
Math 116 Practice Final 1 Solutions

1. (a) Substitute u = tan(t), so du = sec2(t)dt. Then

∫

sec2(t) cos(tan(t))dt =

∫

cos(u)du

= sin(u) + C

= sin(tan(t)) + C

(b) Substitute w = t2, so dw = 2tdt. Then

∫

t3 sin(t2)dt =
1

2

∫

w sin(w)dw

Now integrate by parts.

u = w dv = sin(w)dw

du = dw v = − cos(w)

Then
∫

w sin(w)dw = −w cos(w) −
∫

− cos(w)dw

= −w cos(w) + sin(w) + C

Substituting back in for w,

∫

t3 sin(t2)dt =
1

2
(−t2 cos(t2) + sin(t2)) + C

(c) Substitute u = t2, so du = 2tdt and

∫

√
t4 − 1

t2
2tdt =

∫

√
u2 − 1

u
du

=
√

u2 − 1 + cos−1(1/u) + C by rule 34

=
√

t4 − 1 + cos−1(1/t2) + C

2. (a) The x-nullcline is the parabola y = 1 − x2; the y-nullcline is the pair of
lines x = 0 and y = 0.
(b) The fixed points are (−1, 0), (0, 1), and (1, 0). To test their stability, use
the derivative matrix

D~F =

[

2x 1
y x

]
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Then we find

D~F (−1, 0) =

[

−2 1
0 −1

]

eigenvalues are −2 and −1

D~F (0, 1) =

[

0 1
1 0

]

eigenvalues are −1 and 1

D~F (1, 0) =

[

2 1
0 1

]

eigenvalues are 2 and 1

From the eigenvalues, we see that (−1, 0) is an asymptotically stable node, (0, 1)
is a saddle point, and (1, 0) is an unstable node,

3. The transition matrix is stochastic, and the transition graph has a path
from every state to every state, so by the Perron-Frobenius theorem, the largest
eigenvalue is 1. The eigenvector equation is
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This gives these equations

.8x+ .2y = x

.2x+ .5y + .1z = y

.3y + .9z = z

The first equation gives x = y, the third gives z = 3y, and the second is
redundant. Because x+ y+ z = 1, we see the eventual distribution is 1/5 in A,
1/5 in B, and 3/5 in C,

4. Substituting x′ and y′ into rr′ = xx′ + yy′ and simplifying gives

rr′ = x(x + y − (x2/4)− x(x2 + y2)) + y(−x+ y − y(x2 + y2))

= x2 + y2 − (x3)/4− (x2 + y2)2

= r2 − (r3 cos3(θ))/4 − r4

and so
r′ = r − (r2/4) cos3(θ)− r3
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Because −1 ≤ cos3(θ) ≤ 1,

−(r2/4) ≤ −(r2/4) cos3(θ) ≤ r2/4

and so
r − r2/4− r3 ≤ r − (r2/4) cos3(θ)− r3 ≤ r + r2/4− r3

When r = 1/2, r−r2/4−r3 = 5/16, so r′ > 0 on the circle of radius 1/2. When
r = 2, r + r2/4 − r3 = −5, so r′ < 0 on the circle of radius 2. The annulus
between these circles is a trapping region not containing a fixed point, so by the
Poincaré-Bendixson theorem, this annulus must contain a limit cycle.

5. (a) Suppose x has a power series expansion

x = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + · · ·

Note that x(0) = 1 implies that a0 = 1. Then the series for x′ and for x− t+ t2

are

x′ = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 + · · ·

x− t+ t2 = a0 + (a1 − 1)t+ (a2 + 1)t2 + a3t
3 + a4t

4 + · · ·

Matching coefficients of like powers of t gives

x′ x− t+ t2

t0 a1 a0 so a1 = a0 = 1
t1 2a2 a1 − 1 so a2 = (a1 − 1)/2 = 0
t2 3a3 a2 + 1 so a3 = (a2 + 1)/3 = 1/3
t3 4a4 a3 so a4 = a3/4 = 1/(4 · 3)
t4 5a5 a4 so a5 = a4/5 = 1/(5 · 4 · 3)

. . .

Then we have

x = 1 + t+
t3

3
+

t4

4 · 3 +
t5

5 · 4 · 3 + · · ·

(b) To turn as much as we can of this into an exponential, observe

x = 1 + t+ 2

(

t3

3!
+

t4

4!
+

t5

5!
+ · · ·

)

= 1 + t+ 2

(

1 + t+
t2

2
+

t3

3!
+

t4

4!
+

t5

5!
+ · · ·

)

− 2(1 + t+ t2/2)

= −1− t− t2 + 2et

Checking,

x′ = (−1− t− t2 + 2et)′ = −1− 2t+ 2et

x− t+ t2 = (−1− t− t2 + 2et)− t+ t2 = −1− 2t+ 2et

x(0) = −1 + 0 + 0 + 2 = 1
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6. (a) For large n, 1/
√
n3 − n2 looks much like 1/n3/2. Because

∑

1/n3/2 is a
p-series with p = 3/2 > 1, this series converges. Because 1/

√
n3 − n2 > 1/n3/2,

we cannot use the comparison test. So use the limit comparison test.

lim
n→∞

1/
√
n3 − n2

1/n3/2
= lim

n→∞

n3/2

√
n3 − n2

= lim
n→∞

n3/2

n3/2
√

1− (1/n)
= 1

So both series converge by the limit comparison test.

(b) Because the series contains terms of the form 1/3n, we’ll replace 1/3n with
xn and see if we recognize a pattern. Then

1 + 2 · 1
3
+ 3 · 1

32
+ 4 · 1

33
+ 5 · 1

34
+ · · · = 1 + 2x+ 3x2 + 4x3 + 5x4 + · · ·

Recalling that 1 + x+ x2 + x3 + x4 + · · · = 1/(1− x) for |x| < 1, we see

1 + 2x+ 3x2 + 4x3 + 5x4 + · · · = (1 + x+ x2 + x3 + x4 + . . . )′

=

(

1

1− x

)

′

=
1

(1 − x)2

Consequently,

1 + 2 · 1
3
+ 3 · 1

32
+ 4 · 1

33
+ 5 · 1

34
+ · · · = 1

(1− 1/3)2

=
9

4

7. (a) The box-counting dimension is the slope of the log-log plot. The graph
B has the higher slope, therefore the larger dimesnion.

(b) Using the definition of box-counting dimension, d(A) = 2d(B) becomes

lim
r→0

log(Nr(A))

log(1/r)
= 2 lim

r→0

log(Nr(B))

log(1/r)

= lim
r→0

2
log(Nr(B))

log(1/r)

= lim
r→0

2 log(Nr(B))

log(1/r)

= lim
r→0

log(Nr(B)2)

log(1/r)

One way to obtain this result is by requiring that Nr(A) = Nr(B)2.
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8. (a) Because 2 < b+ τ < 3, the graph has three branches

φi+1 = bφi + τ, φi+1 = bφi + τ − 1, and φi+1 = bφi + τ − 2

Given the placement of the 2-cycle points, they are related by

φ2 = bφ1 + τ

φ1 = bφ2 + τ − 2

Solving for φ1 and φ2 we obtain

φ1 =
bτ + τ − 2

1− b2

φ2 =
bτ − 2b+ τ

1− b2

(b) The point A is where the left branch φi+1 = bφi + τ crosses φi+1 = 1, so

A =
1− τ

b

The point B is where the middle branch φi+1 = bφi+ τ − 1 crosses φi+1 = 1, so

B =
2− τ

b
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