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Introduction

1. The classical p—logarithm function is defined in the unit disc |z| <1 by the abso-

lutely convergent series

It has been investigated widely during the last 200 years — see the book of L. Lewin [L].

The most extensive literature exists for the dilogarithm Liy(z) , defined by Leibniz
(1696) and studied by L. Euler (1776), W. Spence (1809), N.—H. Abel (1828), E. Kum-
mer (1840), ... ([L]) . One of the most interesting results was the functional equation
for the dilogarithm that generalizes the addition formula In x + In y = In(xy) for the
logarithm (x,y > 0) .

In the middle seventies the dilogarithm appeared surprisingly in the work of
AM. Gabrielov, I.M. Gelfand and M.V. Losik [GGL] on the combinatorial formula for
the first Pontrjagin class, of S. Bloch [Bl 1] in algebraic K—theory and values of
zeta—functions at the point 2, and of D. Wigner in continuous cohomology of GL,(C) .
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In this paper we propose a geometrical approach to the theory of the classical
trilogarithm function Lig(z) based on the study of configurations of 6 points on the
projective plane, and obtain analogues of most of all the above mentioned results related

with the classical trilogarithm, including:

a)  the generic functional equation for Lig(z) ;

b) its connection with algebraic K-theory, weight 3 motivic cohomology,
characteristic classes and an explicit formula for a 5—cocycle representing a
continuous cohomology class of GL4(C) ;

c) the proof of D. Zagier’s conjecture [Z3]: the value of the Dedekind zeta—function
of an arbitrary number field at the point 3 is expressed by an (r; +1,)-
determinant whose entries are rational linear combinations of values of the

classical trilogarithm at (complex embeddings of) some elements of this field.

2. In § 1 of this paper we construct for an arbitrary field F a complex I‘F(n) that
hypothetically after ® @ should give weight n motivic cohomology of Spec F .

Namely, let H[PIIP] be the free abelian group generated by symbols {x} , where

b &'3 P%‘ - We define for every n> 1 a certain subgroup £ (F) C E[P}}‘] reflecting the

functional equations for the classical n—logarithm function (for the precise definition

see 8. 9 of § 1). For example, % (F) is the subgroup generated by the elements
*

{xy} - {x} — {7} where xyeF \1C P%.\{O,l,m} , Teminiscent of the functional

equation for log| - | . We set

2 (F):= L[Pp]/ % (F) .

*
Note that % (F) =F . Then we construct the following complex
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(0.1)
YL Y s A

The differential § is defined by the following formulae ({x}_ is the image of a
generator {x} in 2 (F))

§:{x} @y A Ay, —{x} ®xAy, A Ay (0.2)
if m>3 and
6: {x}y®y, A Ay o (1-x)AxAy, A Ay 5. (0.3)

Then 62 =0 modulo 2—torsion .
Let us denote this complex, where .Z (F) is placed in degree 1, by T'p(n).
For an abelian group A we set AQ =A®Q.

Conjecture A .

[n/2] N
Kn(F)Q v @ H' I(FF(H)Q) .

1=

For a more precise conjecture see 5. 9 of § 1.
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The existence of such complexes was conjectured by A.A. Beilinson [B 1] and S.
Lichtenbaum [L 1]. Another construction of complexes that hypothetically should
satisfy all Beilinson—Lichtenbaum axioms was proposed by S. Bloch [Bl 2] and S.
Landsburg [La].

For number fields Hi(I‘F(n)Q) gshould be zero for i>2 and
Kn(F)Q =Ker § C 2 (F) . In this case our conjecture coincides with Zagier’s conjecture

[Z3].

Weight 2 motivic complexes I'(X;2) for a regular scheme X were constructed by
S. Lichtenbaum [L2]. In 5. 14 of § 1 we suggest a construction of weight 3 motivic
complexes I'(X;3)®Q for a regular scheme X and — more generally — weight n

complexes I'(X;n) ® @ for a smooth curve over an arbitrary field F .

3. A.A. Beilinson conjectured [B 1]} that there should exist a mixed Tate category
Ap(F) of mixed Tate motivic sheaves over spec F . So the usual Tannakian arguments
tell us that there should exist some graded pro—Lie algebra

L(F), = ._311,(»‘)i

such that the category of finite dimensional graded representations of L(F), is
equivalent to the category Ap(F) (see also 5. 10 of § 1). Let Q(n) . be the trivial

1—dimensional L(F),—module placed at degree —n and let 7 be the 7y-filtration on
K~—groups [So].
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Conjecture (0.1) (A.A. Beilinson [Be 1])
Ext izr(F)(Q(O) A0 ) =g Ky (Flg -

Let us denote by W' the dual space to a vector space W over Q . If W isa
profinite vector space, then W' will be an inductive limit of finite dimensional vector
spaces and vice versa. Note that Q[P%,] is an inductive limit of finite dimensional
vector spaces and, as we will see below, the same is true for Bn(F)Q . So, for example,

*
FQV is a profinite vector space.

- Conjecture 0.1 is thecase i =1; n=1 just means that

Bty 5)(Q0) ¢ Q) 9 = LO)L, 2 Fq.

+

-®
Set L(F), o= @ 2L(F)i . The space of degree —n generators of the Lie alge-
< =

bra L(F) <9 18 isomorphic to the degree —n subspace of the graded vector space
L(F)¢_o/ EL(F) <o WF)¢ 5] . The Lie algebra - L(F) acts on
L(F)¢_y/ [L(F)_y, L(F)_,] through its abelian quotient L(F)/L(F) c2¥Fg T
turns out that in Beilinson’s World (a¢ world where his conjectures are theorems)

Conjecture A is equivalent to the following

Conjecture B.

a) L(F)¢_p is a free graded pro-Lie algebra such that the dual of the space of its

degree —n generators is isomorphic to 3n(F)Q :
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b) The dual map to the action of the quotient L(F)/L(F)._o, on the space of degree
—(n—1) generators of L(F)._, is just the differential

*

§: 3n(F)Q — .S’n_l(F)Q ® FQ
in the complex (0.1).
In this paper we will give strong evidence for this conjecture for n < 5.

I am very grateful to A.A. Beilinson for many illuminating discussions, interest and
encouragement;' in particular, he helped me to understand that Conjecture A is a
corollary of Conjecture B. I would like to thank M.L. Kontsevich for useful remarks and
B.L. Feigin, Yu.l. Manin, J. Nekova}, A.A. Suslin, V.V. Schechtman and D. Zagier for

interesting conversations.

