
Math 116 Practice Final 2 Solutions

1. (a)
∫

x+ 1

2x2 − 3x− 2
dx

Use partial fractions

x+ 1

2x2 − 3x− 2
=

x+ 1

(2x+ 1)(x− 2)
=

A

2x+ 1
+

B

x− 2

from which we find
x+ 1 = A(x − 2) +B(2x+ 1)

Taking x = 2 gives B = 3/5; taking x = −1/2 gives A = −1/5, and so

∫

x+ 1

2x2 − 3x− 2
dx = −1

5

∫

1

2x+ 1
dx+

3

5

∫

1

x− 2
dx

= − 1

10
ln |2x+ 1|+ 3

5
ln |x− 2|+ C

(b)
∫

sin(x) cos(x) ln(sin(x))dx

Substitute w = sin(x), so dw = cos(x)dx and

∫

sin(x) cos(x) ln(sin(x))dx =

∫

w ln(w)dw

Now integrate by parts.

u = ln(w) dv = wdw

du = (1/w)dw v = w2/2

Then
∫

w ln(w)dw = (w2/2) ln(w) − (1/2)

∫

wdw

= (w2/2) ln(w) − w2/4 + C

Substituting back in for w,

∫

sin(x) cos(x) ln(sin(x))dx = (sin(x)2/2) ln(sin(x)) − sin2(x)/4 + C

(c)
∫

1

x ln(x)
√

1 + (ln(x))2
dx
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Substitute u = ln(x), so du = (1/x)dx and the integral becomes

∫

1

x ln(x)
√

1 + (ln(x))2
dx =

∫

du

u
√
1 + u2

= − ln

∣

∣

∣

∣

√
1 + u2 + 1

u

∣

∣

∣

∣

+ C rule 22

= − ln

∣

∣

∣

∣

√

1 + (ln(x))2 + 1

ln(x)

∣

∣

∣

∣

+ C

2. To find the radius of convergence of
∑

n3
n

n2+1
(2x− 1)n, use the ratio test

lim
n→∞

∣

∣

∣

∣

((n+ 1)3n+1/((n+ 1)2 + 1))(2x− 1)n+1

(n3n/(n2 + 1))(2x− 1)n

∣

∣

∣

∣

< 1

lim
n→∞

n+ 1

n

3n+1

3n
n2 + 1

n2 + 2n+ 2
|2x− 1| < 1

3|2x− 1| < 1

|x− 1/2| < 1/6

so the radius of convergence is 1/6.
From |x− 1/2| < 1/6, we see

−1/6 < x− 1/2 < 1/6

1/3 < x < 2/3

Substituting x = 1/3 into the series, we obtain

∑ n3n

n2 + 1
(2 · (1/3)− 1)n =

∑ n3n

n2 + 1
(−1/3)n

=
∑ n(−1)n

n2 + 1

which converges by the alternating series test.
Substituting x = 2/3 into the series, we obtain

∑ n3n

n2 + 1
(2 · (2/3)− 1)n =

∑ n3n

n2 + 1
(1/3)n

=
∑ n

n2 + 1

The terms look like 1/n, but because n/(n2 + 1) < 1/n, we can’t use the
comparison test. Instead, use the limit comparison test,

lim
n→∞

n/(n2 + 1)

1/n
= lim

n→∞

n2

n2 + 1
= 1

Because the harmonic series diverges, so does
∑

n/(n2 + 1).
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Combining these observations, the interval of convergence is [1/3, 2/3).

3. For the differential equation

dx/dt = y − 1

dy/dt = y − x2

-4 -3 -2 -1 1 2 3 4

-1

1

2

3

4

x

y
(a) The x-nullcline is the horizontal
line y = 1, the y-nullcline is the
parabola y = x2. The fixed points
are the intersections of the nullclines,
(−1, 1) and (1, 1).

