑
i ξ̄i,0) is a central quotient of ÿ(n)

β . Clearly, it 

suffices to show that ϑ(n)
β is an isomorphism.

The Lie algebra ÿ(n)
β

is Q-graded via deg1(x̄±
i,r) = ±αi, deg1(ξ̄i,r) = 0 and Z+-filtered as a quotient of 

the free Lie algebra on {x̄±
i,r, ξ̄i,r}

r∈Z+
i∈[n] graded via deg2(x̄±

i,r) = r, deg2(ξ̄i,r) = r. The Lie algebra D(n)
nβ is 

also Q-graded via deg1(Ei,j ⊗ ∂rxl) = lδ + (α1 + . . . + αj−1) − (α1 + . . . + αi−1) and Z+-filtered with the 
filtration ≤ k subspace consisting of the finite sums 

∑j∈Z

0≤i≤k Ai,j∂
ixj , where Ai,j ∈ Mn and tr(Ak,j) = 0 for 

any j ∈ Z. Let (ÿ(n)
β

)(α;≤k) and (D(n)
nβ )(α;≤k) denote the subspaces of ÿ(n)

β
and D(n)

nβ , respectively, consisting 
of the degree α and filtration ≤ k elements.

Note that ϑ(n)
β ((ÿ(n)

β
)(α;≤k)) ⊂ (D(n)

nβ )(α;≤k) for any α ∈ Q, k ∈ Z+. Hence, we get linear maps 

ϑ
(n)
β;α,k : (ÿ(n)

β
)(α;≤k)/(ÿ(n)

β
)(α;≤k−1) → (D(n)

nβ )(α;≤k)/(D
(n)
nβ )(α;≤k−1). We claim that all the maps ϑ(n)

β;α,k are 

isomorphisms. To prove this, it suffices to show that ϑ(n)
β;α,k is surjective and 

dim(ÿ(n)
β

)(α;≤k) − dim(ÿ(n)
β

)(α;≤k−1) ≤ dim(D(n)
nβ )(α;≤k) − dim(D(n)

nβ )(α;≤k−1) (‡)

for any α ∈ Q, k ∈ Z+. The right-hand side of (‡) can be simplified as follows: 

dim(D(n)
nβ )(α;≤k) − dim(D(n)

nβ )(α;≤k−1) =

⎧⎪⎪⎨⎪⎪⎩
0 if α is nonzero and is not a root of ŝln
1 if α is a real root of ŝln
n− δk,0 if α is an imaginary root or zero

.

For α /∈ Zδ, the inequality (‡) and the surjectivity of ϑ(n)
β;α,k can be deduced in the same way as (†). 

Hence, it remains to handle the case α = lδ. The l = 0 case is obvious since the degree 0 subspace of ÿ(n)
β

is spanned by ξ̄i,r. For the rest of the proof, we can assume l ∈ N.
Let ÿ(n),≥

β
be the subalgebra of ÿ(n)

β
generated by {x̄+

i,r, ξ̄i,r}
r∈Z+
i∈[n] . It is isomorphic to an abstract Lie 

algebra generated by {x̄+
i,r, ξ̄i,r}

r∈Z+
i∈[n] subject to the defining relations (y1,y3,y4,y5,y6) and 

∑
i ξ̄i,0 = 0. It 

suffices to show that dim(ÿ(n),≥
β

)(lδ;≤k) − dim(ÿ(n),≥
β

)(lδ;≤k−1) ≤ n − δk,0 and ϑ(n)
β;lδ,k is surjective for any 

l ∈ N, k ∈ Z+.

