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Spectrum of periodic Schrödinger operators

Periodic self-adjoint operator

(Hψ)n = ψn+1 + ψn−1 + vnψn, n ∈ Z

with vn a real-valued periodic potential, e.g. vn = f (x + np/q)
and f : T → R measurable, x fixed.
Gaps and bands: Floquet operator

Sq(E ) =
1∏

j=q

[
vj − E −1

1 0

]
∈ SL(2,R), ∆q(E ) := traceSq(E )

Spectrum equals all E for which Sq(E ) is elliptic, i.e.,
|∆q(E )| ≤ 2. These are the bands, separated by gaps (can
collapse).
Bloch-Floquet waves ψ(n) = a(n,E )e ik(E)n solve Hψ = Eψ, where
e±ik(E) eigenvalues of Sq(E ), amplitude a(n + q,E ) = a(n,E ).
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Spectrum of ergodic Schrödinger operators

Consider self-adjoint operators

(Hxψ)n = ψn+1 + ψn−1 + vn(x)ψn, n ∈ Z

with vn(x) an “ergodic potential”, i.e., vn(x) = V (T nx) and
T : X → X ergodic transformation on a probability space X ,
V : X → R measurable. There exists fixed compact set K ⊂ R
with spec(Hx) = K for a.e. x ∈ X : ergodic theorem and property
of the spectral resolution Ex of Hx

Ex = S−1 ◦ ETx ◦ S , S = right shift

Moreover, specac(Hx), specpp(Hx), specsc(Hx) deterministic.
Eigenvalues are NOT deterministic, but their closure is.
Anderson localization means that specpp(Hx) = spec(Hx),
eigenfunctions decay exponentially. Open problem: Anderson
conjecture on extended states in 3-dim. random model.
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Numerically computed eigenfunctions
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Transfer matrices

Let V be analytic, real-valued on Td , and Tx := x + ω ergodic
shift. Consider the Schrödinger equation on Z

(Hx ψ)(n) = −ψ(n + 1)− ψ(n − 1) + V (T nx)ψ(n) = Eψ(n) (1)

Rewrite as a system (linear cocycle):[
ψ(n + 1)
ψ(n)

]
= A(T nx ,E )

[
ψ(n)

ψ(n − 1)

]
,

A(x ,E ) =

[
V (x)− E −1

1 0

]
.

Propagator Mn(x ,E ) := A(T nx ,E ) . . .A(Tx ,E ). Lyapunov exp.:

Ln(E ) :=
1

n

∫
Td

log ∥Mn(x ,E )∥ dx

Subadditivity: Ln(E ) → L(E ) exists. Since detA = 1, one
has L(E ) ≥ 0. Pointwise (Fürstenberg-Kesten): for a.e. x

L(E ) = lim
n→∞

n−1 log ∥Mn(x ,E )∥
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Localization via Oseledec

How to establish AL? Assume positive Lyapunov exponent
infE L(E ) > 0, ω fixed irrational.
By multiplicative ergodic theorem (Oseledec theorem), for every
energy and almost every x ∈ T there exist directions v±x (E ) which
are contracting as n → ±∞, i.e.,

lim
n→∞

1

n
log ∥Mn(x ,E )v

+
x (E )∥ = −L(E ) (2)

and same for n → −∞. If these directions coincide we obtain a
globally exponentially decaying solution. If these directions do not
coincide, then on one side the solution will grow exponentially, and
thus the energy will not belong to the spectrum.
Conclusion: The spectrum consists purely of eigenvalues with
exponentially decaying eigenfunctions. So why haven’t we proved
AL?
Fallacy: We need to remove the zero measure sets in x for all
energies. This is not allowed.
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Oseledec theorem

Figure: The solutions of Hxψ = Eψ
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Localization theorem by Bourgain-Goldstein

“Localization is a game of resonances” (Phil Anderson). What this
means is that we need to make sure that we cannot have infinite
tunneling, as this would lead to extended states.

Theorem (Bourgain-Goldstein, Annals, 2000)

Let V be a trigonometric polynomial. Assume that L(E , ω) > 0 for
all (ω,E ). Then for almost every ω ∈ T the operator H0 exhibits
AL.

