Math 116 Practice Final 2 Solutions
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1. (a)

Use partial fractions

from which we find
x+1=A(x—-2)+ B2z +1)

Taking x = 2 gives B = 3/5; taking x = —1/2 gives A = —1/5, and so
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(b)
/sin(x) cos(z) In(sin(z))dx

Substitute w = sin(z), so dw = cos(z)dx and
/sin(:c) cos(z) In(sin(z))dx = /wln(w)dw
Now integrate by parts.

u = In(w) dv = wdw
du = (1/w)dw v=w?/2

Then
/wln(w)dw = (w?/2) In(w) — (1/2) /wdw
= (w?/2)In(w) —w?/4+C

Substituting back in for w,

/sin(a:) cos(z) In(sin(z))dz = (sin(x)?/2) In(sin(z)) — sin®(x)/4 + C
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Substitute v = In(x), so du = (1/x)dz and the integral becomes
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2. To find the radius of convergence of %(2x — 1)™, use the ratio test
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so the radius of convergence is 1/6.
From |z —1/2| < 1/6, we see
-1/6<z—-1/2<1/6
1/3<x<2/3

Substituting « = 1/3 into the series, we obtain

S 203 - 1) =Y e (-1/3)"
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which converges by the alternating series test.
Substituting = 2/3 into the series, we obtain

S 2m -1 =3 (1ym)n
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The terms look like 1/n, but because n/(n? + 1) < 1/n, we can’t use the
comparison test. Instead, use the limit comparison test,
n/(n?+1) n?
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Because the harmonic series diverges, so does > n/(n? + 1).



Combining these observations, the interval of convergence is [1/3,2/3).

3. For the differential equation

de/dt =y —1
dy/dt = y — 2*
(a) The z-nullcline is the horizontal
line y = 1, the y-nullcline is the 4 y
parabola y = z2. The fixed points 5
are the intersections of the nullclines,
(—1,1) and (1,1). 2
(b) The derivative matrix is * X
4 3 2 1 1 2 3 4

— 0 1
DF = |:—2£L‘ 1}

Evaluated at the fixed points,

Dﬁ(—1,1)_[g ﬂ and Dﬁ(1,1)_{_02 ﬂ

The eigenvalues of Dﬁ(—l, 1) are 2 and —1, so this fixed point is unstable.
The eigenvalues of DF(1,1) are (14 +/7i)/2, so this fixed point is unstable,
too.

4. To show the system
o' = (3/2)x +y - 2(z* + y?)
y = —r+y—22("+y?)

has a limit cycle, we find a trapping region, show it contains no fixed points,
and apply the Poincaré-Bendixson theorem.

rr’ = axz’ +yy
= 2((3/2)a +y — 22(2® +¢*)) +y(—z +y - 2y(2® +¢?))
=a’ 4y’ + (1/2)2" = 2(a” +y7)?
=72 4 (1/2)r% cos?(0) — 2r*
From this, we see
' =14 (1/2)rcos®(6) — 2r®
From 0 < cos?(f) < 1 we see 0 < (1/2)rcos?(9) < r/2, and from this we find

lower and upper bounds for 7'

r—2r3 <r4 (1/2)rcos?() — 21 <7+ (r/2) — 2r®



That is,

r—2r* <r' <r+(r/2) - 207
On the circler = 1, r+(r/2)—2r3 = —1/2 < 0, so 7’ < 0. On the circle r = 1/2,
r—2r3=1/4> 0, and so r' > 0. That is, the region between these circles is a
trapping region, and contains no fixed points. Then by the Poincaré-Bendixson
theorem, this region contains a limit cycle for the system.

5. From the transition graph for this Markov process
0 0 0 0 0
1/3 1/2 0 1/4 0

2/3 0 1/3 0 2/3
0 1/2 0 3/4 0

0 0 2/3 0 1/3

we see that states 2 and 4 transform into states 2 and 4, and states 3 and 5
transform into states 3 and 5.

The transition matrix for states 2 and 4 is

He

This is a positive stochastic matrix, so its largest eigenvalue is 1. The eigenvec-

tors of A\ = 1 satisfy
i s b=

The two equations are redundant; we solve the first, z/2 4+ y/4 = z, obtaining
y = 2z. Then the condition x +y = 1 gives = 1/3 and y = 2/3.
The transition matrix for states 3 and 5 is

v

This is a positive stochastic matrix, so its largest eigenvalue is 1. The eigenvec-

tors of A = 1 satisfy
2 el ) =)



The two equations are redundant; we solve the first, /3 + 2y/3 = z, obtaining
y = x. Then the condition z +y =1 gives x = 1/2 and y = 1/2.