A considerable part of this work was written during my stay in the Max-Planck-
Institut fir Mathematik in May and the Institut des Hautes Etudes Scientifiques in the
beginning of June 1990. This work was completed during my stay at Mathematical
Department of the MIT in fall 1990, where I was supported by Alfred P. Sloan
Foundation grant N 90—10—14. My special thanks to Frau Wolf—Gazo and Frau Sarlette
(MPI) for careful typing of the manuscript and to the MPI, IHES and MIT for their
hospitality. I am indebted to Herbert Gangl (MPI) for his help in preparation of the

manuscript for print.
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Let me give some comments that may be helpful to read this paper. Most of all
important results and conjectures are formulated in § 1. Moreover, s. 9—15 of § 1 are
completely independent from the rest of the paper. To understand the proof of Zagier’s
conjecture it is sufficient to read 5. 0—4, 7 of § 1 and § 3, 4, 6, 10 only. Most important
are 8. 3 of § 4 and Theorem 4.2. The long calculations in s. 1 of § 5 are given in order to
write the explicit formula 1.10 for the functional equation for the trilogarithm; we don’t
use this explicit formula, only its geometrical interpretation given by Theorem 1.4 (see
also 8. 6 of § 1); 5. 2 of § 5 is a detailed exposition of 8. 6 of § 1. The results of § 7 are of

independent interest.
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§ 1. Main results and conjectures.

0. The single—valued versions of p—logarithms. Note that
Liy(s) = —log(1 -2); & Liy(z) = Li,_y(2) dlog 2. (1.1)

So using the inductive formula

Z
. . dt
Llp(z) = J’ Llp_l(t) T
0
the p-ogarithm can be analytically continued to a multivalued function on
¢P'\0,1,0 . However, S. Bloch and D. Wigner introduced the function

Dy(z) := Im(Liy(z)) + arg(1 —z) - log|z|

which is single—valued, real-analytic on €P1\0,1,m and continuous (but not

differentiable) at 0,1,w . It has a singularity of type x - ln x at these points and
Dy(0) =Dy(1) = Dy(@) =0. (1.2)
It is called the Bloch—Wigner function.

The corresponding function for log z is just log |z| . Analogous functions Dp(z)
for p >3 were introduced in [R] and computed explicitly in [Z1].

However, let us consider the slightly modified function
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£(2) := Re[Li3(z)—log|z| - Lig(a) + glog? 2] - Liy(@)] - (1.3)

1 2
Note that D3(z) = %(2z) + g log”|z| - log

(—::)zz’ . %4(z) is single-valued,

real—analytic on CPI\O,I,m , and continuous at 0,1, . We have

'%(0) = '%(m) =0, ‘%(1) =

n

=(®) - (1.4)

Il v 8

l:lwl —

1

(The advantage of the function #(z) is that, as we will see below, it satisfies

functional equations without remainder terms.)

Such modified functions .%(z) for all p>3 were considered by D. Zagier,
A.A. Beilinson and P. Deligne; in [B 1] and [De 2] the Hodge-theoretic interpretation
of the functions Dp(z) and .% (z) is given. The definition of these functions is as
follows ([Z 3] ):

P ol.B. .
50)= 8 § e oslal) - i o)
J:

where Bj is the j-th Bernoulli number (By=1, B;=-1/2, B, =1/6,.. ) and
%, i8 the real part for odd m and the imaginary part for even m, LiO(z) =—1/2.

1. #(z)_and (p(3) fora number fild F. Let Z[PR\0,L,o] be the free abelian
group, generated by symbols {x} , where x € P%\\O,l,m (F is a field).

There is a homomorphism



1
£ :I[Pe\0Lo] —R, 4:Tn{x}— Bn 4(x).
A similar homomorphism can be defined for any R—valued function.
Now let F be an arbitrary algebraic number field, dp the discriminant of F, n

Tesp. I, the number of real resp. complex places, so [F: Q] = 1 + 2t , and 6j the
set of all possible embeddingg F =€ , (1<j< r + 2r2) numbered so that

o =0 .
r1+k r1+I2+k

Let us denote by R,(F) the subgroup of H[Pll?\o,l,cn] generated by the

expressions

-1

{x} - {s} + {y/x}—{i—‘f—f} =11

where x#y, x#1, y#1.
Set By(F) := I [P5] /Ry(F) .

Let us consider the following homomorphism

1 *
§: Q[PE\0,1,0] — By(F)g ® Fq

(1.5)
§: {x}— {x}, ®x

({x}, is the projection of {x} onto B,(F)).
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Theorem 1.1. Let (p(s) be the Dedekind zeta—function of F . Then there exist

1
Yi o ’yr1+r2 e Ker§CQ [PF\O,I,m]

such that

3r
@) =7 2. |dF|_1/2-det|.%(aj(yi))| (1<i<r, +1,).

For 8=2 a similar result was proved in [Z 4]. It also follows directly from
results of A. Borel [Bo 2], S. Bloch [Bl 1] and A.A. Suslin [S 3]. A more elementary
proof, which uses only the result of Borel [Bo 2] and the 5—term functional equation for

the Bloch—Wigner function is given in § 2.

D. Zagier has conjectured that the analogous fact should be valid for all integers

s > 3 and has given some striking numerical examples [Z 3].

For the proof of Theorem 1.1 we give an explicit formula, expressing the Borel

+1,

I,+1
regulator ry: K. (€) — R 1 by 4(z), and then use the Borel theorem [Bo 2].

2. The properties of the Bloch~Wigner function. First of all let us recall the remarkable
2-variable functional equation for the dilogarithm, discovered in the 19th century by

W. Spence [S], N.H. Abel [Ab] and others [L]. Its version for D,(z) is as follows.

Let 1(xq, ... ,x4) be the cross—ratio of a 4—tuple of distinct points on P! . Recall that

1’
the cross—ratio is PGL2—inva.n'ant. If ;i are coordinates of the points X, then
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(%) Gy =)

(X, .o ,X,) 1= (1.6)
1 4 N NN ~
(x;=%3)(xy~ %)
For every set of 5 distinct points on Pl set
4
i ~ 1
Ry(xy, - %) 1= ) (= 1) [r(xgs - ;s - 0%y)] € Z[PT\O, 18] - (1.7)
=0
Then for D, : H[P}:\O,l,m] — R (Dy[2z] := Dy(z)) we have
Dy(Ry(xg, - %4)) =0 - (1.8)
The Bloch—Wigner function Dz(z) also satisfies the relation
Dylaliy o), .. Zo(a)) = C D7Dy - ixg) (19)
where |o| is the sign of the permutation ¢ . This means that
-1
Dy(z) = ~Dy(1 —2z) = —Dy(z ) . (1.97)

The relation (1.9) is equivalent to the degenerate case of the functional equation
(1.8) when just two points x, coincide. Indeed, in this case D2(r(x0, ,x3)) =0
according to (1.2). So if, for example, Xg =X4 =X then (1.8) means that

D2(r(x0,x1,x3,x)) + D2(r(x0,x1,x,x3)) =0 and so on.
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The relation (1.9) can be deduced formally from (1.8). This means that the
difference of the left— and right—hand side of (1.9) can be represented as a sum of several

expressions (1.8).

