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Chapter 1

Introduction

1.1 What is Xwpl

Xwpl is a graphical tool to analyse one-dimensional signals using adapted
waveform analysis, under the X Window System.

Wavelets, wavelet packets and local trigonometric waveforms are collec-
tions of short oscillatory waveforms each of which can be viewed as a \musical
note" having a time duration, a pitch and an amplitude (level of loudness).
The waveforms used here are synthesized mathematical notes, as synthesized
by di�erent mathematical instruments (corresponding to di�erent processes
used to generate the notes).

To pursue the musical analogy further, Xwpl displays the \musical score"
for a signal using the Phase Cell representation, in which a \note" (a function
in the wavelet or wavelet-packet basis) is represented by a box in the time-
frequency space (time is horizontal, frequency is vertical). The boxes all have
the same area as a result of Heisenberg's inequality on fourier transforms.
See A.3.1 for more details on how this representation should be interpreted.

For instance, the signal in �gure 1.1 is a chirp of the form y = sin(at2),
which is di�cult to analyse using classical fourier theory, as it's instanta-
neous frquency varies with time (as a matter of fact, even the graphical
representation is deceived into showing a signal with a varying envelope).

Figure 1.2 shows a \musical transcription" of the same chirp using a
\C 12" Quadrature Mirror Filter or QMF. This representation shows clearly
that the local frequency of the signal increases linearly with time. The dark-
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CHAPTER 1. INTRODUCTION 5

Figure 1.1: A chirp

ness of each box is proportional to the intensity of the corresponding wavelet-
packet coe�cient. Actually, the whole square is �lled with boxes, but most
of the coe�cients are so small or even zero that thay do not appear on the
graph.

There are three type of bases when using wavelet packets: best-basis,
best-level and wavelet basis. They are described in more detail later, but
su�ce to to say that they di�er in the constraints that are placed on the
shape of the boxes. In this case, the best-level basis is the same as the
best-basis, but this is not necessarily the case.
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Figure 1.2: Best-basis representation of the chirp
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Figure 1.3: Wavelet basis representation



Chapter 2

Quick Start

2.1 Getting started with Xwpl

2.1.1 Invoking Xwpl

Xwpl is invoked by simply typing the command \Xwpl" in a shell. If the pro-
gram is not found, verify that it is in your PATH environment variable. If you
get a message of the form: \Error: Can't open display: foo:0.0",
check to see if your DISPLAY environment variable is correctly set. In most
cases, a value of \:0.0" should be su�cient.

2.1.2 The Xwpl main window

The window in �gure 2.1 should appear in your display (with variations
according to your local application defaults and X resources, if any).

The windows and controls are, going downwards and from left to right:

� Open button

� Save button

� Quit button

� Info button

� QMF list

8
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Figure 2.1: Xwpl main window
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� signal window width list

� bases list

� QMF box

� Play button (shown only on machines where sound is supported)

� phase representation box

� signal window plot

� full signal plot

� coe�cients plot

� reconstructed signal plot

2.1.3 Opening a data �le

To open a data �le, click on the Open button. The dialog box of �gure 2.2 will
appear. The data �le must be an ASCII text �le containing 
oating-point
numbers in decimal or scienti�c notation, separated by newlines or some
other whitespace. This representation is ine�cient, but highly portable, and
lends itself well to treatment by standard Unix utilities such as awk(3).

The �le selection dialog is designed to mimic the MacintoshTM browser.

2.2 Changing the transformation settings

By default, the QMF used for transformations is the Haar (or D2) �lter.
The �lters can be changed using the QMF list (on the left of the program
window). The mother wavelet corresponding to the selected �lter is displayed
in the QMF box.

The three di�erent types of bases can be changed with the bases list (also
on the left-hand side of the Xwpl window).
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Figure 2.2: File Browser
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2.3 Zooming control

There are three di�erent ways of zooming into a portion of the signal. These
are:

� Selecting a portion of the full signal plot. This will cause the signal
window to zoom into the desired portion of the signal (to the nearest
power of 2).

� Selecting a portion of the windowed signal plot, which has the same
e�ect as the previous method

� Selecting a width from the widths list. This selects a window of the
desired width, approximatively centered at the same point as the pre-
vious selection (unless that would cause the window to overstep the
original signal, in which case it is translated to �t)

To zoom out, simply select a larger window in the full signal plot.
As you zoom, the widths list is updated to re
ect the current window

width.

