5. (a) dim(A ∪ B) = max{dim(A), dim(B)} = max{1.585, 0.631} = 1.585 |
(b) dim(B ∪ C) = max{dim(B), dim(C)} = max{0.631, 2} = 2 |
(c) dim(A × B) = dim(A) + dim(B) = 1.585 + 0.631 = 2.216 |
(d) dim(B × C) = dim(B) + dim(C) = 0.631 + 2 = 2.631 |
(e) codim(A ∩ C) = codim(A) + codim(C). That is, |
dim(A ∩ C) = dim(A) + dim(C) - 3 |
So dim(A ∩ C) = 1.585 + 2 - 3 = 0.585 |
(f) codim(B ∩ C) = codim(B) + codim(C), so |
dim(B ∩ C) = dim(B) + dim(C) - 3 |
This gives dim(B ∩ C) = 0.631 + 2 - 3 = -0.369 |
Return to Homework 4 Practice.