On continuous time bubbling for the harmonic map heat flow in two dimensions

J. Jendrej (CNRS), A. Lawrie (MIT), W. Schlag (Yale)

Frank Merle Conference, IHES, May 2023

Harmonic map heat flow

Gradient flow of the Dirichlet energy

$$E(u) := \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u(x)|^2 dx,$$

$$u : \mathbb{R}^2 \to \mathbb{S}^2$$

solves the heat equation (Eells, Sampson '64):

$$u_t = \Delta u + |\nabla u|^2 u = \mathcal{T}(u)$$

$$u(0,\cdot) = u_0(\cdot)$$

Tension: $T(u) = \prod_{T_u} \Delta u$ projection onto the tangent plane T_u Energy monotone:

$$E(u(0)) - E(u(t)) = \int_0^t \|\partial_s(s,\cdot)\|_2^2 ds$$

Existence, regularity, energy concentration and singularities in finite time: (Struwe '85). Harmonic maps are stationary solutions to HMHF.

Struwe's heat flow

Let \mathcal{M}, \mathcal{N} be general Riemannian manifolds, dim M = 2.

Theorem (Struwe '85)

Initial data $u_0 \in \dot{H}^1(\mathcal{M}; \mathcal{N})$, there exists unique global HMHF energy evolution on $[0,\infty) \times \mathbb{S}^2$ which is smooth up to finitely many points (x_ℓ, T_ℓ) characterized by the condition

$$\limsup_{t\to T_\ell-} E_R(u(t,\cdot),x_\ell)>\varepsilon_0>0$$

for all $0 < R \le R_0$.

Local compactness in $\dot{H}^2(\mathcal{M}; \mathcal{N})$ if energy does not concentrate, and $\int_P |\nabla u|^4 dt dx < \infty$ where P is a parabolic cylinder.

Energy concentration the only obstruction to local \dot{H}^2 compactness of a Palais-Smale sequence relative to energy and its L^2 -gradient. Harmonic sphere bubbles off at any singular time.

Chang, Ding, Ye '92: Finite time blowup.

Qing's bubbling theorem

Jie Qing '95 characterized singularity formation in Struwe's HMHF $\mathbb{R}^2 \to \mathbb{S}^2$ via a bubble decomposition along a carefully chosen sequence of times approaching one of the singular times T_ℓ .

Theorem (Qing '95)

Let (x_0, T_0) be a singularity of $u : [0, \infty) \times \mathbb{R}^2 \to \mathbb{S}^2$, HMHF solution. There exist $t_n \to T_0-$, harmonic spheres $\omega_k : \mathbb{R}^2 \to \mathbb{S}^2$

$$\lim_{t \to T_0 -} E_R(u(t, \cdot), x_0) = E_R(u(T_0, \cdot), x_0) + \sum_{k=1}^r E(\omega_k)$$

$$u(t_n,\cdot)=u(T_0,\cdot)+\sum_{k=1}^p\left(\omega_k\left(\frac{\cdot-a_n^k}{\lambda_n^k}\right)-\omega_k(\infty)\right)+o_{W^{1,2}(B_R)}(1)$$

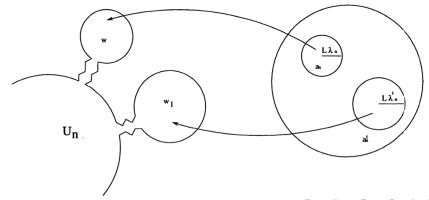
R>0 small, $\lambda_n^k\to 0$, $a_n^k\to x_0$. Bubbles asymptotically orthogonal.

Proved via bubbling for a Palais-Smale sequence.