2.4 Denoising control

To denoise a signal, one keeps a portion of the signal's coe�cients in the
selected basis, and reconstructs from these coe�cients. Xwpl has an algo-
rithm to predict where to make this cut. This is displayed graphically in
the coe�cient plot (showing the sorted amplitudes of the coe�cients). By
selecting another portion of the coe�cients, the user can do a di�erent kind
of denoising.

The reconstructed signal can be saved into a �le by clicking on the Save
button. Only the current reconstructed window is saved.

2.5 Program Information

Clicking on the Info button displays information on the program. Click on
it again to make it disappear. Some of the information displayed is:



CHAPTER 2. QUICK START 13

� the program version and build date

� the program copyright information.



Chapter 3

Troubleshooting

Problem 1 I am running Solaris (SunOS 5.x), and the Sun4 version of

XWPL doesn't work.

Solaris and SunOS 4.1.x are not compatible. I'll put out a Solaris version
when I see a usable version of Solaris.

Problem 2 On my NeXT computer, XWPL aborts after a message \Error:

Can't open display:".

XWPL is an X Window System application, not a NeXTstep one. You
need a NeXT X server to run it. Due to poor NeXTstep 3.1 Posix con-
formance, the NeXT port is on hold inde�nitely. Otherwise, you could
use the WPLab program, which is NeXTstep-based. It is available from
wuarchive.wustl.edu in the directory /doc/techreports/wustl.edu/math/software.

Problem 3 The colors in the phase box are a day-glo nightmare.

XWPL tries to be a \good citizen" by not agressively grabbing colors
from the colormap. If you have a colormap hog running (graphics display
or fancy background screens, for instance), they will interfere with it. Quit
your color-intensive applications and/or restart your X server.

Problem 4 On my Silicon Graphics workstation, the phase diagram is wishy-

washy or even invisible, and the colors are hard to see.

14



CHAPTER 3. TROUBLESHOOTING 15

This problem is due to the special graphics hardware and colormap sit-
uation on 24-bit SGI workstations. You must use the palette, showmap,
interp commands to adjust your colormap.

Problem 5 I have added a �le to the directory from which XWPL is reading,

but it doesn't appear.

The XWPL �le browser does not poll to see if the contents of the directory
have been updated. To do so, simply double-click on the . directory to re-
read the current directory.

Problem 6 XWPL crashes with a BadAlloc error.

You have run out of memory: : :



Chapter 4

Installing Xwpl

4.1 Requirements

Xwpl works on a workstation using theUnix operating system (or any system
conforming to the IEEE Posix P1003.1 standard) and using the X Window
System as a windowing environment. Building it requires an ANSI C com-
piler and the widely available MIT Athena widget set library (or a compatible
library such as Xaw3D).

The use of Xwpl requires a run-time license for the AWA library of M.V.
Wickerhauser (also available from FMA&H Inc.). Building Xwpl requires
the libawa.a library. Xwpl has been built on X11R4 and X11R5 systems.

Xwpl has been built and tested on the following platforms:

Figure 4.1: List of tested systems
Machine Operating System Compiler X Libraries

Sun SparcStation 2 SunOS 4.1.1 gcc 2.4.5 X11R4 and Xaw

i486 PC Linux 0.99pl10 gcc 2.3.3, libc 4.3.3 X11R5 (Xfree86 1.2) and Xaw3D

SGI Iris 4D/GT Irix 4.0.1 SGI C X11R4 and Xaw

DEC 3000/300 AXP DEC OSF/1 1.3a DEC C (c89) or DEC C++ (cxx) Xdec (R5) and Xaw

HP PA-RISC HP-UX 9.0 HP c89 X11R5 and Xaw

16



Appendix A

Mathematical background

A.1 Waveform Libraries

We start by recalling the concept of a \Library of orthonormal bases". For
the sake of exposition we restrict our attention to two classes of numerically
useful waveforms, introduced recently (cf. [5][7]).

A.1.1 Local trigonometric bases

We start with trigonometric waveform libraries. These are localized sine
transforms (LST) associated to covering by intervals of R (more generally, of
a manifold).