Moreover, it seems that any functional equation for the Bloch—Wigner function
Dy(z) can be deduced formally from the ome (1.8). The reasons lie in algebraic
K—theory— see s. 10 below.

It is well-known that log| - | is (up to a2 multiple) the unique continuous function
satisfying the functional equation f(xy) = f(x) + f(y) . Thanks to S. Bloch, we know a

similar characterisation of the dilogarithm:

Theorem 1.2 [Bl 1]. Any measurable function on P ql: satisfying the functional equation

(1.8) is proportional to the Bloch—Wigner function D,(2).

3. The generic functional equation for the trilogarithm. . We see that for better
understanding of the properties of the dilogarithm we ought to interpret its argument as

a cross—ratio of 4 points on a line and then consider 5—tuples of points.

It turns out that the generic functional equation for the trilogarithm also has a
geometrical nature: it corresponds to a special configuration of 7 points on the plane.
Namely, let X Xg:Xq be vertices of a triangle in P% (i.e. these points are not on a
line); Y1:9:¥4 are points on its "sides" ﬁ, % and :T:,’_fl' and a point z isina

generic position (see fig. 1.1).
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fig. 1.1,1.2

Further denote by (yl |y2,y3,x2,z) the configuration of 4 points on a line, obtained by
projection of the points Yg:¥g:Xo,Z With center at the point y, (see fig. 1.2). Set

R3(xi:Yi:z) = (1 + 7+ 1‘2) (o] [{l’(yl Iy2,y3,x2,z)} - {r(yl Iy2’y3’x3’z)} +
+ {r(z|x3,y3,x1,y2)} + {r(z'y3’y1’xl’y2)}
(1.10)

+ {I(Z'yl,x2,x1,y2)} + {r(z|x2,x3,x1,y2)} - {r(z|x3,y1,x1,y2)}]

+ {I(YI I Y2:Y3)x2:x3)} - 3{1}
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where 7:x, —b X, (indices modulo 3) (for example

i i+1 Yit1

2o {r(y,159¥3%5,2)} = {r(y5]7,,¥9%;,2)}  and so om) and, by definition,
*

{1} ={x}+{1—-x}+ {1 —x_l} for some xeF \1 . As we will see below, the

yil—>

choice of x is inessential for our purposes.
Theorem 1.3. In the case F = C the following holds:

) 4{x}-{x"N=0

b)  L{x}+ {1-x}+{1-x"} = (1) =¢(3)
Q) G(Ry(x3;2) = 0.

Remark. Let us consider all possible configurations of 4—tuples of points on a line,
obtained by projection of some 4 points among X;,¥;52 with the center at a fifth one. Let
us say that two such configurations are equivalent if they differ only by a permutation of
points. It is interesting that formula (1.10) contains just one representative for every

equivalence class of configurations obtained in this way.

Let us give a more conceptual version of the functional equation. The function
4(r(x, ... ;x,)) that a priori is deﬁn.ed on configurations of 4 distinct points in ¢p!
can be prolonged continuously to the set of 4—tuples such that just 2 of them coincide by
the following rule:

(1) if x; =x) or x5=x,
H(r(xy, - xy)) = .

in other cases
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Let (2,0, ,1’.5) be a 6—tuple of distinct points in P% such that P‘O , El , 2,2

lie on the same line, but there are no 4 points among the f‘i with this property. Put

B (r(xy, - xy)) o= — HBlr(x),%,%q,x4)) ~ 25(x(x;),Xg,%9,%,)) + £(1) and set

”~ N

1 i+]
ALy o) =5 ) (=1) J.%'(r(£2+j|£0, gy g lg)) (L)
0<i, j<2

(L 0y (s = plohag(e,, .. 2) .

It can be proved using the identity .%(x) + £(1-x) + H(1 -x = %4(1) that

these definitions are correct.

Now let (£, ... ,£¢) be a configuration as presented in fig. 1.17. Then for every i

there are 3 points among (E,O, N e ,2.6) that lie on the same line.

fg. 1.1/

Theorem 1.4. For a configuration (£, ... ,¢) asin fig. 1.17

6
E (- 1)1 ‘43(?'0’ ,Qi, ,9,6) =0.
i=0
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We will prove in § 5 that the functional equation (1.10) can be deduced from this
one using only the relation from Theorem 1.3 b). (This is not quite obvious: for example,

all coefficients in 1.11 are *1/3).

Now let (£, ... ,L5) be a configuration of 6 points in generic position in P% . Put
Ly := IOEI N Ezls (see fig. 1.11 in 5. 6 below) and

5
(Lo, k)= Y ()7 (8 L, )

i=0

(The right—hand side was already defined in (1.11)). We will prove in § 5 that this
function JLJ(I.O, ,15) is skew—symmetric with respect to permutations of points P‘i

and satisfies the 7—term relation

6
Y (- 1) gLy, o Ly, L) =0 (L12)
i=0

4. Explicit formula for a 5—cocycle representing a ¢lass of continuous cohomology of
GLy(C)

Choose a point x € €P? . Then there is a measurable cocycle

%) GLy(€) x ... x GLy(€) —R

6 times

(g, ... 85) = (g, - B5X) - (1.13)
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It is certainly invariant under the left action of GL4(C) . So the 7—term relation (1.12)
just means that %) is a measurable cocycle of GL3(C) . Different points x give

cohomologous cocycles.

The function .#%(z) is continuous on €P! and hence bounded. Therefore the
function f(x) is also bounded. Applying Proposition 1.4 from ch. IIT in [Gu] we see
that the cohomology class of the cocycle (1.13) lies in

Im(HY, (GLy(€),R) — H(GL,4(C),R)) (1.14)

*
where H s(G,R) denotes the continuous cohomology of a Lie group G . Recall that

(see [Bol])

H,, (GL_(€)R) = A [uy,ug, - U] (1.15)

2i-1
cts

- 2i-1 . . )
indecomposable part of H c:s (GL,(€),R) . In particular, dim H,(GLy(C),R)=1.