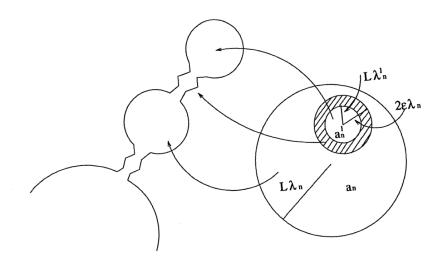
Asymptotic orthogonality of the bubbles

For all $k \neq \ell$, $n \rightarrow \infty$

$$\frac{\lambda_n^k}{\lambda_n^\ell} + \frac{\lambda_n^\ell}{\lambda_n^k} + \frac{|a_n^k - a_n^\ell|^2}{\lambda_n^k \lambda_n^\ell} \to \infty \tag{1}$$



Bubbles on bubbles (from Qing's paper)



Harmonic maps

Theorem

 $u: \mathbb{R}^2 \to \mathbb{S}^2$ weak non-constant solution of $\Delta u + u |\nabla u|^2 = 0$ of finite energy. Then $u: \mathbb{S}^2 \to \mathbb{S}^2$ smooth harmonic map (Hélein, Sacks-Uhlenbeck), nonzero degree. Conformal modulo orientation (Eells-Wood). Cauchy-Riemann system

$$\partial_1 u \mp u \times \partial_2 u = 0 \Longleftrightarrow \partial_2 u \pm u \times \partial_1 u = 0$$

holds, u unique minimizer of energy in its homotopy class, $E(u)=4\pi|\deg(u)|$. There exist $P,Q\in\mathbb{C}[z]$ without common linear factor satisfying

$$\max(\deg(P),\deg(Q)) = |\deg(u)| \ge 1$$

and such that $u = \frac{P}{Q}$ for deg(u) > 0, or $\bar{u} = \frac{P}{Q}$ for deg(u) < 0.

Key steps in the proof

- Hélein's regularity theorem (false in \mathbb{R}^d , $d \geq 3$). Div, curl structure, Hardy space compensated compactness (Coifman, Lions, Meyer, Semmes '92): continuity of weak solution. Then by elliptic regularity $\nabla u \in L^p$, $u \in C^{\infty}(\mathbb{R}^2)$
- Hopf quadratic differential

$$\varphi dz^{2} = \langle \partial_{z} u, \partial_{z} u \rangle dz^{2} = (|\partial_{x} u|^{2} - |\partial_{y} u|^{2} - 2i\langle u_{x}, u_{y} \rangle) dz^{2}$$

Harmonic map: $\partial_{\overline{z}}\varphi=0$ holomorphic on \mathbb{S}^2 , constant. Vanishes at $z=\infty$ so conformality follows:

$$|\partial_x u|^2 - |\partial_y u|^2 - 2i\langle u_x, u_y \rangle = 0$$

Bogomolnyi identity:

$$\mathcal{E}(u) = \frac{1}{2} \int_{\mathbb{R}^2} |\partial_1 u - u \times \partial_2 u|^2 + \int_{\mathbb{R}^2} \partial_1 u \cdot u \times \partial_2 u$$

Elliptic compactness lemma: bubbling in energy and L^{∞}

$$u_n: \mathbb{R}^2 \to \mathbb{S}^2 \subset \mathbb{R}^3$$
 with $\limsup_{n \to \infty} E(u_n) < \infty$, and

$$\lim_{n\to\infty}\rho_n\|\mathcal{T}(u_n)\|_{L^2}=0$$

for some $\rho_n \in (0, \infty)$. For arbitrary $y_n \in \mathbb{R}^2$, $\exists R_n \to \infty$ with

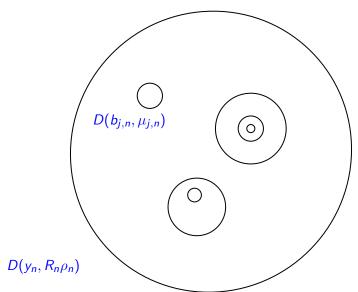
$$u_n - \omega_0\left(\frac{\cdot - y_n}{\rho_n}\right) - \sum_{j=1}^M \left(\omega_j\left(\frac{\cdot - b_{j,n}}{\mu_{j,n}}\right) - \omega_j(\infty)\right) \to 0$$

in energy and uniformly on $D(y_n, R_n \rho_n) \supset D(b_{j,n}, \mu_{j,n})$

- harmonic maps ω_j , nonconstant if $j \geq 1$
- orthogonality of scales as in (1)
- separation of $D(b_{i,n}, \mu_{i,n})$ from $\partial D(y_n, R_n \rho_n)$
- quantization of energy: $E(u_n; D(y_n, R_n \rho_n)) = 4\pi K + o(1)$