So of the portion of the population that enters states 2 and 4, 1/3 winds up
in state 2 and 2/3 in state 4. Of the portion of the population that enters states
3 and 5, 1/2 winds up in state 3 and 1/2 in state 5.

Initially, all the population is in state 1. From state 1, 1/3 goes into states
2 and 4, and 2/3 goes into states 3 and 5. Then the final distribution of the
population is

{1,2,3,4,5} ={0,1/9,1/3,2/9,1/3}

6. To solve the differential equation 2’ = 2z — ¢, with 2(0) = 1, write the series
expansion for z(t),

T = ao + art + ast® + ast® + agt* + ast® + agt® +art” + -
Then the series for z’ is
&’ = a1 + 2ast + 3ast? + dast® + Sast* + 6agt® + Tast® + 8a8t7 + -
and the series for 2z — ¢ is
22 — t = 2ag + (2a1 — 1)t + 2a9t® + 2ast>® + 2a4t* + 2ast® + 2a6t® + 2a7t" + - -

Note the condition x(0) = 1 gives ag = 1. Matching coefficients for like powers
of t of the series for 2’ and 2z — t we find

t%: a1 = 2ag, s0 a1 = 2ay = 2.

tl: 2a3 = 2a; — 1, 80 az = (2a; — 1)/2 = 3/2.

t2: 3az = 2as, 50 az = 2az/3 = 1.

t3: daq = 2ag3, s0 ag = 2a3/4 = 2/4.

th: Bas = 2ay4, s0 a5 = 2a4/5 = 22/(5- 4).

t5: 6ag = 2as, s0 ag = 2a5/6 =23/(6-5 - 4).

t8: Tay = 2ag, so a7 = 2a6/7=2%/(7-6-5-4).
t7: 8ag = 2ay, so ag = 2a7/8=25/(8-7-6-5-4).

and so on.

Starting at a4, the denominators are parts of factorials, and the numerators
are powers of 2. To turn these denominators into n! and the numerators into 2™,
we multiply by (3/4) - (4/3), absorbing the second factor into the coefficients.
So far, this gives
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Check:
o' = (1/4+1/2+3e*/4) = 1/2 + 3¢ /2
20 —t = 2(1/4+1/2 4 3e* /4) —t = 1/2 + 3% /2
2(0) =1/44+0/2+3e°/4=1/4+3/4=1

7. For the system
o= -3 — 4y —ab
y' = —y*+20—y°
the derivative at the origin has eigenvalues 0 and 0, so provides no stability

information. Try the positive definite V = 22 + 3?2 for a Liapunov function.
Then

V' = g—‘;x’ + %—‘y/y’
= 22(—2° — 4y — 2°) + 2y(—y” + 22 — ¢°)
= —2z% — 225 — 2y* — 2¢° — day
This function is not negative definite, because of the —4zy term. To remove this
term, use a different positive definite functionV = 2 + 2y2. With this choice,
ov , av ,
= %x + 8_yy
= 22(—2® — 4y — 2°) + dy(—y® + 22 — ¢°)
= 221 — 220 — 4yt — 49°

V/

This is negative definite, so we deduce that the origin is asymptotically stable.
8. (a) For the SIS model

S"'=8+rl —mSI

I'=1—-rI+mSI
The I-nullcline equation gives 0 = I(1 — r + mJS), with nonzero solution S =
(r —1)/m. Substituting this into the S-nullcline equation, S + rI —mSIT = 0,
gives I = (1 —r)/m.
(b) The derivative matrix of this system is

= 1—ml r—mS

br = ml  1—r+ mS’]
Evaluated at the fixed point ((r — 1)/m, (1 —r)/m), the derivative is

DF((r —1)/m,(1—r)/m) = {117“ (1)]

The trace is tr = r, the determinant is det = r — 1 = tr — 1. This line intersects
the parabola det = tr?/4 at tr = 2. Then we see the nonzero fixed point is an
unstable saddle point for r = tr < 1 and an unstable node for r = tr > 1.



