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Apollonius’ theorem

Theorem (Apollonius 262-190 BC)

Given 3 mutually tangent circles, there are exactly two circles
tangent to all three.





We give a proof using Möbius transformations: For
a, b, c, d ∈ C, ad − bc = 1,

(

a b
c d

)

(z) =
az + b
cz + d

, z ∈ C ∪ {∞}.

A Möbius transformation maps circles (including lines) to
circles, preserving angles between them.
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Add (four) new circles tangent to three of the initial four circles.
Continuing to add newer circles tangent to three of the previous
circles, we arrive at an infinite circle packing called an

Apollonian circle packing .

We’ll show the first few generations of this process:
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Initial stage

Each circle is labeled with the reciprocal of its radius (=the
curvature), and the greatest circle has radius one and hence
curvature −1 (oriented to have disjoint interiors).



First generation



Second generation



Third generation
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Example of unbounded Apollonian circle packing

There are also other unbounded Apollonian packings
containing either only one line or no line at all.



Counting question

For a bounded Apollonian packing P, there are only finitely
many circles of radius bigger than a given number.
Set

NP(T ) := #{C ∈ P : curv(C) < T} < ∞.

Question

◮ Is there an asymptotic of NP(T ) as T → ∞?
◮ If so, can we compute?



Apollonian circle packing



Residual set and its fractal dimension

Definition (Residual set of P)

Residual(P) := ∪C∈PC.

In other words, the residual set of P is what is left in the plane
after removing all the open disks enclosed by circles in P.



Residual dimension

The Hausdorff dimension (or the fractal dimension) of the
residual set of P is called the Residual dimension of P, which
we denote by δ (1 ≤ δ ≤ 2).

We observe

1. δ is independent of P: any two Apollonian packings are
equivalent to each other by a Möbius transformation.

2. δ = 1.30568(8) (McMullen 1998)
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2. δ = 1.30568(8) (McMullen 1998)



Using elementary methods, Boyd showed:

Theorem (Boyd 1982)

lim
T→∞

log NP(T )

log T
= δ.

Boyd also made many numerical experiments, which led him to
wonder that perhaps

NP(T ) ∼ c · T δ(log T )β

may be more appropriate.
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Theorem (Kontorovich-O. 08)

For a bounded Apollonian packing P, there exists a constant
cP > 0 such that

NP(T ) ∼ cP · T δ

where δ = 1.30568(8) is the residual dimension of P.



Theorem (Descartes 1643)

A quadruple (a, b, c, d) is the curvatures of four mutually
tangent circles if and only if it satisfies the quadratic equation:

2(a2 + b2 + c2 + d2) = (a + b + c + d)2.

E.g: 2((-1)2 + 22 + 22 + 32) = 36 = (−1 + 2 + 2 + 3)2

Given three mutually tangent circles of curvatures a, b, c, the
curvatures, say, d and d ′, of the two circles tangent to all three
must satisfy

d + d ′ = 2(a + b + c).

So, if a, b, c, d are integers, so is d ′.



Integral Apollonian packings

Corollary (Soddy 1937)

If the initial 4 circles in an Apollonian packing P have integral
curvatures, then every circle in P has an integral curvature as
well.

Such a packing is called integral .

By Descartes’ theorem, for any integral solution of
2(a2 + b2 + c2 + d2) = (a + b + c + d)2, there exists an integral
Apollonian packing!



Integral Apollonian circle packings

Any integral Apollonian packing is either bounded or lies
between two parallel lines:



Primes and Twin primes

It is natural to inquire about the Diophantine properties of an
integral Apollonian packing P such as

Question

How many circles in P have prime curvatures?

Assume that P is primitive, i.e.,g. c. dC∈P
(curv(C)) = 1.

Definition

1. A circle is prime if its curvature is a prime number.

2. A pair of tangent prime circles is twin primes.



Primes and Twin primes

It is natural to inquire about the Diophantine properties of an
integral Apollonian packing P such as

Question

How many circles in P have prime curvatures?

Assume that P is primitive, i.e.,g. c. dC∈P
(curv(C)) = 1.

Definition

1. A circle is prime if its curvature is a prime number.

2. A pair of tangent prime circles is twin primes.



Twin primes: (2,3), (2,11), (3, 23), ...