Qing '95, Ding-Tian '95, Wang '96, Qing-Tian '97, Lin-Wang '98

Disks in the bubble tree



Local Palais-Smale sequences for the heat flow

Smooth HMHF $u:[0,T)\times\mathbb{S}^2\to\mathbb{S}^2$, singularity at t=T. Energy dissipation

$$\int_0^T \|\mathcal{T}(u)(t)\|_2^2 \,\mathrm{d}t < \infty \tag{2}$$

- If $T = \infty$, then $\exists t_n \to \infty$ with $\sqrt{t_n} \| \mathcal{T}(u(t_n)) \|_2 \to 0$
- If $T < \infty$, then $\exists t_n \to T$ with $\sqrt{T t_n} \| \mathcal{T}(u(t_n)) \|_2 \to 0$

Elliptic compactness applies at these parabolic scales. Rescale

- If $T = \infty$, then $u_n(y) := u(t_n, y_n + \sqrt{t_n} y)$ is Palais-Smale
- If $T < \infty$, then $u_n(y) := u(t_n, y_n + \sqrt{T t_n} y)$ is Palais-Smale

Bubbling for HMHF locally at parabolic scales along a time sequence t_n determined by L^2 integrability (2).

Open problems

- If $T < \infty$, is the body map $u(T, \cdot)$ continuous?
- If $T = \infty$, are the points of energy concentration unique?
- Uniqueness of harmonic bubbles? Counterexamples by Topping if target manifold not S² (nonanalytic)
- Continuous in time bubbling (soliton resolution)?

Progress by Topping, '97, '04 for maps $\mathbb{S}^2 \to \mathbb{S}^2$.

Theorem (Topping, '97, '04)

If $T=\infty$ and if all the concentrating bubbles in the sequential decomposition have the same orientation, then the points of energy concentration $\{x_\ell\} \subset \mathbb{S}^2$ are unique. Moreover, the body map is unique, i.e., there exists a harmonic map $\omega_\infty : \mathbb{S}^2 \to \mathbb{S}^2$ such that $u(t) \rightharpoonup \omega_\infty$ as $t \to \infty$, weakly in \dot{H}^1 and strongly in $C^k_{loc}(\mathbb{S}^2 \setminus \{x_\ell\})$.

Soliton resolution in the equivariant case

Consider k-equivariant maps $u : \mathbb{R}^2 \to \mathbb{S}^2$, i.e.,

$$u(t, re^{i\theta}) = (\sin \psi(t, r) \cos k\theta, \sin \psi(t, r) \sin k\theta, \cos \psi(t, r))$$

Harmonic maps given by $\psi(t,r)=m\pi\pm Q(r/\lambda)$ for $m\in\mathbb{Z}$, $\lambda>0$, and $Q(r)=2\arctan(r^k)$.

Theorem (Jendrej-Lawrie '22)

Let $\psi(t,r)$ solve the HMHF. Suppose $T=\infty$. Then, there exist $m\in\mathbb{Z}$, $N\in\mathbb{N}$ and C^1 functions $0<\lambda_1(t)<\cdots<\lambda_N(t)$ such that,

$$\lim_{t\to T}\|\psi(t,\cdot)-m\pi-\sum_{j=1}^N\pm(Q(\cdot/\lambda_j(t))-\pi)\|_{\mathcal{E}}=0$$

and $\lim_{t\to T} \sum \lambda_j(t)/\lambda_{j+1}(t) = 0$. Similar when $T < \infty$.

Note: $\lambda_{N+1}(t) := \sqrt{t}$, and subsequent equivariant bubbles always have opposite orientations as maps $\mathbb{R}^2 \to \mathbb{S}^2$.

Comments

- Van der Hout ('03): same result in the case $T < \infty$ by showing there are no non-trivial equivariant bubble towers in finite time. In the case $T = \infty$, non-trivial bubble towers can occur; see for example Del Pino, Musso, Wei ('21) for a construction for the closely related energy critical heat equation.
- Finite time blow up solutions with one bubble (including a stable regime) were discovered by Raphaël-Schweyer ('13, '14) for k=1. See also Guan, Gustafson, Tsai ('09) and Gustafson, Nakanishi, Tsai ('10) who proved asymptotic stability of Q for $k \geq 3$, and Davila, Del Pino, Wei ('20) for blow up outside of equivariant symmetry.
- Remainder of the talk: discuss a continuous in time bubble decomposition in the general case, i.e., for maps $\mathbb{R}^2 \to \mathbb{S}^2$ without symmetry assumptions (as in Jendrej-Lawrie '22), and without assumptions on the orientations of the bubbles (as in Topping '97, '04).