We consider a cover R =
S+1
�1 Ii, with Ii = [�i; �i+1) and �i < �i+1,

write `i = �i+1 � �i = jIij and let pi(x) be a window function supported in
[�i � `i�1=2; �i+1 + `i+1=2] such that

1X
�1

p2i (x) = 1

and
p2i (x) = 1� p2i (2�i+1 � x) for x near �i+1

then the functions

Si;k(x) =
2p
2`i
pi(x) sin

�
(2k + 1)

�

2`i
(x� �i)

�
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APPENDIX A. MATHEMATICAL BACKGROUND 18

form an orthonormal basis of L2(R) subordinate to the partition pi. The
collection of such bases forms a library of orthonormal bases (cf. [7]).

It is easy to check that if HIi denotes the space of functions spanned by
Si;k; k = 0; 1; 2; ::: then HIi +HIi+1 is spanned by the functions

P (x)
1q

2(`i + `i+1)
sin

"
(2k + 1)

�

2(`i + `i+1)
(x� �i)

#

where
P 2 = p2i (x) + p2i+1(x)

is a \window" function covering the interval Ii [ Ii+1.

A.1.2 Wavelets and Wavelet Packets

We consider the frequency line R split as R = R
+ [ R�, with R

+ = (0;1)
and R� = (�1; 0). On L2(0;1) we introduce a window function p(�) such
that

P1
k=�1 p2(2�k�) = 1 and p(�) is supported in (3=4; 3). We can clearly

view p(2�k�) as a window function over the interval (2k; 2k+1) and observe
that

sk;j = sin

"�
j +

1

2

�
�

 
� � 2k

2k

!#
p(2�k�)

form an orthonormal basis of L2(R+). Similarly

ck;j = cos

"�
j +

1

2

�
�

 
� � 2k

2k

!#
p(2�k�)

gives another basis, whose elements are not orthogonal to those of the �rst
one. If we de�ne Sk;j as an odd extension to R of sk;j and Ck;j as an
even extension we �nd sk;j?Ck0;j0 permitting us to write Ck;j � iSk;j =

e�ij��=2
k

 ̂(�=2j ) where  ̂(�) = ei�=2�p(�) is the Fourier transform of the
wavelet 	 (cf. [4]).

Thus, wavelet analysis corresponds to windowing frequency space in \oc-
tave" windows (2k; 2k+1).

A natural extension is provided by allowing all dyadic windows in fre-
quency space and adapted window choice. This sort of analysis is equivalent
to wavelet packet analysis.
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Figure A.1: LCT
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The actual fast wavelet packet analysis algorithms (wavelets being a spe-
cial cases) permit us to perform an adapted Fourier windowing directly in
time domain by successive �ltering of a function into di�erent regions in
frequency. The dual version of the window selection provides an adapted
subband coding algorithm.

The wavelet packet library is constructed by iterating the wavelet algo-
rithm. This library contains the wavelet basis, Walsh functions, and smooth
versions of Walsh functions called wavelet packets (cf. [5])

These waveforms are mutually orthogonal. Moreover, each of them is
orthogonal to all of its integer translates and dyadic rescaled versions. The
full collection of these wavelet packets (including translates and rescaled ver-
sions) provides us with a library of \templates" or \notes" which are matched
\e�ciently" to signals for analysis and synthesis (cf. [2]), Wavelet packet
expansions correspond algorithmically to subband coding schemes and are
numerically as fast as the FFT.

A.2 Entropy considerations

We will now measure the distance or good �t between a basis and a function
in terms of the Shannon entropy of the expansion.

Let H be a Hilbert space.
Let v 2 H, kvk = 1 and let H = �PHi be an orthogonal decomposition

of H. We de�ne
"2(v; fHig) = �

X
kvik2 ln kvik2

the entropy of v relative to the decomposition fHig of H, as a measure of
the distance between v and the orthogonal decomposition.

"2 is characterized by the Shannon equation, which is a version of Pytha-
goras' theorem. Let

H = (
X

Hi)� (
X

Hj) = H+ �H�

i.e. Hi and Hj give orthogonal decompositions H+ =
P
Hi, H� =

P
Hj .

Then

"2(v; fHi;Hjg) = � kv+k2
kvk2 ln

 kv+k2
kvk2

!
� kv�k2
kvk2 ln

 kv�k2
kvk2

!