Assumption holds for V (x) = λf (x), trigonometric polynomial, λ
large by Herman’s ‘83 subharmonic argument. Random i.i.d. case:
was known long before, Fürstenberg’s product of random matrices
theorem ‘60s, Goldsheid, Molchanov, Pastur ‘77, Froehlich,
Spencer ‘83 AL for large random potentials in any dimension by
multi-scale method, Aizenman, Molchanov ‘90 fractional moments
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remarks on the localization theorem

Froehlich, Spencer, Wittwer ‘90: perturbative KAM-type
proof of AL for even cosine-like potentials for large disorder,
first and second order perturbation theory for eigenvalues,
eigenfunctions. Location of resonances known exactly:
θ = −kω/2 mod 1

Forman, VandenBoom ‘21: removed even assumption.

Preceded by seminal key result by S. Jitomirskaya for Harper
operator, V (x) = λ cos(2πx), |λ| > 1

By Fubini, we also have AL for almost every (ω, x) for Hx .

In the argument, eliminate zero measure set from Diophantine
class precisely to prevent tunneling (eliminate double
resonances).

Extends to more than one frequency, but hard problem to
extend to other dynamics such as the skew shift (only know
for large disorder).
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Large deviation theorem

A quantitative version of subadditive ergodic theorem under a
Diophantine condition: ∥nω∥ > n−1(log n)−2 for all n ≥ n0(ω).
A.e. ω ∈ T satisfies such a condition.

Theorem

Let ω ∈ T satisfy a Diophantine condition. Then there exists
σ > 0 such that∣∣{x ∈ T : |n−1 log ∥Mn(x ,E )∥ − Ln(E )| > n−

1
4
}∣∣ < e−nσ (LDT)

for all n ≥ n0(E ,V , ω).

On strip around R u(z) := n−1 log ∥Mn(z ,E )∥ subharmonic, ≥ 0,
and 1-periodic, and of size ≲ 1. Riesz representation theorem

u(x) =

∫
log |e(x)− ζ|µ(dζ) + h(x) ∀ x ∈ R (3)

h harmonic. Combine with almost invariance ∥u−u(·+ω)∥∞ ≤ C
n .
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Plot of log of norm for almost Mathieu

Figure: The graph of 1
100 log ∥M100(x)∥, ω =

√
2, λ = 2.2
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Good (nonresonant), bad (resonant) Green functions

Definition

We say that for any interval Λ ⊂ Z the Green function
GΛ(E , ω) = (HΛ(0, ω)− E )−1 is non-resonant iff

1 ∥GΛ(E , ω)∥ < e |Λ|
b1

2 |GΛ(E , ω)(n,m)| < exp(−L(E )|n −m|+ |Λ|b2) ∀ n,m ∈ Λ

where 0 < b1, b2 < 1. Otherwise, Green function is resonant.

For Λ = [n, n + N],

HΛ(0, ω) = H[0,N](nω, ω)

If LDT holds for (θ = nω, ω), then G[0,N](E , θ, ω) is good. Λ is

resonant at energy E with probability at most e−Nσ
. Depends on

Diophantine properties of ω.
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Good and bad Green functions

The property of good Green functions is intrinsic to Anderson
Localization: Indeed, suppose HΛ has eigenbasis {ψj}j∈Z of
exponentially decaying eigenfunctions with eigenvalues Ej on some
finite volume Λ. Assume

dist(E , spec(HΛ)) > exp(−|Λ|b)

Then

(HΛ − E )−1(n,m) =
∑
j

ψj(n)ψj(m)

Ej − E

satisfies

|(HΛ − E )−1(n,m)| ≲ exp(−γ|n −m|+ |Λ|b)
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The AL strategy

polynomially growing solution of H0ψ = Eψ, resonance
window about the origin

exclusion of double resonances: LDT and semi-algebraic set
techniques (Seidenberg-Tarski, Milnor-Thom bound on
number of connected components)

paving and resolvent identity
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Removing double resonances

We need to remove the set

{ω ∈ T : (ω, ℓω) ∈ Sn mod Z2 for some N ≤ ℓ ≤ 2N}

ℓ gives position of small interval to the right of [−n0, n0].

