A series a1 + a2 + a3 + ... is
geometric if an+1/an = r for all n. |
Write Sn = a1 + a2 + ... + an. Then |
r*Sn = r*(a1 + a2 + ... + an)
= a2 + a3 + ... + an+1. |
So a1 + r*Sn = (a1 + a2 + ... + an) + an+1
= Sn + an+1 |
Solving for Sn, we obtain |
Sn = (a1 - an+1)/(1 - r) |
If |r| < 1, note that limn -> infinity an = 0 and |
a1 + a2 + a3 + ... = limn -> infinitySn =
a1/(1 - r) |
Example 1: 1/5 + 1/10 + 1/20 + 1/40 + 1/80 +
1/160 is a geometric series with a1 = 1/5, r = 1/2, and
n = 6, so the sum is (1/5 - 1/320)/(1 - 1/2) = 63/160. |
Example 2: The sum of the infinite geometric series 1/5 + 1/10 + 1/20 +
1/40 + 1/80 + 1/160 + ... is 1/5/(1 - 1/2) = 2/5. |
Example 3: 3 + 6 + 12 + 24 + 48 is a geometric series with a1 = 3, r = 2, and
n = 5, so the sum is (3 - 96)/(1 - 2) = 93. |