+ kv+k2"2
 
v+

kv+k
; fH ig

!
+ kv�k2"2

 
v�

kv�k
; fHjg

!
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Figure A.2: Wavelet-packets
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Figure A.3: Tree search In the LST library
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This is Shannon's equation for entropy (if we interpret as in quantum me-
chanics kPH+

vk2 as the \probability" of v to be in the subspace H+).
This equation enables us to search for a smallest entropy expansion of a

signal.
For example in the LST Library case, we compare the entropy of the

expansion in two adjacent windows to the entropy of the expansion on their
union and pick the least expensive, continuing the comparison with the se-
lection made for the next pair, etc. (cf. �gure A.3).
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A.3 Time-Frequency Analysis

A.3.1 The phase cell representation

To each wavelet packet or local trigonometric function we can associate a
time t and a frequency f . These will be uncertain by amounts �t and �f ,
respectively. The result may be interpreted as a rectangular patch of dimen-
sions �t by �f , located around (t; f). We shall call the patch a phase cell,
or Heisenberg box, in honor of the uncertainty principle, which limits how
small the area of the patch may be. The cells may be colored in proportion
to the amplitude of the corresponding wavelet packet component.

An orthonormal basis corresponds to a disjoint cover of the phase plane
by phase cells (Heisenberg boxes). Certain bases have characterizations in
terms of the shapes of the boxes present in the cover. For example, the
standard basis consists of the cover by the tallest, thinnest patches allowed
by the sampling interval. The Fourier transform may be regarded as the
transpose of the standard basis, in the sense that the cells are transposed by
interchanging time and frequency (cf. �gure A.5). The standard basis has
optimal time localization and no frequency localization, while the Fourier
basis has optimal frequency localization, but no time localization.

Windowed Fourier or cosine transforms with a �xed window size corre-
spond to covers with congruent cells whose width �t is the window width.
The ratio of frequency uncertainty to time uncertainty is the aspect ratio of
the cells.

The wavelet basis is an octave-band decomposition of the phase plane, as
in �gure A.7.

The best-basis of wavelet packets �ts a cover to the signal so as to mini-
mize the amount of dark phase cell boxes. The compressibility of a sampled
signal is easily seen to be the ratio of the total area of the phase plane
(N � N for a signal sampled at N points) divided by the total area of the
dark cells (each of area N). This method allows rectangles of all aspect ra-
tios. The best-level or adapted subband basis �ts a cover of equal aspect
ratio rectangles to the signal, so as to minimize the amount of dark. We
may automatically analyze signals by expanding them in the best basis, then
drawing the corresponding phase plane representation. As is clear, the neg-
ligible components will not be drawn, as it is not relevant which particular
basis is chosen for a subspace containing negligible energy.



APPENDIX A. MATHEMATICAL BACKGROUND 24

Figure A.4: Cells in the Phase Plane.
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Figure A.5: Phase Plane Decomposition by the Standard and Fourier Bases.

Fourier BasisStandard Basis

Figure A.6: Phase Plane Decomposition by Windowed Cosine Transforms.
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Figure A.7: Phase Plane Decomposition by Wavelet Transform.

Wavelet basis
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A.3.2 Examples

Following are certain canonical signals and their automatic analyses by Xwpl.
We �rst analyze a relatively smooth transient, spread over 9 samples in

a 256 sample signal (�gure A.8).
Notice that the wavelet analysis at the right correctly localizes the peak

in the high-frequency components, but is forced to include poorly localized
low-frequency elements as well. The best-basis analysis �nds the optimal
representation within the library, which in this case is almost a single wavelet
packet.

The second signal is taken from a recording (at 8012 samples per second)
of a person whistling (�gure A.9), using WPLab, the NeXTstep equivalent
of Xwpl.

Here the wavelet basis is only able to localize the frequency within an
octave, even though the best-basis analysis shows that it falls in a much
narrower band. The vertical stripes among the wavelet Heisenberg boxes may
be used to further localize the frequencies, but the best-basis decomposition
performs this analysis automatically.

Let us now combine the transient and periodic parts in di�erent ways.
For example, we may take a critically damped oscillator which receives an
impulse, and decompose the resulting solution in the wavelet and best-level
bases, as in �gures A.10 and A.11. The wavelet decomposition locates the
discontinuity at the impulse, while the best-level analysis �nds the resonant
frequency of the oscillator more precisely.