Figure: Eliminating “bad” ω
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The lemma on steep lines

Lemma (Bourgain-Goldstein 2000)

Let S ⊂ T2 be a measurable set with the following properties:

For each θ ∈ T the horizontal section Sθ is covered by at most
M intervals.

|S | < N−3, where N > M

Then

|{ω ∈ T : (ω, ℓω) ∈ S mod Z2 for some N ≤ ℓ ≤ 2N}|

≲ N
3
2 |S |

1
2 +MN−1

We apply this to Sn with M = nB , N = n2B , |S | < exp(−nε). So
we eliminate a set Bn of bad ω of measure |Bn| ≲ n−2, say. This is
summable, and we can apply Borel-Cantelli to conclude that we
just need to remove a measure zero set.
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Absolutely continuous spectrum

Theorem (Bourgain-Jitomirskaya 2002)

For |λ| < λ0(v) any Diophantine ω, a.e. x the quasi-periodic
operator has absolutely continuous spectrum.

Proof based on duality (Aubry) and an analysis of the determinant
in the denominator of the Green function (random walk
expansion). The strongest results in this setting were obtained by
Avila, Jitomirskaya, “Almost localization and almost
reducibility”, Journal EMS 12 (2010), 93–131. Their approach
goes via conjugation of the transfer-matrix cocycle with fixed E to
a constant co-cycle ( this is so called reducibility ). As a striking
application they establish the optimal 1/2- Hölder continuity of the
Lyapunov exponent L(E ).
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Avalanche Principle

Proposition (Goldstein-S. ‘99)

Let A1, . . . ,An ∈ SL(2,R) so that

min
1≤j≤n

∥Aj∥ ≥ µ > n

max
1≤j<n

[log ∥Aj+1∥+ log ∥Aj∥ − log ∥Aj+1Aj∥] <
1

2
logµ

Then∣∣∣log ∥An · . . . · A1∥+
n−1∑
j=2

log ∥Aj∥ −
n−1∑
j=1

log ∥Aj+1Aj∥
∣∣∣ < C

n

µ

Obstruction AA−1AA−1 . . . excluded. Singular value
decomposition, expanding/contracting directions.
Duarte, Klein ‘16: more general and powerful formulation, any size
matrices, largest singular value is simple (gap)
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Binary structure in the proof of the Avalanche Principle

Expanding, contracting structure in the original proof

Duarte, Klein have a similar point of view but do not require
large norm of each factor in terms of length of chain.

reformulation in terms of quasi-geodescis in the hyperpolic
plane: Oregon-Reyes ’19, Sampaio ’22
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Rates of convergence

Averaging AP using LDT gives with k ≃ (logN)C

|L2N(E ) + Lk(E )− 2L2k(E )| <
k

N

same with N in place of 2N. Subtracting we obtain

0 ≤ LN(E )− L2N(E ) <
(logN)C

N

whence LN(E )− L(E ) ≲ (logN)CN−1 (works for any Diophantine
condition). By a more careful rendition of the same argument we
see that in fact

LN(E )− L(E ) ≲ N−1 (∗)

Moreover, convergence is uniform on any compact interval on
which L > 0. Gives also Hölder continuity of IDS (general
regularity theory by Duarte, Klein). (*) also holds when L(E ) = 0.
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Cartan estimate

How do we control the large negative values of a sub-harmonic
function? Cartan’s estimate reduces it to ∥µ∥ log |z |.

Theorem

Fix 0 < ε ≤ 1. Let

u(z) =

∫
C
log |z − ζ| dµ(ζ) (4)

for some positive finite measure µ. For any 0 < H < 1 there
∃{D(zj , rj)}∞j=1 disjoint so that∑

j

r εj ≤ Hε (5)

u(z) > −∥µ∥
[
ε−1 + log

1

H

]
∀ z ∈ C \

∞⋃
j=1

D(zj , 5rj). (6)
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Cartan theorem

For P(z) =
∏n

j=1(z − zj) one has |P(z)| ≥ (H/e)n outside
disks Dj with

∑
j rj ≤ 5H. Due to maximum principle can

assume that each disk contains a zero.