The constructed cocycle represents a non—trivial cohomology class.

where u, € H_, .“(GL (C),R) . The subspace generated by the element u, is called the

5. Functional equations for the trilogarithm in coordinates. Let us now write

R3(xi’yi’z) in coordinates. Choose homogeneous coordinates for the points X)2,y; a8

follows:

| © © =
| © = ©
| = O ©
| = =

»
—
4
[\
el
(9%
[ ]
<t
—
-]
[ W]
o
[#%]
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Then R‘J(xi’yi’z) coincides with R3(a,b,c),where

rgener e 8 famne s (23854 0+ ) -

(1.16)

- {%ﬂ} + {{EE%HE} - {%:cﬁ%}ﬁ} —{1}) + {—abc} .

Here ® f(a,b,c):= f(a,b,c) + f(c,a,b) + {(b,c,a) , and according to Theorem 1.3 a) we
cycle
do not distinguish between {x} and {x_1 .

It is interesting that all coefficients in this formula are equal to one.

Let us consider a specialisation of this formula setting a = 1. Then we get

Ry(Lb,c) = - {&;‘5_11} _ {@#) — {(bc —c + 1)b}

(1.17)
2({@%”—11} + {—M + {bc—c+ 1} + {—bc} + {b} + {c} -{1}).

From the geometrical point of view R3(1,b,c) corresponds to a configuration of 7
points as in fig. 1.3 (z lies on the line X3¥1) -
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Xy,
Ja
9>
.
Ky : o,
¢
z
fig. 1.3

The corresponding functional equation for the trilogarithm coincides with the
classical Spence—Kummer one, discovered by W. Spence in 1809 [S] and,
independently, by E. Kummer in 1840 [K] — see Ch. VI in Lewin’s book [L]. To see

. _ be—c+1 _b-1
this let us set x = e ' V=%

-5 - 55 - o) +

() + (&} + B+ -+ -+ m-n.

=y

. Then we get

Substituting v = i;x’__if , U= x_-i_-?l{—_y we obtain the last formula in section 7.2 of ch.
VIin [L].

The Spence—~Kummer equation (1.17) can be deduced formally from Theorem 1.3.
More precisely, it can be represented as a sum of 3 generic equations (1.16) — see the
proof of Proposition 5.6. The validity of the converse statement is an interesting

problem.
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Let us emphasize that the functional equation for the function %(z) has no
remainder terms (such as products of logarithms and dilogarithms). For the
Bloch—Wigner—Ramakrishnan function D3(z) or the ordinary trilogarithm this is no

longer true. The functional equations for .2.5 (z) have no remainder terms for any p.

Subsequent specialisation of (1.17) gives

Ry(1,1,6) = — {c?} + 4{c} + 4{~c} ;
R,(1,1,1) = 3{1} + 4{-1} .

So we have (compare with the formulae (6.4) and (6.5) in [L]):

4(c) =4 4(0) + H(~c), 4(-1)=-3/4 41).

The corresponding configurations of 7 points in P2 can be seen in fig. 1.4 and 1.5.
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fig. 14,15

6. The group of "abstract trilogarithms". For a G—space X points of G\X x .. x X
are called configurations. Let CG(P%‘.) be the free abelian group generated by all
possible configurations (!;0, ,£5) of 6 points in P% .

Let (xl,x2,x3,y1,y2,y3) be a configuration of 6 points in PP2‘ as in fig. 1.6 (i.e. ¥

lies on the lire x.x; $1 indices modulo 3) such that

I(Y3|x1!x2)Y1:Y2) =X.
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Ya

Let us define a homomorphism
1 2
Ly :2[PE\0,L0] — C4(Pp) ,
setting
t3 : {X} — (xlix27x3!Y]_zY21Y3) -

The configuration where y;,y,y; are on a line will be denoted by 7, (see fig.
1.7).

Definition 1.5. #(F) is the quotient of the group CS(P%‘) by the following

relations

R1) (20, ,9,5) =0 if 2 of the points £, coincide or 4 lie on a line.
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R2) (The 7—term relation). For any 7 points 2.0, '16 in P%.

6
Y (1&g e oy o) = 0.
i=0

R3) Let (mg,..,mg) be a configuration of 6 points in P% such that

m, = mym, N mm, and mg is in generic position (see fig. 1.8). Set
Li{x} ==L {x} -2l {1—-x} +
VI =70 3 3

Then

4
3 (my, ... mg) = z (— l)lLé{r(m5|m0, e yMy M)}

i=0
My
m
ms My
—— -—

fig. 1.8
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Remark 1.6. Let us consider the action of GL3(F) on 6—tuples of points in PI%‘ . Then
a configuration (£, ... ,2 5) i8 stable (respectively semistable) in the sense of Mumford
if and only if among the points R’i there are no 2 coinciding or 4 lying on a line
(respectively 3 coinciding or 5 lying on a line) — see [Mu]. So relation R1) means that

(¢ ,£5) = 0 if the configuration (£4, ... ,£;) is semistable or unstable.

0 -
Lemma 1.7. In the group #,(F)
_ o
(&g - Lg) = (= )] I(%(o)’ s sy
where |o| is the sign of the permutation o .

Proof. Consider the relation R2) for a configuration (£, ... ,17.6) where just 2 of the
points coincide and apply R1). -

The homomorphism t3 induces the homomorphism
1
Ly : Q[P\0,1,0] — (Fg -

It is not hard to prove that this map is an epimorphism. Indeed, the relation R3)
implies that a configuration as in fig. 1.8 lies in the image of L3 . It remains to apply

the 7—term relation to configurations as in fig. 1.9 — 1.11.

Let us prove that relation R3 does not follow from the relations R1 and R2. Denote
by Cg(Pz) the free abelian group generated by configurations of 5 distinct points in p?
such that there are no 4 points on a line among these points. Then there is a

homomorphism 4 : 06(P2) — Cg(P2) defined as follows: degenerated configurations
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satisfying condition R1 map to 0 and &L, ... ,£5) =

5

Al( Y (-1)'(Lg, - L;, - ,L5)) , Where Alt is the skew—symmetrization. Note that if
i=0

the points m;, m;, m, liconaline £ and mym, ¢ £ , then there exists an

demmt g€ PGL3(F) such that the 5—tuples of points (mo,ml,m2,m3,m4) and
(mO’ml’m2’m ,m3) are equivalent under the action of GL3(F) . Therefore
Alt(my, ... ,m,) = 0. So 0(ﬁ3{x}) = 0, but for a configuration (my, ... ;mg) asin fig.
1.8 we have &m,, ... mg) = (mg, ... ;m,).