The exponential decay of the amplitude is visible in both analyses.
A chirp is an oscillatory signal with increasing modulation. Take for

example the functions sin(:0016t2) and sin(10�6t3) on the interval 0 < x <

1024, sampled 1024 times (�gure A.13). The modulation increases linearly
and quadratically, respectively. The Heisenberg boxes form a line and a
parabolic arc, respectively. In the best-level analyses, all the Heisenberg
boxes have the same aspect ratio, which is appropriate for a line. In the
best-basis analysis, the Heisenberg boxes near the zero-slope portion have
smaller aspect ratio than those near the large-slope portion.

Such a time-frequency analysis can separate superposed chirps. In �gure
A.14 are pairs of linear chirps, di�ering either by modulation law or phase.
Both are functions on the interval 0 < t < 1024, sampled 1024 times. On the
left is the function sin(:0016t2) + sin(:0008t2) analyzed in the best wavelet
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Figure A.8: Representing a Fast Transient
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Figure A.9: Representing a Whistle
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Figure A.10: Critically Damped Harmonic Oscillator (Wavelet Basis)
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Figure A.11: Critically Damped Harmonic Oscillator (Best Level)
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Figure A.12: Critically Damped Harmonic Oscillator (Best Basis)
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Figure A.13: Linear and Quadratic Chirps
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Figure A.14: Superposed Chirps

packet basis. Note that the milder slope chirp is represented by Heisenberg
boxes of lower aspect ratio. On the right is sin(:0016t2)+sin(:0016(t�512)2),
analyzed by best-level wavelet packets. The downward-sloping line comes
from the aliasing of negative frequencies.

A.4 The Haar System

A.5 The Haar basis

The Haar wavelet is de�ned as:

h(x) =

8><
>:

1 0 < x � 1
2

�1 1
2
< x � 1

0 x � 0 or 1 < x

The Haar basis, consisting of the functions

h
j
k(x) = 2j=2h(2jx� k) j=0;�1;�2:::

k=0;�;�2:::
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that is rescaled versions of h(x) (by 2j) shifted by 2�jk. These functions are
orthogonal i.e.

hhjk; hj
0

k0i �
Z
h
j
k(x)h

j0

k0(x)dx =

(
1 if j = j0 k = k0

0 otherwise

Moreover, they form a basis for all functions f with �nite square integralR1
�1 kf(x)k2dx <1. This means that we can represent such a function as

f(x) =
X
j;k

hf; hjkihjk(x):

The coe�cients djk = hf; hjki are called the Haar Wavelet coe�cients.
In order to facilitate the transition between the functions (continuous)

point of view and the discrete (sample) numerical approach we choose to
discretize a function on a given scale by de�ning its \sampled" values as
being averages on that scale, i.e. for a �xed j we de�ne

s
j
k = 2j=2

Z 2�j

0
f(x+ 2�jk)dx = hf; �j

ki

where

�(x) =

(
1 0 < x � 1
0 x � 0 or 1 � x

is called a scaling function �j
k(x) = 2j=2�(2xj�k) (the function is normalized

so that h�j
k; �

j
ki = 1). The number 2j=2sjk is the average of f on the interval

[2�jk; 2�j(k + 1)].
We observe that dj�1k = 1p

2
(sj2k� sj2k+1), from which we deduce the recur-

sive algorithm for computing the Haar coe�cients in �gure A.15.

Figure A.15: Recursive algorithm for the Haar coe�cients

s0 �! s1 �! s2 �! s3 � � �
& & &

d1 d2 d3 � � �

with s
j�1
k =

1p
2
(sj2k + s

j
2k+1)
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Interpretation: sjk represent the time average of the signal f on kth time
intervals of length 2�j , djk represent the variation of the average time signal
on two consecutive intervals.

A.5.1 Haar Multiscale Analysis

We observe that for j �xed the function �
j
k are mutually orthogonal as k

varies and that the map

f !
X
k

hf; �jki�j;k(x) = P j(f)

is the orthogonal projection on the space of functions which are constant on
the intervals

(2�jk; 2�j(k + 1)) of length 2�j

(the sampling map). We will call this space Vj and observe that

Vj � Vj+1 � Vj+2 : : :

[Vj = L2 \ Vj = f0g

if f 2 VJ . Then f(2x) 2 Vj+1. We also observe that the orthogonal comple-
ment of Vj in Vj+1 is spanned by the Haar wavelets. We will write

Vj+1 = Vj �Wj:

A.5.2 Exercise

Show that Pj+1(f) � Pj(f) =
P

khf; hjkihjk.
We denote Pj+1 � Pj = Qj or Pj+1 = Pj + Qj. We see that Qj provides

the detail needed to re�ne the sampling from the averages on scale j (2�j)
to the scale j + 1 (2�j�1). More generally,

PN = P0 +Q0 +Q1 +Q2 � � �QN�1:

� P0 is the average signal on intervals of length 1.

