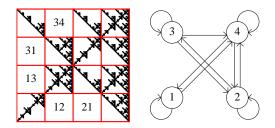
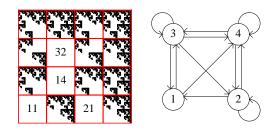
Second homework set solutions

r	s	θ	φ	e	f
0.75	0.75	25	25	0	0
0.25	0.25	0	0	1	0
0.25	0.25	0	0	5	.866
0.25	0.25	0	0	5	866

2. Inspecting the IFS with memory image, with length 2 address squares superimposed, we see the forbidden length 2 addresses are 12, 13, 21, 31, and 34. The allowed transitions are $1 \rightarrow 1$, $1 \rightarrow 4$, $2 \rightarrow 2$, $2 \rightarrow 3$, $2 \rightarrow 4$, $3 \rightarrow 2$, $3 \rightarrow 3$, $3 \rightarrow 4$, $4 \rightarrow 1$, $4 \rightarrow 2$, and $4 \rightarrow 4$. The transition graph is shown on the right.



3. The empty length 2 addresses are 11, 14, 21 and 32, so the allowed transitions are $1 \rightarrow 3$, $1 \rightarrow 4$, $2 \rightarrow 1$, $2 \rightarrow 2$, $2 \rightarrow 4$, $3 \rightarrow 1$, $3 \rightarrow 2$, $3 \rightarrow 3$, $3 \rightarrow 4$, $4 \rightarrow 2$, $4 \rightarrow 3$, and $4 \rightarrow 4$.



Consequently, states 4 is a rome. For each non-rome there is a path from a rome to the non-rome: the non-romes are 1, 2, and 3, and we have $4 \rightarrow 2$, $4 \rightarrow 3$,

1.

and although $4 \to 1$ is forbidden, we have $4 \to 2 \to 1$. These two conditions guarantee this IFS can be generated without memory.

Because there are loops between non-romes, $2 \rightarrow 2$, $3 \rightarrow 3$, $1 \rightarrow 3 \rightarrow 1$, and $2 \rightarrow 1 \rightarrow 3 \rightarrow 1$, an IFS without memory would require infinitely many transformations.