For f(z) = z3 + Az + C, |
f'(z) = 3z2 + A |
The critical points of f(z) are the solutions of f'(z) = 0, |
so z = sqrt(-A/3) and z = -sqrt(-A/3) are the critical points of f(z) = z3 + Az + C. |
Writing A = a + i*b, after some simplification we find if b <= 0 |
sqrt(-A/3) = ((Sqrt[Sqrt[a2 + b2]]/Sqrt[6])*Sqrt[1 - (a/Sqrt[a2 + b2])]) +
i*((Sqrt[Sqrt[a2 + b2]]/Sqrt[6])*Sqrt[1 + (a/Sqrt[a2 + b2])]) |
and if b > 0 |
sqrt(-A/3) = ((Sqrt[Sqrt[a2 + b2]]/Sqrt[6])*Sqrt[1 - (a/Sqrt[a2 + b2])]) -
i*((Sqrt[Sqrt[a2 + b2]]/Sqrt[6])*Sqrt[1 + (a/Sqrt[a2 + b2])]) |
|