Multi-bubble configuration, centers, scales

Centers and scales of harmonic maps: $\omega: \mathbb{R}^2 \to \mathbb{S}^2 \subset \mathbb{R}^3$ positive energy, $\gamma_0 \in (0, 2\pi)$, scale of ω

$$\lambda(\omega;\gamma_0) := \inf\{\lambda \in (0,\infty) \mid \exists \ a \in \mathbb{R}^2 \text{ s.t. } E(\omega;D(a,\lambda)) \geq E(\omega) - \gamma_0\}.$$

Center of ω : fix $a = a(\omega; \gamma_0) \in \mathbb{R}^2$ with

$$E(\omega; D(a(\omega; \gamma_0), \lambda(\omega; \gamma_0))) \ge E(\omega) - \gamma_0.$$

M-bubble configuration $\Omega = (\omega_0, \omega_1, \dots, \omega_M)$

$$Q(\Omega;x) = \omega_0 + \sum_{j=1}^{M} (\omega_j(x) - \omega_j(\infty))$$

where $\omega_0=\mathrm{const}\in\mathbb{S}^2$, $\omega_j:\mathbb{R}^2\to\mathbb{S}^2$, $j\geq 1$ non-constant harmonic maps, $\omega_j(\infty):=\lim_{|x|\to\infty}\omega_j(x)$. Constant maps: M=0.

Distance to a multi-bubble configuration

Smooth map $u: \mathbb{R}^2 \to \mathbb{S}^2$, multi-bubble $\mathcal{Q}(\Omega)$, disk $D(y; \rho) \subset \mathbb{R}^2$, auxiliary scales $\vec{\nu} = (\nu, \nu_1, \dots, \nu_M)$, $\vec{\xi} = (\xi, \xi_1, \dots, \xi_M)$.

Distance $\mathbf{d}(u, \mathcal{Q}(\Omega); D(y, \rho); \vec{\nu}, \vec{\xi}) \ll 1$ means

ullet closeness in energy to multi-bubble on the large disk: $Eig(u-\mathcal{Q}(\Omega);D(y,
ho)ig)\ll 1$

$$E(u-\mathcal{Q}(\Omega);D(y,\rho))\ll 1$$

• near constancy on the exterior neck region:

$$E(u; D(y, \nu) \setminus D(y, \xi)) + \|u - \omega_0\|_{L^{\infty}(D(y, \nu) \setminus D(y, \xi))} \ll 1$$

- large exterior neck: $\xi \ll \rho \ll \nu$
- orthogonality of bubbles scales/centers: $\lambda(\omega_i) \ll \lambda(\omega_k)$ or $\lambda(\omega_i) \gg \lambda(\omega_k)$ or $|a(\omega_i) - a(\omega_k)| \gg \lambda(\omega_i)$

• separation from exterior neck:
$$\xi_j \ll \lambda(\omega_j) \ll \operatorname{dist}(a(\omega_j), \partial D(y, \xi))$$

• uniform closeness of u, ω_j after removal of interior bubbles: $\|u-\omega_j\|_{L^\infty(D_j^*)} \ll 1$ • Swiss cheese (holes are of the same size): $D_j^* := D(a(\omega_j),\nu_j) \setminus \bigcup_k' D(a(\omega_k),\xi_j).$ • separation from boundaries: $\xi_j \ll \operatorname{dist}(a(\omega_k),\partial D(a(\omega_j),\nu_j)), \quad \lambda(\omega_j) \ll \nu_j$

$$\|u-\omega_j\|_{L^{\infty}(D_*^*)}\ll 1$$

$$D_{i}^{st}:=D(\mathsf{a}(\omega_{j}),
u_{j})\setminusigcup_{k}^{\prime}D(\mathsf{a}(\omega_{k}),\xi_{j}).$$