Case n = 2.
The degree lδ subspace of ÿ(2),≥

β
is spanned by all length 2l commutators [x̄+

i1,k1
; . . . ; ̄x+

i2l,k2l
]2l such that 

αi1 + . . . + αi2l = lδ. For any i ∈ [2] and a, b ∈ Z+, we define 

w
(i,l) := [x̄+

i,a; x̄
+
i+1,0; . . . ; x̄

+
i,0; x̄

+ ]2l.
a,b i+1,b
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Due to our description of the degree lδ − αi subspace of ÿ(2),≥
β

, we see that (ÿ(2),≥
β

)lδ is spanned by 

{w(i,l)
a,b }a,b∈Z+

i∈[2] . Moreover, (ÿ(2),≥
β

)(lδ,≤k) is spanned by {w(i,l)
a,b }a,b∈Z+

i∈[2] with a + b ≤ k. Therefore, the in-

equality dim(ÿ(2),≥
β

)(lδ;≤k) − dim(ÿ(2),≥
β

)(lδ;≤k−1) ≤ 2 − δk,0 and the surjectivity of ϑ(2)
β;lδ,k follow from our 

next result:

Proposition 2.6. Define W (l; N) := spanC〈w
(i,l)
0,M 〉0≤M≤N

i∈[2] for l ∈ N, N ∈ Z+.
(a) We have w(i,l)

a,b ∈ W (l; a + b) for any i ∈ [2], l ∈ N, a, b ∈ Z+.
(b) The images of {ϑ(2)

β (w(i,l)
0,N )}i∈[2] in the quotient space (D(2)

2β )(lδ;≤N)/(D
(2)
2β )(lδ;≤N−1) are linearly indepen-

dent for any l, N ∈ N.

Proof of Proposition 2.6. (a) Our proof is based on the following simple equalities:∑
i∈[2]

w
(i,l)
0,0 = 0, (1)

[H3, x̄
+
i,r] = x̄+

i,r+1, [H4, x̄
+
i,r] = x̄+

i,r+2, (2)

where H3 := −1
6β2

∑
i∈[2] ξ̄i,3, H4 := −1

12β2

∑
i∈[2] ξ̄i,4 + 1

12
∑

i∈[2] ξ̄i,2.
◦ Proof of w(i,l)

1,b ∈ W (l; 1 + b).
We prove this by induction on b. Applying ad(H3) or ad(1

2 ξ̄i,1) to (1), we get w(0,l)
1,0 +w

(1,l)
1,0 ∈ W (l; 1) and 

w
(i,l)
1,0 −w

(i+1,l)
1,0 ∈ W (l; 1), respectively. Hence, w(i,l)

1,0 ∈ W (l; 1), which is the basis of induction. To perform the 

inductive step, we assume w(i,l)
1,b ∈ W (l; 1 + b) for any 0 ≤ b ≤ M . In particular, w(i,l)

1,M =
∑N≤M+1

j∈[2] cj,Nw
(j,l)
0,N

for some cj,N ∈ C. Applying ϑ(2)
β to this equality, we find ci,M+1 = M+1−l

M+1 , ci+1,M+1 = −l
M+1 . Hence 

w
(i,l)
1,M − M+1−l

M+1 w
(i,l)
0,M+1 + l

M+1w
(i+1,l)
0,M+1 ∈ W (l; M). Applying ad(H3 + 1

2 ξ̄i+1,1) to this inclusion, we get 
lw

(i,l)
1,M+1 + l

M+1w
(i+1,l)
1,M+1 ∈ W (l; M + 2). For M > 0, this yields w(i,l)

1,M+1 ∈ W (l; M + 2) as w(i,l)
1,M+1 ∈

spanC〈lw
(j,l)
1,M+1 + l

M+1w
(j+1,l)
1,M+1〉j∈[2].

It remains to treat separately the case M = 0. We can assume l > 1 as the case l = 1 is simple. Applying 
ad(H3+ 1

2 ξ̄i,1) to the inclusion w(i,l)
1,0 +(l−1)w(i,l)

0,1 + lw
(i+1,l)
0,1 ∈ W (l; 0), we get 2(l−1)w(i,l)

1,1 +w
(i,l)
2,0 ∈ W (l; 2). 

On the other hand, applying ad(H4 + 1
2 ξ̄i,2) to (1), we find w(i,l)

2,0 ∈ W (l; 2). This implies w(i,l)
1,1 ∈ W (l; 2).