(b) The derivative matrix is

D~F =

[

0 1
−2x 1

]

Evaluated at the fixed points,

D~F (−1, 1) =

[

0 1
2 1

]

and D~F (1, 1) =

[

0 1
−2 1

]

The eigenvalues of D~F (−1, 1) are 2 and −1, so this fixed point is unstable.

The eigenvalues of D~F (1, 1) are (1±
√
7i)/2, so this fixed point is unstable,

too.

4. To show the system

x′ = (3/2)x+ y − 2x(x2 + y2)

y′ = −x+ y − 2x(x2 + y2)

has a limit cycle, we find a trapping region, show it contains no fixed points,
and apply the Poincaré-Bendixson theorem.

rr′ = xx′ + yy′

= x((3/2)x+ y − 2x(x2 + y2)) + y(−x+ y − 2y(x2 + y2))

= x2 + y2 + (1/2)x2 − 2(x2 + y2)2

= r2 + (1/2)r2 cos2(θ)− 2r4

From this, we see
r′ = r + (1/2)r cos2(θ)− 2r3

From 0 ≤ cos2(θ) ≤ 1 we see 0 ≤ (1/2)r cos2(θ) ≤ r/2, and from this we find
lower and upper bounds for r′:

r − 2r3 ≤ r + (1/2)r cos2(θ)− 2r3 ≤ r + (r/2)− 2r3
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That is,
r − 2r3 ≤ r′ ≤ r + (r/2)− 2r3

On the circle r = 1, r+(r/2)−2r3 = −1/2 < 0, so r′ < 0. On the circle r = 1/2,
r − 2r3 = 1/4 > 0, and so r′ > 0. That is, the region between these circles is a
trapping region, and contains no fixed points. Then by the Poincaré-Bendixson
theorem, this region contains a limit cycle for the system.

5. From the transition graph for this Markov process












0 0 0 0 0
1/3 1/2 0 1/4 0
2/3 0 1/3 0 2/3
0 1/2 0 3/4 0
0 0 2/3 0 1/3













we see that states 2 and 4 transform into states 2 and 4, and states 3 and 5
transform into states 3 and 5.

The transition matrix for states 2 and 4 is
[

1/2 1/4
1/2 3/4

]

This is a positive stochastic matrix, so its largest eigenvalue is 1. The eigenvec-
tors of λ = 1 satisfy

[

1/2 1/4
1/2 3/4

] [

x
y

]

=

[

x
y

]

The two equations are redundant; we solve the first, x/2 + y/4 = x, obtaining
y = 2x. Then the condition x+ y = 1 gives x = 1/3 and y = 2/3.

The transition matrix for states 3 and 5 is
[

1/3 2/3
2/3 1/3

]

This is a positive stochastic matrix, so its largest eigenvalue is 1. The eigenvec-
tors of λ = 1 satisfy

[

1/3 2/3
2/3 1/3

] [

x
y

]

=

[

x
y

]
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The two equations are redundant; we solve the first, x/3 + 2y/3 = x, obtaining
y = x. Then the condition x+ y = 1 gives x = 1/2 and y = 1/2.

So of the portion of the population that enters states 2 and 4, 1/3 winds up
in state 2 and 2/3 in state 4. Of the portion of the population that enters states
3 and 5, 1/2 winds up in state 3 and 1/2 in state 5.

Initially, all the population is in state 1. From state 1, 1/3 goes into states
2 and 4, and 2/3 goes into states 3 and 5. Then the final distribution of the
population is