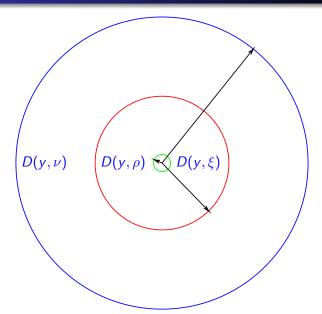
$$\xi_j \ll \operatorname{dist}(\mathbf{a}(\omega_k), \partial D(\mathbf{a}(\omega_j), \nu_j)), \quad \lambda(\omega_j) \ll \nu_j$$

Local multi-bubble proximity function:

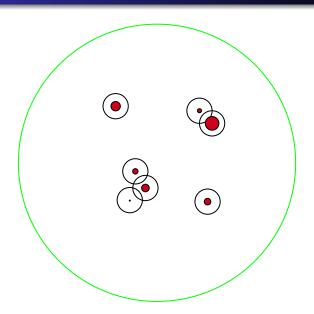
$$\boldsymbol{\delta}(u; D(y, \rho)) := \inf_{\Omega, \vec{\nu}, \vec{\xi}} \mathbf{d}(u, \mathcal{Q}(\Omega); D(y, \rho); \vec{\nu}, \vec{\xi})$$

Infimum taken over all multi-bubble configurations, and scales $\vec{\nu}, \vec{\xi}$

Exterior neck region



Swiss cheese structure



Continuous time bubbling

Theorem (Jendrej, Lawrie, S. '23)

 $u(t): [0, T_+) \times \mathbb{R}^2 \to \mathbb{S}^2$ smooth HMHF solution, maximal $T_+ = T_+(u_0) \in (0, \infty]$. If $T_+ < \infty$, then $\forall \ y \in \mathbb{R}^2$,

$$\lim_{t\to T_+} \delta\big(u(t);D(y,\sqrt{T_+-t})\big)=0.$$

Arbitrary $t_n \to T_+$ and $D(y_n, R_n \rho_n) \subset D(y, \sqrt{T_+ - t})$, $R_n \to \infty$, assume energy evacuates from necks of disks. Then,

$$\lim_{n\to\infty} \delta(u(t_n); D(y_n, \rho_n)) = 0.$$

Analogous statement on $D(y, \sqrt{t})$ if $T_+ = \infty$.

Solution remains close to multi-bubble configurations at parabolic scales, and on all smaller disks whose boundaries do not intersect bubbles, for all times up to \mathcal{T}_+ .

Comments on the theorem

- Analogous result when $T_+ = \infty$
- Does not give the uniqueness of bubbles.
- How to think about the theorem: non-existence of bubble collisions that destroy multi-bubble structure.
- As a corollary, we obtain a sequential bubble decomposition as in Qing along every time sequence $t_n \to T_+$ after passing to a subsequence (not just along Palais-Smale sequences)

Comments on the proof

- Proof by contradiction: u(t) cannot come close to, and then move away from multi-bubble configurations (MBCs) infinitely many times. Reminiscent of invariant manifold theory in dynamical systems, theory of ω -limit sets.
- However: linearized operator here has no spectral gap, no stable/unstable manifolds
- By sequential soliton resolution (bubbling along sequence of times) we know that we approach MBCs infinitely many times.
- If theorem fails, $\delta \left(u(t_n); D(y_n, \rho_n) \right) > \eta > 0$ for $t_n \to T_+-$. By energy dissipation and compactness lemma exist σ_n with $\delta \left(u(\sigma_n); D(y_n, \rho_n) \right) \to 0$ where $0 < t_n \sigma_n \ll \rho_n^2$
- Notions of collision intervals and minimal collision energy needed to lead this to a contradiction. This was essential for soliton resolution for wave maps by Jendrej, Lawrie '21.

