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Finite Automata

A finite automaton is a machine that processes words. It has finitely
many states, one of which is marked as initial, and reads a word one
letter at a time to determine how to move between states. Each state is
marked with an output that is produced once the entire word is read.

The automaton below outputs 1 when a word does not contain two
consecutive a’s, and 0 otherwise.

1 1 0
a

b
a

b a, b

1

abab 7→ 1
aabb 7→ 0

An automaton is a computer (Turing machine) with no memory.
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Finite Automata

Formally, an automaton A consists of a finite input alphabet Σ, a finite
output alphabet ∆, and

A finite set of states Q

An initial state q0 ∈ Q
A transition function δ : Q× Σ→ Q

An output function τ : Q→ ∆

A repeatedly applies δ to the current state and current letter of the
word, then applies τ to the last state reached. (We should also fix a
convention of reading left-to-right or right-to-left.)

If ∆ = {0, 1}, then A accepts or rejects each input word. The set of
words accepted by an automaton is a regular language (Kleene).

Andrew Bridy (Yale University) Automata and Curves November 6, 2018 3 / 21



Automatic Sequences

Let k ≥ 2. A sequence a is k-automatic if there exists an automaton
(k-DFAO) with input alphabet Σk := {0, 1, . . . , k − 1} that maps the
base-k expansion of the integer n to the output a(n).

For example, the nth term of the Thue-Morse sequence

a = 01101001 . . .

is the parity of the sum of the bits in the binary expansion of n. The
sequence a is 2-automatic, as demonstrated below:

0 1
1

1

0 0

1
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Christol’s Theorem

Theorem (Christol)

The power series
∑∞

n=0 a(n)xn ∈ Fp[[x]] is algebraic over Fp(x) if and
only if the sequence a is p-automatic.
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Christol’s Theorem: Example

Let a be the Thue-Morse sequence.

0 1
1

1

0 0

1

a=01101001. . .

Let y =
∑∞

n=0 a(n)xn ∈ F2[[x]]. It is easy to check that a(2n) = a(n)
and a(2n+ 1) = a(n) + 1. Therefore

y =
∑

a(2n)x2n +
∑

a(2n+ 1)x2n+1

=
∑

a(n)x2n +
∑

a(n)x2n+1 +
∑

1x2n+1

=
(∑

a(n)xn
)2

+ x
(∑

a(n)xn
)2

+
x

1 + x2

= y2 + xy2 +
x

1 + x2
.
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Christol’s Theorem: Consequences

With Christol’s Theorem, certain hard problems of algebra become
easy problems of automata theory.

Irrelevance of Symbols: If
∑

a(n)xn ∈ Fp[[x]] is algebraic, then
applying any self-mapping of Fp to the terms of the sequence a (e.g.
changing each appearance of 1 to 2) preserves algebraicity.

Hadamard Product : If
∑

a(n)xn,
∑

b(n)xn ∈ Fp[[x]] are algebraic,
then

∑
a(n)b(n)xn is algebraic. This is because the product of

automatic sequences is automatic – picture two machines running in
parallel. (This fails in characteristic 0.)

Andrew Bridy (Yale University) Automata and Curves November 6, 2018 7 / 21



The Main Question

Question

What is the relation between the complexity (number of states) of a
minimal p-DFAO that outputs a and the complexity of the algebraic
power series y =

∑∞
n=0 a(n)xn ∈ Fp[[x]]?

Let Np(a) (respectively Nf
p (a)) be the complexity of a minimal

reverse-reading (respectively forward-reading) p-DFAO that outputs
the sequence a.

It is not clear how to define the complexity of an algebraic function.
The most obvious choice is algebraic degree, but this will not be
enough information for our purposes.
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Algebraic Complexity

Let y be algebraic over Fp(x) with minimal polynomial

P (x, T ) = T d + fd−1T
d−1 + · · ·+ f1T + f0 ∈ Fp(x)[T ].

That is, P has minimal degree such that P (x, y) = 0. Let

d = deg(y) = degT (P ),

h = height(y) be the maximum of the degrees of the coefficients
fi ∈ Fp(x), and

g = genus(y) be the genus of the normalization of the projective
closure of the plane curve defined by P = 0.

It can be deduced from the usual proof of Christol’s theorem that
Np(a) ≤ ppd4h2

. Examples suggest this is very far from sharp.
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The Main Theorem

Theorem (B.)

Let y =
∑∞

n=0 a(n)xn ∈ Fp[[x]] be algebraic over Fp(x). Then

Np(a) ≤ (1 + o(1))ph+d+g−1,

where o(1) tends to 0 as any of p, h, d, g →∞.

This bound is qualitatively sharp for rational functions (sharp
neglecting the o(1) term). For forward-reading complexity,

Theorem (B.)

Nf
p (a) ≤ ph+2d+g−1.

It is possible to eliminate g from the bounds. For example, by
Castelnuovo’s Inequality, Np(a) ≤ (1 + o(1))phd.
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The p-kernel

The p-kernel of a sequence a is defined as the set of subsequences
n 7→ a(pin+ j) such that i ≥ 0 and 0 ≤ j < pi.

Theorem (Eilenberg)

A sequence a is p-automatic iff its p-kernel is finite.

In fact, there is a bijection between the p-kernel of a and the states of a
minimal reverse-reading p-DFAO that outputs a.

For the Thue-Morse sequence:

0 1
1

1

0 0

1

a(n) = a(2n) = a(4n) = a(4n+ 3) = . . .
a(2n+ 1) = a(4n+ 1) = a(4n+ 2) = . . .