� Q0 addsthe detail to obtain averages on intervals of length 1
2
.

� Q1 adds re�nements to intervals of length
1
4
, etc.
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A.5.3 Walsh Functions

We now review the method for computing Haar coe�cients: we restrict our
attention to a sequence of eight samples x1; x2; : : : ; x8 (which can be thought
of as averages on intervals of length 1

8
of a function de�ned on [0; 1]). The

�rst computation involved

s1 =
1p
2
(x1 + x2) =

1p
2
(x1; x2; : : : ; x8) � (1; 1; 0 : : : 0)

d1 =
1p
2
(x1 � x2) =

1p
2
(x1; x2; : : : ; x8) � (1;�1; 0; : : : 0)

s2 =
1p
2
(x3 + x4) =

1p
2
(x1; x2; : : : ; x8) � (0; 0; 1; 1; 0 : : : 0)

d2 =
1p
2
(x3 � x4) = etc: : :

Observe that the transformation from x to fsg and fdg consists of a string
of rotations by �

4
of the vectors (x1; x2)(x3; x4) : : :. Therefore, x21+x

2
2 : : : x

2
8 =

s21 + s22 + s23 + s24+d
2
1 + d22 + d23 + d24, i.e. the total energy is conserved.

In the second stage we view s1s2s3s4 as new samples (they are \averages"
on intervals of length 1

4
) and repeat the procedure, computing sums of sums

ss1 ss2 and di�erences of sums ds1 ds2.
It is natural to also view the di�erences d1 : : : d4 (which measure the vari-

ation of the samples) as a new signal and perform the same transformations
on them.

sd1 sd2 corresponding to average variation.
dd1 dd2 corresponding to change in variation.

and continuing to �ll in the rectangle, row by row, as in �gure A.16.

Figure A.16: A rectangle of Haar wavelet packet coe�cients

x1 x2 x3 x4 x5 x6 x7 x8
s1 s2 s3 s4 d1 d2 d3 d4

ss1 ss2 ds1 ds2 sd1 sd2 dd1 dd2
sss1 dss1 sds1 dds1 ssd1 dsd1 sdd1 ddd1

(This procedure will be interpreted later as subband coding).
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Figure A.17: Haar wavelet packets on R8:

Smallest scale = level 1;
Intermediate scale = level 2;

Largest scale = level 3.
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We observe that each entry in this rectangular array of numbers represents
an inner product of the original signal (x1; : : : ; x8) with a multiple of a vector
with entries �1 as described in the following diagrams:

For example, the entry dd1 is obtained by taking

1p
2
(d1 � d2) = 1

2
(x1; x2; : : : ; x8)(1;�1; 0; 0; : : : 0)

�1
2
(x1; x2; : : : ; x8)(0; 0; 1;�1; : : : 0)

= 1
2
(x1; x2; : : : ; x8)(1;�1;�1; 1; 0; 0; 0; 0)

which is the pattern corresponding to the �rst box in the 4th block on level
2 (the signal is on level 0).

The patterns (or vectors) generated in the preceding pages can be com-
bined in di�erent ways to construct orthogonal basis of eight dimensional
space.

The last eight patterns on level 3 represent the well known Walsh pattern
functions (providing a square wave Fourier analysis). Clearly the transform
mapping the original sequence into the entries of the bottom row is orthog-
onal (since it was obtained by a succession of orthogonal transformations).
Therefore the di�erent patterns which are the columns of this transformation
are orthogonal. The basis corresponding to a �xed row provides a windowed
Walsh transform.

The discrete Haar wavelet basis is obtained by choosing the second block
in each row and the �rst and second entry on the last row.