Propagation estimates: local energy

Local energy propagation (Struwe '85): $0 < t_1 < t_2 < T_+$,

$$\begin{split} \int_{\mathbb{R}^2} |\nabla u(t_2,x)|^2 \phi(x)^2 \, \mathrm{d}x & \leq \int_{\mathbb{R}^2} |\nabla u(t_1,x)|^2 \phi(x)^2 \, \mathrm{d}x + C E(u_0) \frac{t_2 - t_1}{R^2} \\ \int_{\mathbb{R}^2} |\nabla u(t_2,x)|^2 \phi(x)^2 \, \mathrm{d}x & \geq \int_{\mathbb{R}^2} |\nabla u(t_1,x)|^2 \phi(x)^2 \, \mathrm{d}x \\ & - C \Big(E(u_0) \frac{(t_2 - t_1)}{R^2} + |E(u(t_1)) - E(u(t_2))| \Big) \end{split}$$

- ϕ cut-off adapted to $D(x_0, R)$.
 - Integrate HMHF by parts against $u_t \phi^2$. Nonlinear term drops out, normal vector field.
 - Controls energy flow on parabolic regions.
 - Energy evacuates from boundaries of parabolic regions. No self-similar energy concentration both in finite (Topping) and infinite times.

Tao's $L_t^2 L_x^{\infty}$ parabolic Strichartz estimate

Lemma: Solution of $\partial_t v - \Delta v = F$, $v(0) = v_0$ satisfies

$$||v||_{L^2(I;L^{\infty}(\mathbb{R}^2))} \le C_0(||v_0||_{L^2(\mathbb{R}^2)} + ||F||_{L^1(I;L^2(\mathbb{R}^2))})$$

With
$$(Tf)(t):=e^{t\Delta}f$$
 one has $T^*F=\int_0^\infty e^{s\Delta}F(s)\,ds$. From
$$(TT^*F)(t)=\int_0^\infty e^{(t+s)\Delta}F(s)\,ds$$

conclude

$$\|(TT^*F)(t)\|_{\infty} \lesssim \int_0^{\infty} (t+s)^{-1} \|F(s)\|_1 ds$$

$$||TT^*F||_{L^2((0,\infty),L^\infty(\mathbb{R}^2))} \lesssim ||F||_{L^2((0,\infty),L^1(\mathbb{R}^2))}$$

$$\langle TT^*F, F \rangle = \|T^*F\|_2^2 \lesssim \|F\|_{L^2((0,\infty),L^1(\mathbb{R}^2))}^2$$

Propagation estimates: pointwise bounds

Lemma: On a Swiss cheese region with $L \ge 0$ congruent, well-separated holes, assume

$$||u_{n,0} - \omega||_{L^{\infty}(D(0,4R_n)\setminus\bigcup_{\ell=1}^{L}D(x_{\ell},4^{-1}\varepsilon_n))} + E\left(u_{n,0} - \omega; D(0,4R_n)\setminus\bigcup_{\ell=1}^{L}D(x_{\ell},4^{-1}\varepsilon_n)\right) \to 0.$$

Then, if
$$\tau_n \ll \varepsilon_n^2$$
 (or $\tau_n \ll R_n^2$ if $L = 0$),
$$\|u_n(\tau_n) - \omega\|_{L^{\infty}(D(0,R_n)\setminus\bigcup_{\ell=1}^L D(x_\ell,\varepsilon_n))} \to 0.$$

- Contraction of heat flow on L^{∞}
- Tao's parabolic Strichartz estimate
- Struwe's small energy local $\int (|\nabla u|^4 + |\Delta u|^2) dt dx$ bound

Minimal collision energy

Definition: $K \ge 1$ minimal with the following properties.

$$\exists y_n \in \mathbb{R}^2$$
, $\rho_n, \varepsilon_n \in (0, \infty)$, $\sigma_n, \tau_n \in (0, T_+)$ and $\eta > 0$, with $\varepsilon_n \to 0$, $0 < \sigma_n < \tau_n < T_+$, $\sigma_n, \tau_n \to T_+$, so that

- **3** the interval $I_n := [\sigma_n, \tau_n]$ satisfies $|I_n| \le \varepsilon_n \rho_n^2$;
- $\bullet E(u(\sigma_n); D(y_n, \rho_n)) \to 4K\pi \text{ as } n \to \infty;$

We call σ_n bubbling times, and τ_n ejection times.

Lemma: If theorem fails, then $K \ge 1$ well-defined with collision intervals $[\sigma_n, t_n]$.