£
N
\
o \
‘8 2
\
\
ei 81 eo f{,

A wnﬂ'gaza#on [Fo,.../ é5) e I Z's

fig. 1.9
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¢s
Uy
€5
g—/— - ————ea -
qz 61 80

Y o
/
QJL‘/
// 085
/
T
().1_ ED

fig.1.10-1.11

Let us denote by R3(F) the subgroup in H[P%‘,\O,I,w] generated by the

following elements (compare with Theorem 1.3)
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-1
{x} - {X } ’
— —1
{x}+ -+ {1-x D+ -3+ -y,
Ry(x;:¥p2) »
where Xy € F*\l y o Xp¥pE € Plz;. and the configurations of the points

(xi,x2,x3,yl,y2,y3,z) are as in fig. 1.1, where there are just 3 lines, containing exactly 3

points of a configuration. Set
1
B3(F) =1 [PF\O:L‘D] /Rg(F) :

Theorem 1.8. The homomorphism L3 induces the isomorphism

Ly : By(F)q = A -
The inverse homomorphism

. —171. '

M3 i=Lg: %(F)Q — B3(F)Q

can be defined explicitly on the generators of the group %(F) as follows. Set
L3{x} =—{x} —2{1-x} + {1} . Then for a configuration (£, ... ,¢;) asin fig. 1.9

_1 i+jg’ )
P‘O’ ,Es) =7 z (-1) Es{r(i’,2+j| l"0""’£’i’ 2+J 5)}
0<i, j<2

M3(

compare with (1.11) and for a generic configuration (QO, ,2,5)
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5
-1 R VPR S e | AR
Ly (L9 - skg) = ) (1) Ly {Lg, o o8y, o 1)
2

(tﬁ is defined in fig. 1.1), where the right—hand side was already defined above. The
proof of the correctness of this definition uses the basic relation R3(xi,yi,z) in the group

B3(F) —sees.2 of § 5.

7. The trilogarithm is determined by its functional equation. Let Meas Cm(dZPn) be

the space of all measurable functions on configurations of m points in CP™ . Define a
map
*

d
ny, “m n
Meas C_(CP") ——— Meas Cm+1(CP )

-1 f(xgy - % o %) -
0

*
by the formula (d_f)(xg, .. %)

Il a8

1

Recall ([Mu]) that a configuration (_2,0, o s€q) of m points in CPt s
stable if and only if for any subspace L C ¢ P"

The number of points R’i in L
dim L+1

m

B n+1°

Let Cont C;(CPH) be the space of all continuous functions on stable
configurations of m points in CP" . We have the following complexes Meas C.(€P2)
2
and Cont CJ(CP*):
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* ’ *
2, 95 2, g 2
— Meas Cg(€P?) —> Meas Cg(€P?) —5 Meas C,(€P?) (1.18 a)

* *

d d
— Cont C3(€P?) —24 Cont C§(€P?) s Comt CH(€P?)  (118D).

Note that the complex conjugation z—z acts on CP? and hence on these

complexes. Denote by EO(Cont®(CP?))* the subspace of invariants of this action.
Theorem 1.9.
. 6 8 2y _ 1. 6 2\, _
a) dim H'(Cont Cy(CP)) = dim H"(Meas C (CP*)) =2
6 2w+ . . . . Hs
b) H"(Cont C (CP”))" is canonically isomorphic to ctﬁ(GL3(C),B.)

c¢) The function AL, - sL5) represents a nonzero element in
B%Cont C3(€P?)* .

Let us consider a degenerate configuration (g, - ,L5) presented in fig. 1.12. It
*
depends on one parameter z:= r(£5|£0,£2,£1,£3) eC . In this case

"%(ﬂ'o: ’?'5) = .%(z) .
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Theorem 1.10.

a) The space of continuous functions f(z) on CPI\O,I,m that satisfy the functional
equation f(Rq(a,b,c)) =0 (see 1.11) is generated by the functions %4(z) and
Dy(z) - In|z] .

b) Let F(L, ... ,L5) be a continuous function on the set of all stable configurations

of 6 points in ¢P2 that is skew—symmetric with respect to permutations of P’i
6 . ~

and satisfies the 7—term relation z (- 1)1F(ﬂ.0, ek ylg) =0 (for any
i=0

stable configuration (£, ... ,25)) . Then the restriction of F to the degenerate

configuration (&, ... ,L5) presented in fig. 1.12 is a linear combination of .%(z)
and Dy(z) - In|z| .

* % *
Remark. Let fe Cont Cg(CPs) . Then, of course, dg(dsf) =0, but the value of df
at a configuration (£, ... ,25) as shown in fig. 1.12 can be an arbitrary continuous

function on CPI\O,cn . So the skew—symmetry relation does not follow from the 7—term

one for stable configurations (compare with Lemma 1.7).
The following proposition proves part c¢) of Theorem 1.9.
. * 8 2
Proposition 1.11. (.4 © Mg)(x,, .. ,x;) £ d Cont Cy (€P7).

*
Proof. Suppose that (.% o M3)(x0, ,15) =d.f . The lefi-hand side is

skew—symmetric with respect to permutations of points X; . So we have
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* *
(4 o Mg)(xg, - x5) = Alt def = d Alt

where Alt g(xo, 1) = 2 (- 1)I g(x a(0) - (n—l))
aeS

Note that if for a configuration (vo, v,V 4) of 5 points on the plane Vo Vq» Vo lie
on a line and vy, v, are not on this line, then the configurations (vo,vl,vz,v3,v4) and
(Vgr¥pVgVgoVg) are equa.l But for a configuration (R,O, -,8g) asin fig. 1.12 all
configurations (E,O, - ,&5) are of this type, so0 d Alt f(2,, ... ,£¢) =0. -

Now let us comstruct a representative of H6(Cont Ci(CPz)) - Let V, bea

*
3—dimensional vector space with a volume form wg € det V3 ,
A(Rge,8,) = (ws,ﬂ,ol\ﬂ.ll\f,z) . Set for a generic configuration of 5 vectors