#2-kernel(a) = N2(a) = 2
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Cartier Operators on Power Series

For i ∈ {0, . . . , p− 1}, define the Fp-linear operator

Λi : Fp[[x]]→ Fp[[x]]

by

Λi

( ∞∑
n=0

a(n)xn

)
=

∞∑
n=0

a(pn+ i)xn.

Let S be the semigroup 〈Λ0,Λ1, . . . ,Λp−1〉. The orbit S(
∑∞

n=0 a(n)xn)
is in bijection with the p-kernel of a (thus with a minimal p-DFAO).

Observe that for any y, z ∈ Fp[[x]],

Λi(z
py) = zΛi(y) and

y = (Λ0(y))p + x(Λ1(y))p + · · ·+ xp−1(Λp−1(y))p.
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Automata from Cartier operators

Take y ∈ F5[[x]] given by

y = (1− x)−1/2 = 1 + 3x+ x2 + 3x5 + 4x6 + . . .

We compute y = y5(1 + 3x+ x2), and so Λi(y) = yΛi(1 + 3x+ x2).
This leads to a 5-DFAO that outputs the coefficients of y:

Λ0(y) = y
Λ1(y) = 3y
Λ2(y) = y
Λ3(y) = 0
Λ4(y) = 0

1 3

42

0

1

1

1

1

3, 4
3, 4

3, 4
3, 4

0, 2 0, 2

0, 20, 2

1
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Differentials

Let X be a curve over Fp, and let K be its function field. The
Fp-vector space Ω of (Kähler) differentials of X is generated by
symbols of the form df for f ∈ K, subject to the following relations.

d(f + g) = df + dg

d(fg) = f dg + g df

da = 0 for a ∈ Fp

It can be shown that dimK(Ω) = 1.

Let vP (f) denote the order of vanishing of f ∈ K at the point P of X.
At any P , there exists a local coordinate t ∈ K such that vP (t) = 1.
Any ω ∈ Ω can be written as ω = f dt. Define vP (ω) = vP (f).
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The Cartier Operator on Ω

Fix x ∈ K such that x /∈ Kp (equivalently, dx 6= 0). Any ω ∈ Ω can be
written uniquely as

ω =
(
up0 + up1x+ up2x

2 + · · ·+ upp−1x
p−1
)
dx

for some u0, . . . , up−1 ∈ K. Define C : Ω→ Ω by C(ω) = up−1 dx.
Amazingly, this construction does not depend on the choice of the
coordinate x!

The Cartier operator C is an Fp-linear operator on Ω with many nice
properties. In particular, if vP (ω) < 0, then vP (C(ω)) ≥ vP (ω), so C
“improves” the poles of differentials.
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Christol Revisited

Define the twisted Cartier operator σi : Ω→ Ω by

σi(ω) = C(xp−i−1ω).

For any y =
∑∞

n=0 a(n)xn ∈ Fp[[x]] ∩K, we have

σi(y dx) = Λi(y) dx.

Let S be the semigroup 〈σ0, . . . , σp−1〉. For s ∈ S and a point P of X,
the tendency of the Cartier operator to improve poles yields

vP (s(y dx)) ≥ min{0, vP (y dx)}+ min{0, vP (x)}.

So S(y dx) consists of differentials with poles at finitely many points of
bounded orders. By the Riemann-Roch theorem, S(y dx) is finite. By
Eilenberg’s theorem, a is p-automatic (Speyer).
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Proof Sketch of Main Theorem

If X is the curve defined by the minimal polynomial of y, then S(y dx)
is contained in the Riemann-Roch space

V = Ω((y dx)∞ + (x)∞).

A straightforward computation in the algebraic geometry of curves
gives dimV ≤ h+ 3d+ g − 1 and therefore Np(a) ≤ ph+3d+g−1.
Lowering the bound requires more finesse: S eventually moves most of
the differentials in V into smaller Riemann-Roch spaces.

To pass from Np(a) to Nf
p (a), we replace V by its dual space. The

output function of the automaton can be identified with an adele
(repartition), and the Cartier operator on differentials is replaced by
the Frobenius operator on adeles.
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Example: y = (1 + x3)−1/2 ∈ F5[[x]]

Let y =
∑

a(n)xn ∈ F5[[x]] be a root of y2(x3 + 1) = 1. This equation
defines a curve X that contains y in its function field. We compute

(y dx)∞ = 0 and (x)∞ = 2P∞.

By the proof of the main theorem, S(y dx) ⊆ Ω(2P∞).

A Riemann-Roch calculation gives dim Ω(2P∞) = 2, with a basis given
by {y dx, xy dx}. Therefore N5(a) ≤ 25. In fact, N5(a) = 9, and we can
explicitly compute a 5-DFAO that outputs a.
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Example: y = (1 + x3)−1/2 ∈ F5[[x]]

Below is the desired 5-DFAO. All missing transitions go to a trap state
(not pictured) that outputs 0. The σi operators are written explicitly
as endomorphisms of Ω(2P∞) in our chosen basis.

1 2

43

0 0

00

3

3

3

3

1

1
1

1

1

1
1

1

4

4

4

4

0 0

00

2

2

2

2

1

σ0 =

(
1 0
0 0

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 0
0 1

)
σ3 =

(
2 0
0 0

)
σ4 =

(
0 2
0 0

)
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Questions for Further Study

Is the bound sharp in general?

What about multidimensional sequences and the multivariate
analogue of Christol’s Theorem?

How does state complexity behave under algebraic operations on
power series (+, ×, composition)?

Is there a canonical correspondence (functor) between automata
and curves? Could this provide a geometric approach to
semigroup representation theory?
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