
Math 116 Practice Final 4 Solutions

1. (a) Evaluate the integral

∫

x+ 1

x3 − 3x2 + 2x
dx.

First, observe

x3 − 3x2 + 2x = x(x2 − 3x+ 2) = x(x − 1)(x− 2)

and so
x+ 1

x3 − 3x2 + 2x
=

A

x
+

B

x− 1
+

C

x− 2

This gives

x+ 1 = A(x − 1)(x− 2) +Bx(x − 2) + Cx(x − 1)

Then

x = 1 gives B = −2

x = 2 gives C = 3/2

x = 0 gives A = 1/2

Then
∫

x+ 1

x3 − 3x2 + 2x
dx =

1

2

∫

1

x
dx− 2

∫

1

x− 1
dx+

3

2

∫

1

x− 2
dx

=
1

2
ln |x| − 2 ln |x− 1|+ 3

2
ln |x− 2|+ C

(b)

∫

x2 cos(x)dx

Integrate by parts twice

∫

x2 cos(x)dx = x2 sin(x)− 2

∫

x sin(x)dx

= x2 sin(x)− 2

(

−x cos(x)−
∫

− cos(x)dx

)

= x2 sin(x) + 2x cos(x) − 2 sin(x) + C

For the first integration by parts, take u = x2 and dv = cos(x)dx.
For the second integration by parts, take u = x and dv = sin(x)dx.

(c)

∫

cos(x)

sin(x)
√

1 + sin2(x)
dx

Substituting u = sin(x) so du = cos(x)dx, we find
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∫

cos(x)

sin(x)
√

1 + sin2(x)
dx =

∫

du

u
√
1 + u2

= − ln

∣

∣

∣

∣

√
1 + u2 + 1

u

∣

∣

∣

∣

+ C by 22, integral table

= − ln

∣

∣

∣

∣

√

1 + sin2(x) + 1

sin(x)

∣

∣

∣

∣

+ C

2. Say E1 represents all people under age 60 with colorectal cancer, E2 those
under 60 without colorectal cancer, and A those with an APC mutation. The
data provided are

P (A|E1) = 0.95 P (A|E2) = 0.5 P (E1) = 0.1 and so P (E2) = 0.9.

We are asked to find P (E1|A). Apply Bayes’ theorem,

P (E1|A) =
P (A|E1) · P (E1)

P (A)

To find P (A), use the law of conditioned probabilities

P (A) = P (A|E1) · P (E1) + P (A|E2) · P (E2)

Substituting in the values gives

P (A) = 0.95 · 0.1 + 0.5 · 0.9 = 0.545

Then Bayes’ theorem gives

P (E1|A) =
0.95 · 0.1
0.545

= 0.174

3. Apply the ratio test with an =
2n

n2 + 4
(x− 2)n. Then

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

2n+1

2n
n2 + 4

(n+ 1)2 + 4
|x− 2| = 2|x− 2|

Then convergence is given by limn→∞ |an+1/an| < 1, that is, 2|x− 2| < 1, and
|x − 2| < 1/2, so the radius of convergence is R = 1/2. To find the interval of
convergence, first find the endpoints, then test each separately.

|x− 2| < 1/2, so − 1/2 < x− 2 < 1/2, so 3/2 < x < 5/2

Test the endpoints to determine the interval of convergence.
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Substituting x = 3/2 in the series becomes
∑

(−1)n/(n2 + 4), which converges
by the alternating series test.
Substituting x = 5/2 in the series becomes

∑

1/(n2 + 4), which converges by
comparison with

∑

1/n2.

Then the interval of convergence of

∞
∑

n=1

2n

n2 + 4
(x− 2)n is [3/2, 5/2].

4. For the system

dx/dt = y − x3

dy/dt = x− y2

(a) the x-nullcline is the curve y − x3 = 0, that is, y = x3. The y-nullcline is
the curve x− y2 = 0, that is, x = y2.

-1 -0.5 0.5 1

-2

-1

1

2

x-nullcline

y-nullcline

(b) The fixed points are circled in the diagram. To find their coordinates, solve
x = y2 = (x3)2 = x6. That is, 0 = x6 − x = x(x5 − 1). The solutions are x = 0
and x = 1. (The equation x5 − 1 = 0 has 5 solutions, but only 1 is real.) The
fixed points are (0, 0) and (1, 1).

(c) To test the stability of these fixed points, first compute the derivative matrix

D~F (x, y) =

[

−3x2 1
1 −2y

]

Then we see

D~F (0, 0) =

[

0 1
1 0

]

and D~F (1, 1) =

[

−3 1
1 −2

]

The eigenvalues of D~F (0, 0) are ±1, so the origin is unstable because (at least)
one eigenvalue is positive.
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The eigenvalues of D~F (1, 1) are (−5±
√
5)/2, both negative, so the fixed point

(1, 1) is asymptotically stable.