Typically can set ε = 1. However, sending ε→ 0 we get that
dim{u = −∞} = 0, where dim refers to Hausdorff dimension.

Example 1: µ = nδ0. Then

u(z) = n log |z − 1|

|{x ∈ T :
1

n
u(e(x)) < −λ}| ≤ exp(−λ)

Example 2: µ =
∑n

j=1 δζj where ζj are nth roots of unity.
Then

u(z) = log |zn − 1|

|{x ∈ T :
1

n
u(e(x)) < −λ}| ≤ exp(−nλ)
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Avila’s global theory of SL(2,C) cocycles

A : {1− ρ < |z | < 1 + ρ} → SL(2,C) analytic, cocycle
Φ : T× R2 → T× R2, (x , v) 7→ (x + ω,A(x)). Define
Aϵ(x) = A(x + iϵ), Lyapunov exponent L(Aϵ, ω) convex in ϵ, even
function in Schrödinger case ϵ 7→ L(ε;E ).

Acceleration:

κ(Aϵ) := lim
δ→0+

δ−1(L(Aϵ+δ, ω)− L(Aϵ, ω))

upper-semicontinuous in ϵ.

Quantization, Avila ‘15: κ(Aϵ) ∈ Z, uniform hyperbolicity of
Schrödinger cocycle equivalent to κ(ε,E ) = 0 near ε = 0,
equivalent (Johnson’s theorem ‘80s) to E not in the spectrum.

In the UHYP case, quantization due to interpretation of κ(ε,E ) as
a winding number.
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The three cases for L(ε;E ) in Avila’s theory

Subcritical means ∥Mn(x + iϵ,E )∥ grows sub-exponentially in
n uniformly on T× [−ϵ0, ϵ0]. Almost reducibility conjecture
(Avila, Jitomirskaya ’11): ∥B(x + ω)−1A(x)B(x)− A∗∥ < ϵ,
almost conjugation to a constant cocycle, analytic A,B

Critical: physically relevant (Harper model) but non-generic
(Avila ’15)

Supercritical: L(E ) > 0 and E in the spectrum

Phase transition, mobility edge: increase factor in front of
potential function from small to large to move from (A) to
(C). Can depend on energy.
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Quantization in the UHYP case

Analytic stable/unstable splitting C2 = ℓu(z)⊕ ℓs(z), with
A(z)ℓu(z) = λ(z)ℓu(z + ω), λ ̸= 0. Ergodic theorem:

L(ε;E ) =

∫
T
log |λ(x + iε)| dx

Cauchy-Riemann equations relate acceleration to the winding
number of λ around origin:

κ(ε;E ) =
1

2π
Re

∫ 1

0
∂ε log λ(x + iε) dx

=
1

2π
Im

∫ 1

0
∂x log λ(x + iε) dx

=
1

2π
Im

∫
|z|=exp(ε)

λ′(z)

λ(z)
dz = N(λ; 0)

In Schrödinger case, κ = 0.
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Regularity and domination

Avila, Jitomirskaya, Sadel JEMS ’17

A : T → SL(d ,C), d ≥ 2 analytic, Lyapunov exponents
Lk(ω,A(·+ it)), ω ∈ R \Q

Lk(ω,A) > Lk+1(ω,A) then (ω,A) is k-regular iff this cocycle
is k-dominated (admits a dominated splitting)

If Lk(ω,A) > Lk+1(ω,A), then for a.e. small t one has
k-domination of (ω,A(·+ it))

there exists 1 ≤ ℓ ≤ d − 1 so that ℓωk are integers for all
1 ≤ k ≤ d

Lk(ω,A) jointly continuous

The final property allows for periodic approximations. Earlier proof
of joint continuity by Bourgain, Jitomirskaya using LDT, AP
technology (see book by Duarte, Klein ’16).
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Zeros of determinants in finite volume: E in the spectrum