Based on energy dissipation and localized sequential bubbling. For K>0 need propagation estimates, both in energy and L^{∞} .

Lengths of collision intervals

Key Lemma: Let $K \ge 1$ minimal collision energy, $I_n := [\sigma_n, \tau_n]$ associated collision intervals. $\exists \varepsilon > 0$ such that if $s_n \in I_n$ satisfies

$$\delta(u(s_n); D(y_n, \rho_n)) \leq \varepsilon$$

Then,

$$\tau_n - s_n \ge \varepsilon \max_{j \in \{1, \dots, M\}} \lambda(\omega_j)^2 =: \varepsilon \lambda_{\max, n}^2.$$
 (3)

where scales $\lambda(\omega_j)$ correspond to any MBC $\mathcal{Q}(\boldsymbol{\omega})$ for which

$$\varepsilon \leq \mathbf{d}(u(s_n), \mathcal{Q}(\boldsymbol{\omega}); D(y_n, \rho_n); \vec{\nu}, \vec{\xi}) \leq 2\varepsilon.$$
 (4)

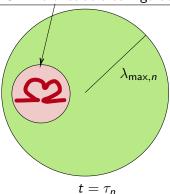
Proof Sketch: If lemma fails, $\exists \widetilde{\sigma}_n \in I_n$ with $\tau_n - \widetilde{\sigma}_n \ll \lambda_{\max,n}^2$ and for which $\delta(u(\widetilde{\sigma}_n); D(y_n, \rho_n)) \to 0$ and $\delta(u(\tau_n); D(y_n, \rho_n)) \ge \eta$

Key lemma: proof sketch

$$E \leq 4\pi(K-1) + o(1)$$
 multi-bubble configuration $\lambda_{\max,n}$ $\lambda_{\max,n}$

$$E \le 4\pi(K-1) + o(1)$$

NOT multi-bubble configuration



- By propagation estimates, multi-bubble structure is preserved at scale $\lambda_{\max,n}$ on the interval $[\widetilde{\sigma}_n, \tau_n]$.
- Hence, it is lost at a smaller scale (pink disks, radius $\sqrt{\tau_n-s_n}\ll\widetilde{\rho}_n\ll\lambda_{\max,n}$), contradicting minimality of K

Main theorem: proof sketch

• Use key lemma: fix $\varepsilon > 0$ and $J_n := [s_n, \tau_n] \subset I_n$ so that

$$au_n - s_n \ge \varepsilon \lambda_{\mathsf{max},n}^2, \quad \delta(u(t); D(y_n, \rho_n)) \ge \varepsilon, \quad \forall t \in J_n$$

("no return property" on J_n).

Then,

$$\lambda_{\max,n} \|\mathcal{T}(u(t))\|_2 \ge c_0 > 0$$
 for all $t \in J_n$

Otherwise, bubbling at scale $\lambda_{\max,n}$ at some $t_n \in J_n$ by elliptic compactness lemma, contradicting no-return property of J_n .

Contradiction with the energy identity:

$$\begin{split} \infty &= \sum_n \int_{s_n}^{\tau_n} c_0 \lambda_{\mathsf{max},n}^{-2} \, \mathrm{d}t \leq \sum_n \int_{s_n}^{\tau_n} \| \mathcal{T}(u(t)) \|_{L^2}^2 \, \mathrm{d}t \\ &\leq \int_0^{T_+} \| \mathcal{T}(u(t)) \|_{L^2}^2 \, \mathrm{d}t < \infty \end{split}$$

Happy Birthday, Frank! Many happy returns, much continued joy with mathematics.

Many thanks to

Scientific Committee: M. Dafermos, A.-L. Dalibard, H. Duminil-Copin, T. Duyckaerts, E. Hebey, Y. Martel, G. Ponce, P. Raphaël, L. Saint-Raymond et H. Zaag

Organising Committee: C. Collot, R. Côte, F. Demengel, T. Duyckaerts, J. Jendrej, Y. Lan, E. Logak, Y. Martel, C. Muñoz, P. Raphaël, J. Szeftel, N. Tzvetkov et H. Zaag

Tireless, selfless assistant: Elisabeth Jasserand