{1, 2, 3, 4, 5} = {0, 1/9, 1/3, 2/9, 1/3}

6. To solve the differential equation x′ = 2x− t, with x(0) = 1, write the series
expansion for x(t),

x = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + a7t

7 + · · ·
Then the series for x′ is

x′ = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 + 6a6t

5 + 7a7t
6 + 8a8t

7 + · · ·
and the series for 2x− t is

2x− t = 2a0 + (2a1 − 1)t+ 2a2t
2 + 2a3t

3 + 2a4t
4 + 2a5t

5 + 2a6t
6 + 2a7t

7 + · · ·
Note the condition x(0) = 1 gives a0 = 1. Matching coefficients for like powers
of t of the series for x′ and 2x− t we find
t0: a1 = 2a0, so a1 = 2a0 = 2.
t1: 2a2 = 2a1 − 1, so a2 = (2a1 − 1)/2 = 3/2.
t2: 3a3 = 2a2, so a3 = 2a2/3 = 1.
t3: 4a4 = 2a3, so a4 = 2a3/4 = 2/4.
t4: 5a5 = 2a4, so a5 = 2a4/5 = 22/(5 · 4).
t5: 6a6 = 2a5, so a6 = 2a5/6 = 23/(6 · 5 · 4).
t6: 7a7 = 2a6, so a7 = 2a6/7 = 24/(7 · 6 · 5 · 4).
t7: 8a8 = 2a7, so a8 = 2a7/8 = 25/(8 · 7 · 6 · 5 · 4).
and so on.

Starting at a4, the denominators are parts of factorials, and the numerators
are powers of 2. To turn these denominators into n! and the numerators into 2n,
we multiply by (3/4) · (4/3), absorbing the second factor into the coefficients.
So far, this gives

x = 1 + 2t+
3

2
t2 +

3

4

(

(2t)3

3!
+

(2t)4

4!
+

(2t)5

5!
+ · · ·

)

= 1 + 2t+
3

2
t2 +

3

4

(

1 + 2t+
(2t)2

2!
+

(2t)3

3!
+

(2t)4

4!
+

(2t)5

5!
+ · · ·

)

− 3

4

(

1 + 2t+
(2t)2

2!

)

= 1 + 2t+
3

2
t2 +

3

4
e2t − 3

4

(

1 + 2t+
(2t)2

2!

)

=
1

4
+

t

2
+

3

4
e2t
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Check:

x′ = (1/4 + t/2 + 3e2t/4)′ = 1/2 + 3e2t/2

2x− t = 2(1/4 + t/2 + 3e2t/4)− t = 1/2 + 3e2t/2

x(0) = 1/4 + 0/2 + 3e0/4 = 1/4 + 3/4 = 1

7. For the system

x′ = −x3 − 4y − x5

y′ = −y3 + 2x− y5

the derivative at the origin has eigenvalues 0 and 0, so provides no stability
information. Try the positive definite V = x2 + y2 for a Liapunov function.
Then

V ′ =
∂V

∂x
x′ +

∂V

∂y
y′

= 2x(−x3 − 4y − x5) + 2y(−y3 + 2x− y5)

= −2x4 − 2x6 − 2y4 − 2y6 − 4xy

This function is not negative definite, because of the −4xy term. To remove this
term, use a different positive definite functionV = x2 + 2y2. With this choice,

V ′ =
∂V

∂x
x′ +

∂V

∂y
y′

= 2x(−x3 − 4y − x5) + 4y(−y3 + 2x− y5)

= −2x4 − 2x6 − 4y4 − 4y6

This is negative definite, so we deduce that the origin is asymptotically stable.

8. (a) For the SIS model

S′ = S + rI −mSI

I ′ = I − rI +mSI

The I-nullcline equation gives 0 = I(1 − r + mS), with nonzero solution S =
(r − 1)/m. Substituting this into the S-nullcline equation, S + rI −mSI = 0,
gives I = (1− r)/m.

(b) The derivative matrix of this system is

D~F =

[

1−mI r −mS
mI 1− r +mS

]

Evaluated at the fixed point ((r − 1)/m, (1− r)/m), the derivative is

D~F ((r − 1)/m, (1− r)/m) =

[

r 1
1− r 0

]

The trace is tr = r, the determinant is det = r− 1 = tr− 1. This line intersects
the parabola det = tr2/4 at tr = 2. Then we see the nonzero fixed point is an
unstable saddle point for r = tr < 1 and an unstable node for r = tr > 1.
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