5. First draw the transition graph of the Markov process with this transition
matrix









.5 .2 .8 0

.5 .8 .1 .9
0 0 .1 0
0 0 0 .1









From the graph we see that states 3 and 4 eventually are emptied, leaving the
population to shift between states 1 and 2, governed by the matrix

[

.5 .2

.5 .8

]

This is a stochastic matrix with all entries positive, so the larger eigenvalue is
λ = 1. An eigenvector of λ = 1 is a solution of

[

.5 .2

.5 .8

] [

u
v

]

= 1 ·
[

u
v

]

That is, u = (2/5)v. The values of the distribution must sum to 1, so 1 =
u+ v = (2/5)v + v. This gives

fraction in state 1 = u = 2/7

fraction in state 2 = v = 5/7

6. Recall rr′ = xx′ + yy′ and substitute in the expressions for x′ and y′ from
the system

x′ = 2x− 2y − x(x2 + y2)

y′ = x+ 2y − y(x2 + y2)

we obtain

rr′ = x(2x− 2y − x(x2 + y2)) + y(x+ 2y − y(x2 + y2))

= 2(x2 + y2)− xy − (x2 + y2)2

= 2r2 − r2 cos(θ) sin(θ)− r4
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where the last equality was obtained by the polar coordinate substitution x =
r cos(θ), y = r sin(θ). This gives

r′ = 2r − r cos(θ) sin(θ)− r3

Now certainly−1 ≤ cos(θ) sin(θ) ≤ 1. In fact, recalling cos(θ) sin(θ) = sin(2θ)/2,
we get the stronger bounds −1/2 ≤ cos(θ) sin(θ) ≤ 1/2. In fact, the weaker
bounds suffice.

From −1 ≤ cos(θ) sin(θ) ≤ 1 we obtain −r ≤ r cos(θ) sin(θ) ≤ r. Adding
2r − r3 across the inequality,

r − r3 ≤ r′ ≤ 3r − r3

At r = 1/2, the lower bound gives 3/8 ≤ r′; at r = 2 the upper bound gives
r′ < −2. Then the annulus 1/2 ≤ r ≤ 2 is a trapping region. Because the origin
is the only fixed point, it follows from the Poincaré-Bendixson theorem that this
annulus contains a limit cycle.

7. Assuming x(t) = a0 + a1t + a2t
2 + a3t

3 + · · · , the condition x(0) = 1 gives
a0 = 1. To solve the equation

x′(t) = tx(t) + t, x(0) = 1

we need series expressions for x′(t) and for tx(t) + t. Differentiating term-by-
term we find

x′(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 + · · ·

and
tx(t) = a0t+ a1t

2 + a2t
3 + a3t

4 + a4t
5 + · · ·

Then the series for tx(t) + t is obtained from the sereis for tx(t) by adding 1 to
the coefficient of the t term in that series:

tx(t) + t = (a0 + 1)t+ a1t
2 + a2t

3 + a3t
4 + a4t

5 + · · ·

Next, equate the coeffcients of like powers of t in the series for x′(t) and the
series for tx(t) + t.

tn x′ tx+ t
t0 a1 0 a1 = 0
t1 2a2 1 + a0 2a2 = 1 + 1 so a2 = 1
t2 3a3 a1 3a3 = a1 so a3 = 0
t3 4a4 a2 4a4 = a2 so a4 = 1/4
t4 5a5 a3 5a5 = a3 so a5 = 0
t5 6a6 a4 6a6 = a4 so a6 = 1/(6 · 4)
. . . . . . . . . . . .
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We see all the odd subscript coefficients are 0, that is, a2k+1 = 0 for k =
0, 1, 2, . . . .

The even coefficients are a bit more complicated:

a2 = 1, a4 = 1/4, a6 = 1/(6 · 4), a8 = 1/(8 · 6 · 4), · · ·

The denominators are the products of even numbers starting with 4, so factoring
a 2 from each factor in the denominator, we have

a4 = a2·2 =
1

2 · 2 =
1

21 · 2!
a6 = a2·3 =

1

22 · 3 · 2 =
1

22 · 3!
a8 = a2·4 =

1

23 · 4 · 3 · 2 =
1

23 · 4!
. . .

In fact, a2 fits this pattern: a2 = a2·1 = 1/(20 ·1!). That is, all the even subscript
coefficients have the form

a2k =
1

2k−1k!
=

2

2kk!

for k ≥ 1. Except we have seen that a0 = 1, so to fit the pattern that includes
the 2 in the numerator of a2k, we must write a0 = 2− 1. Then

x(t) = a0 + a2t
2 + a4t

4 + a6t
6 + a8t

8 + · · ·

= (2− 1) + 2
t2

2
+ 2

t4

22 · 2 + 2
t6

23 · 3! + 2
t8

24 · 4! + · · ·

= 2

(

1 +

(

t2

2

)

+
1

2!

(

t2

2

)2

+
1

3!

(

t2

2

)3

+
1

4!

(

t2

2

)4

+ · · ·
)

− 1

= 2et
2/2 − 1

To check this is correct, first observe

x(0) = 2e0 − 1 = 1

Next, by the chain rule

x′ = 2et
2/2 · (t2/2)′ = 2et

2/2 · t

and

tx+ t = t

(

2et
2/2 − 1

)

+ t = 2et
2/2 · t− t+ t = 2et

2/2 · t

8. For the population equation

Pn+1 = rP 2
n(1 − Pn)
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a b 1

1

a b 1

1

with r = 6, the left side of the figure illustrates by graphical iteration that every
P0 < a iterates to 0. These populations become extinct.
(b) The right side of the figure illustrates that P0 near 1 iterates to a point less
than a, thence to 0.
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