◦ Proof of w(i,l)
a,b ∈ W (l; a + b) for a > 1.

We prove this by induction on a. The base cases of induction a = 0, 1 have been already treated. To 
perform the inductive step, we assume w(i,l)

a,b ∈ W (l; a + b) for all 0 ≤ a ≤ M and b ∈ Z+. In particular, 
w

(i,l)
M,b =

∑N≤M+b
j∈[2] dj,Nw

(j,l)
0,N for some dj,N ∈ C. Applying ad(H3) to this equality and using the induction 

hypothesis, we immediately get w(i,l)
M+1,b ∈ W (l; M + b + 1).

(b) Straightforward computations yield

ϑ
(2)
β (w(1,l)

0,N ) = 2N−1(E1,1 −E2,2) ⊗ ∂Nxl + l.o.t.,

ϑ
(2)
β (w(0,l)

0,N + w
(1,l)
0,N ) = −2l−1Nβ · (E1,1 + E2,2) ⊗ ∂N−1xl + l.o.t.,

where l.o.t. denote summands with lower power of ∂. The result follows. �
This completes our proof of Theorem 2.2 for n = 2.

Case n > 2.
The proof for n > 2 is completely analogous and crucially uses the same equalities (1) and (2); we leave 

details to the interested reader. �
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3. Consequences

3.1. Classical limits of the vertical and horizontal quantum affine gln

For n ≥ 2, the algebra U(n)
q,d contains two subalgebras U̇v

q , U̇
h
q isomorphic to the quantum affine Uq(ŝln). 

Here U̇v
q is generated by {ei,k, fi,k, hi,k, c}k∈Z

i∈[n]× , while U̇h
q is generated by {ei,0, fi,0, hi,0}i∈[n]. The following 

result is obvious.

Lemma 3.1. For d �=
√

1, the isomorphism θ(n)
d identifies the q → 1 limits of the subalgebras U̇v

q and U̇h
q

with the universal enveloping algebras of sln[D, D−1] ⊕ C · c(2)d and sln[Z, Z−1] ⊕ C · c(1)d , respectively.

According to [3], the algebra U(n)
q,d also contains two Heisenberg subalgebras hv and hh, which commute 

with U̇v
q and U̇h

q , respectively. This yields two copies of the quantum affine Uq(ĝln) inside U(n)
q,d , which will 

be called the vertical and horizontal quantum affine gln, denoted by U̇v,′
q and U̇h,′

q , respectively.

Lemma 3.2. For d �=
√

1, the isomorphism θ(n)
d identifies the q → 1 limits of the subalgebras U̇v,′

q and 

U̇h,′
q with the universal enveloping algebras of gln[D, D−1]0 ⊕ C · c(2)d and gln[Z, Z−1]0 ⊕ C · c(1)d , where 

gl[Z, Z−1]0 = sln ⊗ 1 ⊕
⊕
k �=0

gln ⊗ Zk and gl[D, D−1]0 = sln ⊗ 1 ⊕
⊕
k �=0

gln ⊗Dk.

Proof of Lemma 3.2. (i) First, we recall the construction of hv from [3, Sect. 2.2]. For any k �= 0 and 

i, j ∈ [n], define the constants bn(i, j; k) :=
{
d−kmi,j qkai,j−q−kai,j

k(q−q−1) if n > 2
δi,j · q2k−q−2k

k(q−q−1) − δi,j+1 · (dk + d−k) qk−q−k

k(q−q−1) if n = 2
, so that 

their q → 1 limits are equal to b̄n(i, j; k) =
{
ai,jd

−kmi,j if n > 2
2δi,j − (dk + d−k)δi,j+1 if n = 2

. For any fixed k �= 0, let 

{ci,k}i∈[n] be a unique solution of the system 
∑

i∈[n] bn(i, j; k)ci,k = 0 for all j ∈ [n]× with c0,k = 1. By 

construction, the subalgebra hv is generated by qc/2 and the elements {hv
k :=

∑
i∈[n] ci,khi,k}k �=0. The image 

of the q → 1 limit of hv
k under θ(n)

d equals 

Hv
k =

(
c̄0,k(En,n − dnkE1,1) +

n−1∑
i=1

c̄i,kd
(n−i)k(Ei,i −Ei+1,i+1)