(£ ) in V

0 o 3

4

3 _ i - ,

fg )(ao, )= Y CUDYE Ly k) TT ln|A(£j1£j2£j3)| .
i=0 . 0<];<ig<ig<4

x*
It does not depend on w (Proposition 3.7). Further, (d fg3))(£’.0, ,115) =

2 (- 1)j 43) (20, ’Ej’ ,2,5) does not depend on the length of the vectors £,
=0
(Proposition 3.9) and so defines a function on configurations of 6 points in Vg . It can

be prolonged to all stable configurations (see § 4). The restriction of the function so
obtained to a degenerate configuration presented in fig. 1.12 is just Do(z) - In|z| (see
Lemma 4.7). The constructed function is skew—symmetric, so the proof of Proposition

*
1.11 shows that it does not lie in d, Cont C3(CP?) .
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We will see in § 9 that this function can be obtained by transgression of a non—zero

4

element in H cts

(GL,(C),R) in some spectral sequence.
Finally, H4(Cont Ci(CPl)) = ker d; , because all 3—tuples of distinct points on

¢p! are PGL,(C)—equivalent and so for a generic configuration of 4 points on cp!
3 ) R

wehave ) (—1)'(Lg, ., - L) = 0.
i>0

Theorem 1.12. There exists a C” —function /4 (2, ... ,£, ;) on the manifold of

generic configurations of 2n vectors in an n—dimensional {—vector space such that

2n
a) ) (=1)' A (g - 2y, - Ly ) = 0 for a generic configuration (£, ... Ly ) -
i=0

b) 4 (8yLy:81L s - Bop_q Lop1) » & € GL (C), is a measurable 2n—1 — cocycle

of GL (C) representing the indecomposable class in Hzf;'l(GLn(C),R) .

The proof of this theorem uses a variant of Suslin’s spectral sequence S 1].

The existence of such a function was conjectured in [HM], see also [GGL] and
[GM].

8. The classical trilogarithm and weight 3 motivic cohomology. Now let F be an
arbitrary field. The groups K _(F) were defined by Quillen [Q 1] as homotopy groups

K_(F) == r_(BGL(F)™)
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where BGL(F)+ is the H-space having the same homology as BGL(F) , i.e. the same

as the homology of the discrete group GL_(F) = GL(F) .
By the Milnor—Moore theorem [MM]
K, (F) ® Q = Prim H_(GL(F),Q) (1.19)
Recall that Ky(F) =7, K (F)=F .

On the other hand, we have the Milnor ring K&{(F) which is defined as a quotient

ring of the tensor algebra

* * *
T(F ):=®F ®..®F (n times)
n I 1

* * *
by the homogeneous ideal generated by all tensors (1—x)®xe To(F )=F ®F . It
is not hard to prove ( [M 1] ) that

KMF) = A {1 -x) AxAy A Ay o). (1.20)

* *
where A"F := @"F /{...xiQxi+1...+...xi+

There is the canonical ring homomorphism m : Kl,\'.,{(F) — K4(F) . Thanks to

®x..}.

Matsumoto we know that it is an isomorphism for n =2 (see [M 2]). It is injective

modulo torsion ( [S 1]). But the Coker(m) can be rather big.

Set
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B (F) = Z[PE\0,1,0] /R (F) (p<3)

where the subgroups Rp (p = 1,2) are generated by the following elements

R (F) = {[x] - [x] - [y], xy ¢ F \1},

4
Ry(F) = { 2 -1 [r(xg - % o Xg)]  X; € P%, » X xj} ,
i=0

and the subgroup R3(F) is defined in 8. 5 in a similar way. The definition of these

groups is reminiscent of the functional equations for the classical pJogarithms, p < 3.
X
Note that the map [x] — x defines an isomorphism B(F) ——F .

Let us consider the Bloch—Suslin complex Bp(2) :

5
B,(F) —2— A%F’

o: [x] —(1-x)Ax

with the group B,(F) placed in degree 1. Note that §,(Ro(F)) = 0, so the definition is

correct.

Let K;nd(F) = Coker(K%{(F) — K3(F)) . Using some ideas of S. Bloch,
A.A. Suslin proved the following remarkable theorem (see also closely related results of
[DS] and [Sa]).
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Theorem 1.13 [S 2]. There is an exact sequence
* ok ind
0 — Tor(F ,F ) — K3 (F) — Ker 6, — 0
*_ ¥ * %
where Tor(F ,F ) is the unique nontrivial extension of Z/2Z by Tor(F ,F ).

Historical remark. The kernel of the homomorphism 6 : Z[PL] — A%F s called the
Bloch group. It was introduced by Spencer Bloch in his pioneering work [Bl 3]. The
relation of this group to K:i;]1 d(F) , and also the interpretation of elements of R,(C) as
functional equations for the Bloch—Wigner function together with a geometrical spectral
sequence for the computation of Hgts(CL2(C),R) appeared in [Bl1]. Influenced by
these ideas, J. Dupont and C.H. Sah and independently A.A. Suslin divided Z [PFIJ by
R,(F) and clarified the relation of HI(BF(2)) with Ha(GL,(F)) and K;nd(F) 1
recommend also to read the excellently written first part of [D]. The group By(C) has

a beautiful interpretation as a scissors congruence group of tetrahedra in the

Lobachevsky space.
Theorems of Matsumoto and Suslin claim that
H'(By(2) ® Q) 2 K3™(F)q
H(Bg(2)) & Ky(F) .
Let us define the complex B(3) ® Q as follows:

By(F)q 2 (B,F)® F*)Q 4, (1\31?*)Q (1.21)
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where the left group is placed in degree 1 and
6(x} = [x] ®x; &([x] ®y)=(1-x)AxAy.

(Here {x} is a generator in the group B,(F) and [x] is a generator in the group
B,(F)) .

The correctness of the definition is provided by the following theorem.
*
Theorem 1.3”. §,(R4(F)) =0 in By(F)®F modulo 6—torsion.

Now let us introduce the rank filtration on K _(F) . According to the stabilisation
theorem of A.A. Suslin [S 1]

H (GL_(F),I) = H_(GL(F),Z) (1.22)

Kn(F)Q = Prim H_(GL_(F),Q) .
Therefore
gives the canonical filtration on H (GL_(F),Q) and hence defines a filtration

K,(F)g ) Kl(ll)(F)Q p K](f)(p)Q o I (1.23)
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Set
K [] (Flg = 14:1(3)(}")0/1(1(1”U(F)Q . (1.24)

Theorem 1.14. There are canonical maps
¢ k[l(F)g— B (BR3) @ Q)

cy: K[ (Flg— B(Bg(3)2Q).