It is easy to see that any collection of blocks in the rectangle with the
property that their shadow intervals form a disjoint cover of the full range
provides a collection of patterns forming a basis. As can be seen on the
following example diagram, we use the entries on the bottom level (3) to
recover the entries on the \parent" box above these entries. We then use the
entries on level 2 to recover all entries on level in the parent box. We now
have a full set of entries on level one enabling us to recover the original signal.
Since all transformations were orthogonal we must have that the collection
of vectors corresponding to this choice of patterns is an orthogonal basis of
R
8.
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A.6 General wavelet packets

We'll use the notation and terminology of [2], whose results we shall assume.
We are given an exact quadrature mirror �lter h(n) satisfying the condi-

tions of Theorem (3.6) in [2], p. 964, i.e.

X
h(n� 2k)h(n� 2`) = �k;` ;

X
h(n) =

p
2:

We let gk = hk+1(�1)k and de�ne the operations Fi on `2(Z) into \`2(2Z)"

F0fskg(i) = 2
P
skhk�2i (A.1)

F1fskg(i) = 2
P
skgk�2i:

The map F (sk) = F0(sk)� F1(sk) 2 `2(2Z) � `2(2Z) is orthogonal and

1:1 F �
0F0 + F �

1F1 = I

We now de�ne the following sequence of functions.

(
W2n(x) =

p
2
P
hkWn(2x� k)

W2n+1(x) =
p
2
P
gkWn(2x� k)

Clearly the function W0(x) can be identi�ed with the function ' in [D] and
W1 with the function  .

Let us de�ne m0(�) =
1p
2

P
hke

�ik� and

m1(�) = �ei� �m0(� + �) =
1p
2

X
gke

ik�

All of the functions Wn have a �xed scale, but we observe that mixed-
scale decompositions of L2 are also possible. This allows us to re�ne the
decomposition L2 by scales as embodied in the following:

Theorem 1 For every partition P of the nonnegative integers into sets of the

form Ikn = f2kn; : : : ; 2k(n+1)�1g, the collection of functions f2k=2Wn(2kt�
j) : Ikn 2 P; j 2 Zg is an orthonormal basis for L2(R).
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A.6.1 Remark

We may also think of Ink as the dyadic subinterval [2
�kn; 2�k(n+1)) of [0; 1).

Such an indexing convention gives a faithful correspondence between disjoint
dyadic decompositions of the frequency line and orthonormal wavelet packet
subsets of L2.

De�nition 1 A wavelet packet basis of L2(R) is any orthonormal basis se-

lected from among the functions 2k=2Wn(2kt� j).

Beside the Walsh-type basis , examples of wavelet packet bases include
the wavelet basis and the subband basis

A useful picture of the tree of wavelet packet coe�cients is that of a
rectangle of dyadic blocks. The row number within the rectangle indexes
the scale of the wavelet packets listed therein. The column number indexes
both the frequency and position parameters. We may choose to group the
wavelet packets either by position or by frequency. Grouping by position
�lls each row of the rectangle with adjacent windowed spectral transforms,
analogous to windowed FFT, with the window size determined by the row
number and the window position corresponding to the location of the group.
The frequency parameter increases within the group.

We will group the coe�cients by frequency, since that gives a more ef-
�cient implementation, and since the transformation to the other form is
obvious. The boxes of coe�cients in the rectangle correspond to the decom-
position of �L
0 into the subspaces �k
n, for 0 � k � L and 0 � n < 2L�k.
The top box corresponds to �L
0, the bottom boxes correspond to 
n, for
0 � n < 2L, and box n on level k (counting the bottom as level 0) corresponds
to subspace �k
n.

For de�niteness we recall the Haar example. Consider a function de�ned
at 8 points fx1; : : : ; x8g, i.e., a vector in R8. Then the (periodized) wavelet
packet coe�cients of this function look like �gure A.18.

Figure A.18: A rectangle of wavelet packet coe�cients.

x1 x2 x3 x4 x5 x6 x7 x8
s1 s2 s3 s4 d1 d2 d3 d4

ss1 ss2 ds1 ds2 sd1 sd2 dd1 dd2
sss1 dss1 sds1 dds1 ssd1 dsd1 sdd1 ddd1
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Each row is computed from the row above it by one application of either
F0 or F1, which we think of as \summing" (s) or \di�erencing" (d) operations,
respectively. Thus, for example, the subblock fss1; ss2g comes from the
application of F0 to fs1; s2; s3; s4g, while fds1; ds2g comes similarly from F1.
The two descendent s and d subblocks on row n+1 are determined by their
mutual parent on row n, which conversely is determined by them through
the adjoint anticonvolutions F �

0 and F �
1 .