)
⊗Dk,

where the constants {c̄i,k} satisfy 
∑

i∈[n] b̄n(i, j; k)c̄i,k = 0 for all j ∈ [n]× and c̄0,k = 1. Therefore, 
Hv

k = 1−dnk

n · In ⊗ Dk with In =
∑n

j=1 Ej,j . It remains to notice that the Lie subalgebra of d̄(n),0
dn gen-

erated by sln[D, D−1] ⊕ C · c(2)d and {In ⊗Dk}k �=0 is exactly gln[D, D−1]0 ⊕ C · c(2)d .
(ii) According to [3], U̇h,′

q is a preimage of U̇v,′
q under the Miki’s automorphism �. Combining (i) with 

Lemma 3.4 below, we get the description of θ(n)
d (q → 1 limit of U̇h,′

q ). �
3.2. Classical limit of the Miki’s automorphism

The natural ‘90 degree rotation’ automorphism of U(1)
q,d (due to Burban–Schiffmann) admits a generaliza-

tion to the case of U(n)
q,d with n ≥ 2 (due to Miki).

Theorem 3.3. [5] For n ≥ 2, there exists an automorphism � of U(n)
q,d such that 

�(U̇v
q ) = U̇h

q , �(U̇h
q ) = U̇v

q , �(c) = −
∑

hi,0, �(
∑

hi,0) = c.

i∈[n] i∈[n]
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Our next result provides a description of the q → 1 limit of �, denoted by �̄, viewed as an automorphism 
of the universal enveloping algebra U(d̄(n),0

dn ).

Lemma 3.4. �̄ is induced by an automorphism of the Lie algebra d̄(n)
dn defined via 

c
(1)
d 
→ c

(2)
d , c

(2)
d 
→ −c

(1)
d , A⊗DkZl 
→ d−nk(−d)nlA⊗ Z−kDl ∀ A ∈ Mn, k, l ∈ Z. (
)

Proof of Lemma 3.4. It is easy to see that the formulas (
) define a Lie algebra automorphism; we denote 
its restriction to d̄(n),0

dn by �̃. On the other hand, the action of � on the generators {ei,0, fi,0, hi,±1}i∈[n] was 
computed in [8, Proposition 1.4]. Taking the q → 1 limit in these formulas, we get

�̄ : Ei,i+1 ⊗ 1 
→ Ei,i+1 ⊗ 1, Ei+1,i ⊗ 1 
→ Ei+1,i ⊗ 1,

�̄ : En,1 ⊗ Z 
→ (−d)nEn,1 ⊗D, E1,n ⊗ Z−1 
→ (−d)−nE1,n ⊗D−1,

�̄ : (Ei,i − Ei+1,i+1) ⊗D±1 
→ d∓n(Ei,i − Ei+1,i+1) ⊗ Z∓1

for all 1 ≤ i ≤ n − 1. Therefore, images of the elements 

Ei,i+1 ⊗ 1, Ei+1,i ⊗ 1, En,1 ⊗ Z, E1,n ⊗ Z−1, (Ei,i − Ei+1,i+1) ⊗D±1, c
(1)
d , c

(2)
d

under �̄ and �̃ coincide. This completes our proof, since these elements generate d̄(n),0
dn . �

3.3. Classical limit of the commutative subalgebras A(s̄)

Let U(n),+
q,d be the subalgebra of U(n)

q,d generated by {ei,k}k∈Z

i∈[n]. In [4], we introduced certain ‘large’ commu-
tative subalgebras A(s̄) of U(n),+

q,d via the shuffle realization Ψ : U(n),+
q,d

∼−→ S. We refer the interested reader 
to [4] for a definition of the shuffle algebra S and its subalgebras A(s̄), where s̄ = (s0, s1, . . . , sn−1) ∈ (C×)[n]

satisfy s0s1 · · · sn−1 = 1 and are generic. Let diagn ⊂ Mn be the subspace of diagonal matrices.