Theorem (Sarnak 07)

There are infinitely many twin primes in any primitive integral P.

Using the recent work of Bourgain, Gamburd, Sarnak on the
uniform spectral gap property together with Selberg’s upper
bound sieve, we prove:

Theorem (Kontorovich-O. 08)
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Heuristics using the circle method predict that the above upper
bounds are indeed of the true order of the magnitude.
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More general counting function

For unbounded Apollonian packing P, NP(T ) = ∞ in general.

Consider a curvilinear triangular region R in any Apollonian
packing (either bounded or unbounded):

Set
NR(T ) := #{C ∈ R : curv(C) < T} < ∞.



Counting inside Triangle

Theorem (O.-Shah 09)

For a curvilinear triangle R of any Apollonian packing P,

NR(T ) ∼ cR · T δ.



Hidden symmetries

Question

How are we able to count circles in an Apollonian packing?

We exploit the fact that

an Apollonian packing has lots of hidden symmetries.

Explaining these hidden symmetries will lead us to explain the
relevance of the packing with ”the limit set of a Kleinian
group” .
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Basic notions in 3 dimensional hyperbolic geometry

Consider the upper-half space model for the hyperbolic 3 space
H

3:

H
3 = {(x1, x2, y) : y > 0} with ds =

√

dx2
1 + dx2

2 + dy2

y

and ∂∞(H3) = C ∪ {∞} = Ĉ.





PSL2(C) = Isom+(H3) via the Poincare extension

Here PSL2(C) acts on Ĉ as Möbius transformations and an
inversion w.r.t a circle C in Ĉ corresponds to the inversion w.r.t
the vertical hemisphere in H

3 bounded by C.



Kleinian group

Definition

◮ A Kleinian group Γ is a torsion-free discrete subgroup of
PSL2(C).

◮ The limit set Λ(Γ) ⊂ Ĉ is the set of all accumulation points
of an orbit Γ(z), z ∈ Ĉ.

◮ A Kleinian group Γ is geometrically finite if Γ has a finite
sided fundamental domain in H

3.

In fact, the residual set of an Apollonian packing is the limit set
of certain geometrically finite Kleinian group, called the
Apollonian group.



Apollonian group

The Apollonian group A is gen. by inversions w.r.t the dual
circles of fixed 4 mutually tangent circles in P:

◮ Inverting the initial four (black) circles in P w.r.t the (red)
dual circles gen. the whole packing P;

◮ the orbit of a tangent pt under A gives rise to all tangent
pts in P;

Residual(P) = Λ(A).



The quotient mfd A\H3 (in fact, an orbifold) has a fund. domain
given by the exterior of the four corresp. hemispheres (the
domes over the 4 dual circles):

In particular, A\H3 has infinite volume.



Counting circles in bdd Apol. packing

◮

Q = 2(a2+b2+c2+d2)−(a+b+c+d)2 : Descartes quad.form.

Has signature (3, 1), and hence SO(Q) = Isom+(H3).
◮ Set

V = {Q = 0};
known to be the space of horospheres in H

3.

Let P be a bounded Apollonian packing.

1. { quad. of 4 mut. tang. circles in P} = A(X0);

2. By Descartes’ thm, A(X0) ⊂ V discrete subset

3. NP(T ) = #{X ∈ A(X0) : ‖X‖max < T}.
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1. { quad. of 4 mut. tang. circles in P} = A(X0);

2. By Descartes’ thm, A(X0) ⊂ V discrete subset
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Hence the circle counting problem in P reduces to:
◮ Count a discrete orbit A(X0) in the space of horospheres

of H
3; or equivalently,

◮ Understand the dist. of an expanding closed horosphere in
the unit tangent bundle T1(A\H3).



Expanding horosphere



Distribution of Expanding horosphere

For a cpt Ω ⊂ T1(Γ\H3), how much proportion of gt(H)
intersects Ω as t → ∞?



Equi-distribution

If ∃ a Borel measure µ in T1(Γ\H3) s.t. ∀ nice cpt Ω ⊂ T1(Γ\H3),

|Ω ∩ gt(H)| ∼ µ(Ω)

we say gt(H) is equi-distributed w.r.t µ.

