Math 116 Practice Final 4 Solutions
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1. (a) Evaluate the integral/m z

First, observe

3 =322 + 2z =x(2® - 32+ 2) =z(x — 1)(x — 2)

and so
rz+1 7A+ B n C
3322422 2z -1 -2
This gives
r+1=A(x—-1)(x —2)+ Bx(z —2) + Czx(z — 1)
Then
r=1 gives B= -2
x=2 gives C =3/2
=0 gives A=1/2
Then

rz+1 1
/7_3352”9:61 / L —2/—d 43 /x_QdI

:51n|a:|—2ln|x—1|+gln|x—2|+c

(b) /x2 cos(z)dx
Integrate by parts twice

/:1:2 cos(z)dr = x? sin(z) — 2/xsin(x)dx
= 22 sin(z) — 2 (—x cos(x) — / - cos(x)dx)
= 2% sin(x) + 2z cos(z) — 2sin(z) + C

For the first integration by parts, take u = 2 and dv = cos(x)dz.
For the second integration by parts, take u = z and dv = sin(z)dz.

(© / cos(x) g
sin(x)4/1 + sin?(x)
Substituting « = sin(z) so du = cos(x)dx, we find
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sin(x)y/1
val 241
=— ln‘ﬁ‘ + C by 22, integral table
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1+ sin®(z) + 1
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sin(x)
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2. Say FEi represents all people under age 60 with colorectal cancer, E5 those
under 60 without colorectal cancer, and A those with an APC mutation. The
data provided are

P(A|E)) = 0.95 P(A|E) =05 P(E1)=0.1 andso P(Es)=0.9.
We are asked to find P(E1|A). Apply Bayes’ theorem,

P(A|E:) - P(E1)
P(A)

P(E1|A) =

To find P(A), use the law of conditioned probabilities
P(A) = P(A|Ey) - P(E1) + P(A|E2) - P(Es)
Substituting in the values gives
P(A) =0.95-0.1 +0.5-0.9 = 0.545

Then Bayes’ theorem gives

0.95-0.1
P(E1|A) = —— =0.174
B = 555
A . . 2" n
3. Apply the ratio test with a,, = n2—+4(x —2)". Then
o apga | 2mt n? 44 B
T | T A=A

Then convergence is given by lim, o0 |ant1/an| < 1, that is, 2|z — 2| < 1, and
|z — 2| < 1/2, so the radius of convergence is R = 1/2. To find the interval of
convergence, first find the endpoints, then test each separately.

e —2]<1/2, so —1/2<2-2<1/2, s03/2<x<5/2

Test the endpoints to determine the interval of convergence.



Substituting z = 3/2 in the series becomes Y (—1)"/(n? + 4), which converges
by the alternating series test.
Substituting x = 5/2 in the series becomes > 1/(n? + 4), which converges by

comparison with Y 1/n?.
n

2
Then the interval of convergence of E m(x —2)"is [3/2,5/2].
n=1

4. For the system

da/dt =y — 23
dy/dt = x — y?

3

(a) the x-nullcline is the curve y — 23 = 0, that is, y = 23. The y-nullcline is

the curve x — 3% = 0, that is, z = y2.

y-nulicline

x-nullcline

-2

(b) The fixed points are circled in the diagram. To find their coordinates, solve
r=y?=(2%)? = 2% That is, 0 = 2% — 2 = 2(2% — 1). The solutions are z = 0
and 2 = 1. (The equation 2% — 1 = 0 has 5 solutions, but only 1 is real.) The
fixed points are (0,0) and (1,1).

(c) To test the stability of these fixed points, first compute the derivative matrix

— —322 1
L

Then we see

Dﬁ(070)=[(1) (1)] and Dﬁ(1,1):[—13 _12}

The eigenvalues of DF(0,0) are &1, so the origin is unstable because (at least)
one eigenvalue is positive.



The eigenvalues of DF(1,1) are (=5 +v/5)/2, both negative, so the fixed point
(1,1) is asymptotically stable.