Proposition 3.5. For d �=
√

1 and a generic s̄ = (s0, . . . , sn−1) satisfying s0 · · · sn−1 = 1, the isomorphism 
θ
(n)
d identifies the q → 1 limit of A(s̄) with the universal enveloping algebra of the commutative Lie subalgebra ⊕

k>0
diagn ⊗ Zk of d̄(n),0

dn .

Proof of Proposition 3.5. According to the main result [4, Theorem 3.3], the algebra A(s̄) is a polynomial 
algebra in the generators {F ′

i,k}k∈N

0≤i≤n−1, where F ′
i,k is the coefficient of (−μ)n−i in Fμ

k (s̄) defined via 

Fμ
k (s̄) :=

∏
i∈[n]

∏
1≤j �=j′≤k(xi,j − q−2xi,j′) ·

∏
i∈[n](s0 · · · si

∏k
j=1 xi,j − μ

∏k
j=1 xi+1,j)∏

i∈[n]
∏

1≤j,j′≤k(xi,j − xi+1,j′)
∈ Skδ.

First, we compute the q → 1 limit of A(s̄)δ. Choose β1 ∈ Z such that the q → 1 limit of (q − 1)β1 · F ′
0,1

is well-defined and is non-zero.3 Define Fi,1 := (q− 1)β1F ′
i,1 and let F̄i,1 denote the q → 1 limit of Fi,1 (if it 

exists). According to [4, Corollary 3.12], the element F0,1 is a non-zero multiple of the first generator hh
1 of 

the Heisenberg subalgebra hh. Combining this with Lemmas 3.2 and 3.4, we see that θ(n)
d (F̄0,1) = μ1 ·In⊗Z

for some μ1 ∈ C
×.

For 1 ≤ i ≤ n, define ai := s0 · · · si−1 ∈ C
×, Ai(d) :=

∑n
j=1 d

1−nδj,iEj,j ∈ Mn, and let ei(y1, . . . , yn) be 
the ith elementary symmetric function in the variables {yj}nj=1.

3 According to [8, Lemma 3.4], we have β1 = n − 1.
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Lemma 3.6. (a) The limit F̄i,1 is well-defined and θ(n)
d (F̄i,1) = μ1ei(a1A1(d), . . . , anAn(d)) ⊗ Z.

(b) The limits {F̄i,1}n−1
i=0 are linearly independent and {θ(n)

d (F̄i,1)}n−1
i=0 span diagn ⊗ Z.

Proof of Lemma 3.6. (a) It suffices to show that the image of the q → 1 limit of xi−1,1
xi,1

F0,1 under θ(n)
d

equals μ1Ai(d) ⊗ Z. Recall the elements h̄′
i,±1 ∈ spanC〈h̄0,±1, . . . , ̄hn−1,±1〉 from Lemma 2.5 such that 

[h̄′
i,1, ̄ej,l] = δi,j ēj,l±1 for any j ∈ [n], l ∈ Z. Since Ψ(ej,l) = xl

j,1, we see that the q → 1 limit of xi−1,1
xi,1

F0,1

equals ad(h̄′
i−1,1) ad(h̄′

i,−1)(F̄0,1). Combining the equality

θ
(n)
d (h̄′

i,±1) =
(
d±(2n−i)

d±n − 1 (E1,1 + · · · + Ei,i) + d±(n−i)

d±n − 1(Ei+1,i+1 + · · · + En,n)
)
⊗D±1

with θ(n)
d (F̄0,1) = μ1In ⊗ Z, we find θ(n)

d (ad(h̄′
i−1,1) ad(h̄′

i,−1)(F̄0,1)) = μ1Ai(d) ⊗ Z as claimed.
(b) Let C(d) be an n × n matrix whose rows are the diagonals of {ei(a1A1(d), . . . , anAn(d))}n−1

i=0 . If 
d �= n

√
1 and ai �= aj for i �= j (which is the case for generic s̄), then det(C(d)) �= 0 due to the Vandermonde 

determinant. The result follows. �
Let us generalize the above result to k > 1. According to [8, Theorems 3.2, 3.5], we have