Consider zeroes of fN(z ,E ) = det(H[1,N](z)− E ) in the complex
phase z near |z | = 1.
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Zeros of determinants: E outside the spectrum
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Zeros, Rellich graphs, spectral gaps

(a) ε = 0.1 (b) ε = 0.3

Eigenvalue parameterizations for the cosine potential

Apparent crossings are not crossings: simplicity of eigenvlaues

gap formation, Cantor structure of the spectrum
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Multi frequency vs. one frequency potentials

Consider potential as in Bourgain-Goldstein localization theorem,
but on Td with d ≥ 2:

Vx1,x2(n) = v(x1 + nω1, x2 + nω2)

v analytic on T2. Chulaevsky-Sinai conjectured around 1988 that
for typical V the spectrum is an interval, because forbidden zones
cannot form.
For one frequency, these arise as follows (perturbatively):

det

(
λ1(x)− E ε

ε λ2(x)− E

)
= 0, λ1(x0) = λ2(x0) = E0

E±(x) =
1

2
(λ1(x) + λ2(x))±

√
(λ1(x)− λ2(x))2 + 4ε2

(7)

This is a reflection of the fact that for the Dirichlet problem
eigenvalues are simple.
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Forbidden zones

Crossing of graphs of eigenvalues creates a gap in dimension=1
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Cantor spectrum, one frequency

Analytic potentials V (x + nω) with L(E , ω) > 0 a.e. ω
Goldstein-S. ‘08: spectrum is a Cantor set, induction on scales,
constructive, uses crossings of graphs of eigenvalues. Tools: AP,
sharp LDT, elimination of resonant ω via resultants, Cartan
estimates, phase-energy duality, Weierstrass preparation theorem,
quantitative separation of eigenvalues.

Puig 2002 for Diophantine ω, and Avila-Jitomirskaya with ω any
irrational around ‘06 showed this for V (x) = λ cos(2πx), λ ̸= 0.
Solution of ten-Martini problem of Marc Kac.

Two frequencies: forbidden zones should not form (for generic
potentials) because graph of V (x) intersects that of V (x + nω) in
a non-horizontal curve, so all energies are still covered.
Goldstein-S-Voda ‘19: Spectrum is an interval for large disorder
and “generic” analytic potential function, spectrum contains an
interval if L > 0
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Zeros: from regularity of the IDS to localization

Integrated Density of States (IDS): limiting distribution of the
eigenvalues

N (λ) = lim
N→∞

N−1

∫
T
#{1 ≤ j ≤ N : Ej ,N(x , ω) ≤ λ} dx

Cantor staircase function. Hilbert transform of Lyapunov
exponent, Thouless formula

L(E , ω) =

∫
log |E − E ′| N (dE ′)

Hölder regularity for one frequency known, see general regularity
theory by Duarte, Klein via AP, LDT. Multi frequency case poorly
understood, AP, LDT get worse, Hölder unknown. Natural to
conjecture (almost) Lipschitz property of IDS (by a similar
mechanism that leads to spectrum=interval, i.e., no forbidden
zones)
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Zeros of determinants, acceleration, and Hölder exponent
of the IDS

Goldstein-S. GAFA ’08: At energy E the IDS is Hölder Cα with
α < 1

k0
where k0 ≥ 1 is the largest integer with

k0 ≤ lim
ϵ→0+

lim sup
N→∞

N−1#{z ∈ Aϵ : det(H1,N](z , ω)− E ) = 0}

On the spectrum, this is well-defined. Off the spectrum, the IDS
is constant. If potential function V (x) =

∑d
k=−d cke(kx),

c−k = c̄k , then k0 ≤ 2d .

Theorem (Rui Han-S ’22): k0 = 2κ(E , 0), Avila’s acceleration.

The Hölder regularity can only be sharp on a zero Hausdorff
dimensional set, representing the edges of the spectral gaps ([GS
’08, ’11]). Requires elimination of double resonances, and one has
that the IDS is close to Lipschitz off a sparse set of energies.
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