Theorem (Sarnak 81, Eskin-McMullen 93)

Let Vol(Γ\H3) < ∞ and H ⊂ Γ\H3 be closed horosphere. Then
the expanding horospheres gt(H) become equi-distri. w.r.t the
Liouville measure of T1(Γ\H3) (=locally Riem. volume form ×
angular measure).
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Weighted equi-distribution

Let Γ: geom. finite Kleinian gp, non-elementary (no abelian
subgp of fin. index), δ > 0 := the H. dim of Λ(Γ).

Patterson-Sullivan showed that δ = 2 iff Vol(Γ\H3) < ∞.

Theorem

For any nice cpt Ω ⊂ T1(Γ\H3),
◮ for δ < 2, |Ω ∩ gt(H)| → 0;
◮

e(2−δ)t · |Ω ∩ gt(H)| ∼ µBR(Ω).

Here µBR is the Burger-Roblin measure of T1(Γ\H3): an inf.
Radon meas. (unless δ = 2) supp. on the union of horospheres
based on the limit set Λ(Γ).
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Proved by
◮ Kontorovich-O. for δ > 1: based on the spectral theory of

Laplacian (Patterson-Sullivan, Lax-Phillips)
◮ O.-Shah for δ > 0: based on the mixing of the geodesic

flow w.r.t Bowen-Margulis-Sullivan measure (Rudolph).



Going back to counting circle theorems, [Kontorovich-O.]
approach relied on the Descartes theorem in translating the
circle counting problem into a statement about horospheres in a
hyperbolic 3 manifold.

For an unbounded packing P, this translation is not possible,
since the Descartes quadruples from P form a non-discrete
subset.
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In [O.-Shah], we translate the circle counting problem into a
weighted equdistribution statement about distribution of the
orthogonal translates of a totally geodesic surface in a
hyperbolic 3 manifold, NOT using the Descartes theorem.

This was an important point for generalizations beyond
Apollonian circle packings, as there is no analogue of
Descartes theorem in general .



Circles in the limit set of a Kleinian group

We are now led to ask even more general counting question:

Let P be a circle packing in the plane. That is, a union of circles
with disjoint interiors.
Suppose that the residual set of P is the limit set of some
finitely generated Kleinian group Γ.

Question

Can one count circles in P of curvature at most T ?

Before stating a theorem, we present some pictures of the limit
sets of Kleinian groups:
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Ex. of Sierpinski curve (McMullen)

Here Γ = π1(cpt. hyp. 3-mfd with non-empty tot. geod. bdry);
The limit set of an embedding of Γ into PSL2(C) is a Sierpinski
curve.
The next pictures are copied from the book ”Indra’s pearls” by
Mumford, Series and Wright, illustrating the limits set of
Schottky groups.
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Let P be a circle packing whose residual set is the limit set of a
finitely generated Kleinian group Γ. Let R = P if P is bounded,
or more generally, R can be any bounded domain such that

#∂(R) ∩ Residual(P) < ∞, Rint ∩ Residual(P) 6= ∅.







Theorem (O.-Shah 09)

Then

NR(T ) := #{C ∈ R : curv(C) < T} ∼ cR T δP

where δP is the residual dimension of P.



Circle packings on the sphere

Consider the unit ball model of the hyperbolic 3 space:

B
3 := {(x1, x2, x3) : x2

1 + x2
2 + x2

3 < 1}

with the metric ds =
2
√

dx2
1 +dx2

2 +dx2
3

1−(x2
1 +x2

2 +x2
3 )

.

As the unit sphere S2 is the natural boundary of B
3, we obtain

many circle packings on the sphere S2 whose residual sets are
the limit sets of Kleinian groups.



Sierpinski curve on the sphere (McMullen)



Apollonian packing on the sphere (McMullen)



Circle packings of the sphere

Given a circle packing P on S2, we may ask

Question

How many circles can you see standing at the origin?

Here
Visual size(C) = d(o, Ĉ)−1

where Ĉ is the orthogonal hemisphere bounded by C.



Theorem (O.-Shah 09)

Let P be a circle packing on the sphere whose residual set is
the limit set of a finitely generated Kleinian group Γ.
Then

#{C ∈ P : size(C) > T−1} ∼ cP eδPT

where δP is the residual dimension of P.



Sierpinski curve on the sphere (McMullen)