Ψ
(

exp
( ∞∑

r=1
ar(d, q)�(h⊥

0,r)c−r

))
=

∞∑
k=0

(q − 1)knbk(d, q)F ′
0,kc

−k,

where c is a formal variable, the q → 1 limits ār(d) and b̄k(d) of the constants ar(d, q) and bk(d, q) are 
nonzero for d �= 0, and h⊥

0,r ∈ spanC〈h0,−r, . . . , hn−1,−r〉 are defined via ϕ(h⊥
0,r, hi,r) = δi,0 with the bilinear 

form ϕ given by ϕ(hi,−r, hj,s) = δr,s · bn(i,j;−r)
q−q−1 . Following our proof of Lemma 3.2, we see that h⊥

0,r =
(q − 1)λr(d, q)hv

−r and the q → 1 limit of λr(d, q) is nonzero. Combining this with Lemmas 3.2 and 3.4, 
we find θ(n)

d

(
q → 1 limit of (q − 1)−1�(h⊥

0,r)
)

= c̄r(d) · In ⊗ Zr, where c̄r(d) �= 0 for d �= 0, 
√

1. Define 
Fi,k := (q − 1)kn−1F ′

i,k and let F̄i,k denote the q → 1 limit of Fi,k (if it exists). We also set μr :=
ār(d)c̄r(d)/b̄r(d) ∈ C

×.
The above discussion implies that θ(n)

d (F̄0,k) = μk · In ⊗ Zk for any k ∈ N.

Lemma 3.7. (a) The limit F̄i,k is well-defined and θ(n)
d (F̄i,k) = μkei(a1A1(dk), . . . , anAn(dk)) ⊗ Zk.

(b) The elements {θ(n)
d (F̄i,k)}n−1

i=0 are linearly independent and span diagn ⊗ Zk.

Proof of Lemma 3.7. (a) It suffices to show

θ
(n)
d

(
q → 1 limit of

∏k
j=1 xi−1,j∏k
j=1 xi,j

F0,k

)
= μkAi(dk) ⊗ Zk for any 1 ≤ i ≤ n. (3)

Recall the elements h̄′
i,±k ∈ spanC〈h̄0,±k, . . . , ̄hn−1,±k〉 from Lemma 2.5 such that [h̄′

i,±k, ̄ej,l] = δi,j ēj,l±k

for any j ∈ [n], l ∈ Z and the polynomials Pk,k introduced in our proof of Theorem 2.1. Define Li;±k ∈
End(ü(n),≥

d ) via Li;±k = Pk,k(ad(h̄′
i,±1), . . . , ad(h̄′

i,±k)). Then, the q → 1 limit of 
∏k

j=1
xi−1,j
xi,j

· F0,k equals 
Li−1;kLi;−k(F̄0,k). To derive (3), one needs to apply the formula

θ
(n)
d (h̄′

i,±k) =
(
d±(2n−i)k

d±nk − 1 (E1,1 + · · · + Ei,i) + d±(n−i)k

d±nk − 1(Ei+1,i+1 + · · · + En,n)
)
⊗D±k

together with the identity Pk,k(d
kn−1
dn−1 , d

2kn−1
d2n−1 , · · · , dk2n−1

dkn−1 ) = ek(1, dn, . . . , d(k−1)n) = d
k(k−1)n

2 .
(b) This is proved analogously to Lemma 3.6(b). �
It remains to note that Proposition 3.5 follows from Lemma 3.7 by induction on k. �
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