5. First draw the transition graph of the Markov process with this transition
matrix
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From the graph we see that states 3 and 4 eventually are emptied, leaving the
population to shift between states 1 and 2, governed by the matrix

i

This is a stochastic matrix with all entries positive, so the larger eigenvalue is
A = 1. An eigenvector of A =1 is a solution of

S22 u| 1|

b5 8 |v| v
That is, u = (2/5)v. The values of the distribution must sum to 1, so 1 =
u—+v = (2/5)v+ v. This gives

fraction in state 1 = u =2/7
fraction in state 2 =v =5/7

6. Recall 77’ = za’ + yy’ and substitute in the expressions for z’ and y’ from
the system
o =2z — 2y — x(z® + %)
y' =a+2y—y(z® +y?)
we obtain
' =222 = 2y — 2(2® + %)) +y(z + 2y — y(@® +y?))
=22 + ) —ay — (2 +y°)°

=2r% — r? cos(f) sin(6) — r*



where the last equality was obtained by the polar coordinate substitution x =
rcos(f), y = rsin(f). This gives

' = 2r —rcos(f) sin(h) — 3
Now certainly —1 < cos(f) sin(f) < 1. In fact, recalling cos(#) sin(f) = sin(20)/2,
we get the stronger bounds —1/2 < cos(6)sin(f) < 1/2. In fact, the weaker
bounds suffice.

From —1 < cos(f)sin(f) < 1 we obtain —r < rcos(f)sin(d) < r. Adding
2r — r3 across the inequality,

r—r3 <y <3r—4¢3

At r = 1/2, the lower bound gives 3/8 < r’; at » = 2 the upper bound gives
r’ < —2. Then the annulus 1/2 < r < 2 is a trapping region. Because the origin
is the only fixed point, it follows from the Poincaré-Bendixson theorem that this
annulus contains a limit cycle.

7. Assuming z(t) = ag + a1t + ast® + agt® + - -+, the condition z(0) = 1 gives
ap = 1. To solve the equation

2/ (t) = tx(t) + ¢, z(0) =1

we need series expressions for 2/(¢) and for tx(¢) + t. Differentiating term-by-
term we find

2’ (t) = a1 + 2ast + 3azt? + dast® + Sast* + - -

and

tx(t) = aot + art?® + agt® + ast + agt® + - -
Then the series for tx(t) 4 ¢ is obtained from the sereis for tz(¢) by adding 1 to
the coefficient of the ¢ term in that series:

te(t) +t = (ag + 1)t + art® + agt® + azt* + agt® + - --

Next, equate the coeflcients of like powers of ¢ in the series for z/(t) and the
series for tz(t) + t.

| 2 tr+t

to aq 0 a; = 0

t! 200 | 1+ag | 2a0=14+1so0as =1

t2 3&3 al 3&3 = a1 SO az = 0

3 | day | as day = az so ag = 1/4

t* Sas | as 5as = a3 so as = 0

t> | 6ag | as 6ag = a4 so ag = 1/(6-4)




We see all the odd subscript coefficients are 0, that is, aggy1 = 0 for k =
0,1,2,....
The even coefficients are a bit more complicated:

ag:1,a4:1/4,(16:1/(6-4),(18:1/(8-6-4),---

The denominators are the products of even numbers starting with 4, so factoring
a 2 from each factor in the denominator, we have

I
=022 =575 T 51 )
1
46 =023 = 95375 T 223

1 1
ag = 2.4 =

25.4.3.2  23.4

In fact, as fits this pattern: as = ag.; = 1/(2°-1!). That is, all the even subscript
coefficients have the form

1 2

T ok—1fl 2kl

for k > 1. Except we have seen that ag = 1, so to fit the pattern that includes
the 2 in the numerator of asy, we must write ag = 2 — 1. Then

a2k

x(t) = ao + ast? + agt* + agt® + agt® + - - -
t2 4 6 t8

t t
= (2~ 1) +25 + 2555 + 255 + 2 o

2 L/e2\2 1 /e2\* 1 /\*
=2(1+(3) +alz) +al(z) +ulz) +)

|

To check this is correct, first observe
z(0) =20 —1=1
Next, by the chain rule
2 =2e" 12 (12)2) = 26"/ ¢t
and
m+t_t<2ef2/2—1) Ft=2e" 2t — 4t =2e"
8. For the population equation

P.i1=7P*(1-P,)



with r = 6, the left side of the figure illustrates by graphical iteration that every
Py < a iterates to 0. These populations become extinct.

(b) The right side of the figure illustrates that Py near 1 iterates to a point less
than a, thence to 0.