The algorithm produces Haar wavelet packets in the \Paley" or \natural"
order. The algorithm may be easily modi�ed to produce \sequency" ordered
wavelet packets: what is needed is to exchange F0 and F1 whenever the
parent's sequency is odd.

Sequency has a strict de�nition only for Walsh functions, where it is the
number of zero-crossing of a function which takes only the values 1 and �1.
The nth Shannon wavelet packet, in sequency order, is band-limited to the
intervals �[n; n+1). If we de�ne the appropriate notion of \main frequency"
in the intermediate case of smooth, compactly supported wavelet packets, we
see that main frequency increases monotonically with sequency order.

Paley order can also be obtained from sequency order by the Gray code
permutation.

A.7 Denoising

We now present an algorithm for denoising signals adaptively using libraries
of orthonormal waveforms (such as wavelet packets and local trigonometric
libraries). The method extracts from a signal a coherent part which is well
represented by the given waveforms and a noisy or incoherent part which
cannot be \well compressed" by the waveforms.

A.7.1 Starting on the right basis

The �rst stage of the algorithms consists in selecting for analysis a segment
of a signal of length N . A group of libraries and bases, say for example the
sampling basis, the Fourier basis, the Haar-Walsh wavelet-packets, various
QMF Daubechies �lters de�ning smoother wavelet packets, local trigonomet-
ric adapted windows in both frequency and time, etc.
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A basis in which the signal f(x) has a minimum entropy is selected i.e.

f =
NX
1

�i!i(x) �k�ik2 = kfk2 = 1

where !i are the orthogonal waveforms in the selected \best basis" for which

"(f) =
NX
1

k�ik2 log2
1

k�ik2

is minimal.
We recall that "(f) is a measure of concentration of the expansion while

d(f) = 2"(f), called the theoretical dimension represents the \number" of
\free" parameters present in the signal

c(f) =
d(f)

N

is the theoretical rate of \compression" achieved by the expansion in !i(x),
0 < c(f) � 1.

A.7.2 Asymptotics

We observe that if �i are samples of a random variable with mean 0, variance
� with distribution p(t), then

"(f) =
NX
1

�2i
kfk2 log2

 kfk2
�2i

!
=

1

N

1X
1

�2i
(kfk2=N)

log2
2

�2i

+ log2

 kfk2
N

!
+ log2(N)

and since asymptotically,

NX
1

�2i
N
! �2 =

Z
t2p(t)dt

we obtain

"(f) = log2N
Z �

t

�

�2
`g2

�
t

c

�2
p(t)dt+ "N
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where "N ! 0 as N !1. Therefore

c(f) � 2�� � =
Z �

t

�

�2
log2

�
t

�

�2
p(t)dt

Example (Gaussian distribution):

Z 1

�1
log2(t

2)t2
e�t

2=2

p
2�

dt ' 1:052) c(f) ' 0:4823

A.7.3 The selection algorithm

We chose to view a signal f as being noisy or incoherent relative to the basis
!i if its entropy is of the same order of magnitude as log2N�� giving a poor
compression rate 2��, leading us to the following method.

Start with a signal f of length N , �nd the best basis in each library and
select among them the basis minimizing "(f). Reorder the coe�cients �i in
decreasing order �1 � �2 � � � ��N0 > 0 where �i for i � N0 are all below a
precision threshold (say 0.1% of energy). Then decompose

f = cM + rM where cM =
MX
1

�i!i; rM =
N0X
M+1

�i!i

We will say that cM is coherent and rM is incoherent if c(rM) � �0
The threshold �0 is chosen to determine if the compression of rM using

!i is unacceptably bad. We proceed by testing r1r2 : : : until we reach M for
which

cM � �0 > 0; 0 < �0 < 1

or
N0X

i=M0+1

�2i
krMk2

log2

 krMk2
�2i

!
� log2(N0 �M0 + 1) � log2 �0:

We can now consider rM as a new signal for which we repeat the decom-
position, i.e. pick a best basis and decompose

rM = c0M1
+ r0M1

iterating a �xed number of times or stopping whenever no new coherent part
is obtained.

The Xwpl program automatically determines the threshold using heuris-
tics on the coe�cient curve.
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