Remark. A. Suslin proved in [$ 1] that K.l (Fg= Kl:f(F)Q . More precisely he
proved that the homological multiplication

Hy(F') ... x By(F ) — H (F x..xF)— H_(GL_(F))
defines an isomorphism modulo (n — 1)! — torsion
M
k™(F) — H_(GL_(F))/H,(GL__,(F)).
In particular we have
k[(F)q 2 B¥(B(3) @)

Conjecture 1.15. ¢ and Cy in Theorem 1.14 are isomorphisms.
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9. Polylogarithms and the weight p motivic complexes I‘F(g) . In this section we give

an inductive definition of subgroups RP(F) /i [Pll?] and hence define for all p groups
8(F) := L[P5]/ A (F).
Set £1(F) = F* . Let us consider the homomorphisms
Z[pl] L FAF

§:{x}—(1—x)Ax, x¢€ P%,\O,l,m ; 8:{0},{1},{o}—0

and
z7[pt] - 2 _(F)®F, p>3;

0:{x}— {:v(}p_1 ®x, xe P%\O,l,m ; 0:{0},{1},{w} 0

where {I}p_l is the image of a generator {x} in H[P%‘] / Rp_l(F) . These formulae

reflect the differential equation (1.1) for Lip(z) . Then the subgroup .%p(F) is defined

as follows:

Let X be acurveover F and F(X) be the field of rational functions on X .

Consider an element

N
a= Y n{t}e E[PF{(X)J .

1=
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A rational function fi defines a map fi X — P%, . So for any point ue X

there is a specialisation

N
a(u) = z n.{f,(u)} e Z [PFl.] .
=1

Set 4 (F) := Ker(Z[PL] 24 3 (F)@F"), p>3,and
| A& (F) := Ker(Z[PL] 2 F AF).

Let us denote by xp(F) , where p > 2, the subgroup of H[P%,] , generated by
{0}, {»} and a(u) —a(u’) where X runs through all connected smooth curves over

F, u, u’ run through all points of X and a e Jp(F(X)) .

It is easy to prove by induction that {x}p + (- l)p{x_l} € ./{p(F(Pl)) . So
({x}, + (- 1P{x '} ) — ({0}, + (-1)P{w}) € R (F) and hence
{x}p + (- l)p{x_l}p € Rp(F) . Therefore 2- {1}p € Rp(F) for p even. We will see
below that {l}pE .%p(ﬂi) for p odd.

Lemma 1.16. §( £,(F)) =0 in &,_,(F) OF .

Proof. First of all let us prove by induction that for a variety X/F and an irreducible
codimension 1 subvariety XO < X over F there is a specialisation map 8p

2 (F(X)) — 2 (F(X,)) that is defined on generators by s,: {f} — {f|y } if
P pr 0 0 Xy

XOC Supp divf and sO{f} =0 in the opposite case. We need to check that

5o .%p(F(X))) C .%p(F(XO)) . Suppose that we have already proved this for 31)—1 .
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Then there is a homomorphism (we suppose that p >3 ; the case p=2 can be

considered analogously)

5o+ 2, 1(FX)) ®F(X) — 2,_ (F(X))) ® F(X))"

{f|x0}0g|x0 if XO C Supp div g U Supp div {
8p: {f} ®gr—>

0 other wise

and syod=6do0s; .S if Y—X is a curve over F(X); gl : X—Y;

j: Xy =—=X; Y(XO) is a fiber of Y over X:
Y(X,) — Y
X, <l X

=Y n{g}, e A(FX)Y)), §=5n, .
R ()]

~ ¥ ¥ Fv K
Then g e "‘p(F(Y(XO))) and so s(i;g —i;8) =iy8 —i;g € .%p(F(XO)) :
Lemma 1.16 follows immediately from sjof§=6o05,. m

Set

2,(F)q = LIPE1/ R,(F) . (1.24)
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Let us define a complex I'p(p) as follows
,(F) Lz (F)e F-2. 4, amesr?r —APF
where 2 (F) is placed in degree 1 and APF in degree p,
6({x} ®y; A.. A yp—k) ={x} ;®xAy; A A Ypk
for k > 2 and
6({x},®@y; A.. A yp_2) =(1-x)AxAy, A..A Yp2-
Then 42 =0 modulo 2—torsion.

Conjecture A: There is a canonical isomorphism

it [ Tg(n) @ 0] = ko] (Flq -

(1.25)

(1.26)

(1.27)

Let us denote by K;[lm}(F)Q the subspace of Kn(F)Q where the Adams

operations %, act by multiplication on L™ (see [So]).

Conjecture 1.17. The rank filtration (1.22) is opposite to the Adams ~—filtration after

®qQ.:

Kl(lp)(p)Q = ign—pK;Ei}(F)Q .
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It seems that this conjecture was first stated by A.A. Suslin (unpublished).

In the case of number fields 1{(1{1"‘}(1?)Q #0 only if n=2m-1. Recently J. Yang
[Y1] showed that an improvement of arguments of A. Borel [Bo 2] permits to prove
for number fields F different from Q that K](lp)(F)Q #0 only if n=2p+1. So
Conjecture 1.17 is valid for number fields F # Q.

Now let us give a motivation for the definition of the groups .2 (F) and the
complexes (1.25) and prove that Zagier’s conjecture on CF(n) for number fields is an

immediate consequence of (the refined) Conjecture A and Borel’s theorem.

k

2> B
Proposition 1.18. Set ,Bk=—1‘—,—3 , where B, are the Bernoulli numbers, then
2n—2

A4 ()= 4 (2)dargs—( ) B, - log"  )z| - 4, (2)) - dlog|z| (1.28a)
k=2

2n—1
4 () =— % (dagz—( ) B, -log" a| - 5, 1 \(z)) - dlog|g]
k=2

(1.28b)
2n-1
— By, * 10g™" |z - (log|z| - dlog [1—z| —log|1—z| - dlog |z])

r
Proof. Straightforward calculation using the identities —2 ﬁk ‘Br—k =1I" ﬂr + 2ﬁr—1 ,

k=1
r

- z (- ”kﬁk " B,_y =1 - B that follow easily from the generating function for the
k=1
2x

I
B, X Bx =e—2—x_l.
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There is a little bit more natural formula for the function
{ .%( Z) ’ n Odd
i

.%(z), n even

4.2 ()= 2 _ (@) diargz)— ¥ B log" '|z| 2 _(z)dlog|z]
k=2

ﬁﬁnlogn—1|z|(log|z|dlog[1—z| —log|1—=z| dlog|z|) .

(1.28c¢)
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For another formula for d.#(z) (without Bernoulli numbers on the right—hand
side) see [Z3].

Corollary 1.19. Let us define a homomorphism .2 : Q[Pé] — R setting
4 ({z}) := £(2) . Then the restriction of .% to the subgroup ﬂn(C)Q cQ [qu:] is

identically zero, so we have a correctly defined homomorphism
4 :3(C)—R.

The proof follows by induction from the formulae (1.28). More precisely, there are

homomorphisms Ak :
. 1 n-k—1.* *
Ak-Q[PF]"_’(%(F)QQS Fq)qu; k>3
1 —2.* 2.,.*
8,:Q[Pp] — 8" FQ®AF

Q

that are defined as the following compositions

8 6 ®id
1 * —1
A, : Q[Pp] —/— 2,_1(F)g®Fq L S 5

n—k—1.* *

(B(F)g®Fq " =) 8 Fg— (B(F)q @ ¥ Fg) @ F¢

6 5__,®id
1 * —
By:Q[PR] —2o 3 (F)g®Fg 21— ——

5.8id
2(F) ® sn"zF:i 2, A2F; ® s"2p

*

Q
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Let X be a curve over € and a(z) = Eni{fi(z)} € £ (€(X)) . Consider
#(a(z)) as a function on X . Then d #(a(z)) =0 . Indeed, in this case every term of
the right—hand side of (1.28) is zero because of Ak(a(z)) =0 and the induction

assumption if k> 2. S0 .#(a(z)) = const and hence 4 (a(zy) - a(z;))=0. u

When F is a number field Conjecture A should be refined by the assumption that

the composition

Ko (F)— 2 (F)— Ho:;(F,C) 2 (C)— Ho:;(F,C)R(m -1)

is just the Borel regulator.

Then it implies, of course, Zagier's conjecture on values of Dedekind zeta—functions

at integer points. .

Corollary 1.19 means that ﬂn(C) is just the subgroup of "functional equations"
for the nogarithm .#(z) . In the definition of 2 (F) we have an infinite number of
l1-variable functional equations. However [ believe that there exists an universal
many—variable functional equation such that 5Bn(F) is generated by its specialisations.
Let me state the precise conjecture in the cases n =2, 3 . Recall that the subgroups
R,(F) and R,(F) are generated respectively by 5—term relations and relations
R,(a,b,c) sees. 8 and 5. I claim R (F)C & (F) for n=2,3. The proof in the case
n=3 is as follows. We will see in § 4 — 5 that 6R3(a,b,c) =0 in
B2(F(a,b,c))@F(a,b,c)* . In fact, this is not so hard to prove directly. Consider
Ry(a,b,c) as a function in the variable 2, ie. a3(a,b,c)cn[p;,(a)] , b, c fixed.
Then by our definition Ra(a,b,c) —R4(L,b,c) e #o(F) - Further, considering R4(1,b,c)
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as a function in the variable b we get Rq(1,b,c) —~Rg(1,1,c) € Au(F) . Finally,
Ry(1,1,¢) — R4(1,1,m) € Ry(F) , but R3(1,1,m) = 7{w} C 5?3(1") . The case n=2 is

similar and even simpler.

Conjecture 1.20. R (F) = £ (F) for n=2,3.

Let F, be the subfield of all constants of F (i.e. of the elements that are

algebraic over the prime subfield of F) . There is the following rigidity conjecture of

Merkurjev—Suslin for K:iind(F) (see conjecture 4.10 in [MS]).

Conjecture 1.21. K;i,nd(Fo) = K;i,,nd(F) -

Proposition 1.22. If F0 is algebraically closed then Conjecture 1.20 for n=2 is
equivalent to Conjecture 1.21.

Proof.

a) (Conjecture 1.21) 3 (Conjecture 1.20). Let X be a curve over F . By Suslin’s
theorem [S3] .AZ(F(X))/R.Z(F(X))@QgK;nd(F(X))Q . So Conjecture 1.21
implies that for any a(z) = ¥ n,{f(z)} e A(F(X)) thereisa Be A(F) such

that a(z) - B € R,(F(X)) . Hence specialising we have afzy) — a(z)) € Ry(F) .

b}  The claim (Conjecture 1.20) 3 (Conjecture 1.21) is a special case of the following
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Proposition 1.23. Let F0 be algebraically closed. Then for n > 1
H'(Tp (n)q) 2 B\(Tln)g) -
0

m
Proof. Let a= ) n{x}e 4 (F).Set I :={feFy[t;, .t ]|
i=1
f(xy, ... x ) =0} . If af A£(F,) then dimSpecFy[t;,.. 8 J/T >1 . Let
m
(x‘l),'... ,xg) be a point of this variety defined over F, . Set a;= 2 ni{x?} . Choose
i=1
m

. 0 0 .
acurve Y (over F) containing (xl, ,xn) and (xl, ,xn) . Then 2 ni{ti} gives

i=1
an element of ¢ (F(Y)) (i, considered as functions on Y) . So we have

a—age€ Z (F) . -
Note that Proposition 1.23 and Conjecture A imply the following conjecture.

Conjecture 1.24. Let FO be algebraically closed, F0 =F,thenfor n>1
[n] - g[n]
K3n31(Fo) = Kgp14(F) -

This conjecture was stated by A.A. Beilinson (for the Adams filtration), who also
has shown that it follows from (his) standard conjectures about categories of motivic
sheaves and independently by D. Ramakrishnan in the case when F is algebraically
closed (see [R2]).

Remark. Let %p(F) C ﬁp(F) be the subgroup generated by {0} , {o} and
a(l) - a(0) , where ae .Ap(F(t)) . (the difference in the definition of %p(F) and
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xp(F) is that we use only P]}\ instead of all curves X/F ). Undoubtedly
%p(F) = %,(F) . However this is not known even for p =2, where it is equivalent to
the rigidity conjecture for K;nd(F) . In any case we can set 'kp(F) = E[Pé.] / 'kp(F)
and define motivic complexes T‘F(n) . It seems that these complexes are much more
convenient for the construction of a natural homomorphism from motivic cohomology to

algebraic K—theory (®4Q).

The mixed Tate Lie algebra L(Spec F} . For the convenience of the reader we
repeat in this section some basic definitions given in [Be 2], [B—D], see also [D1-2],
[BMS].

A mixed Tate category is a Tannakian category A& together with a fixed
invertible object Q(1) 4 Such that any simple object in 4 is isomorphic to
Q(m)l:= Q(l)?}{m for some m e 7 and

dim Hom(Q(0) , Q(m) o) =& (1.29)
Ext ', (Q(0) ,, Q(m) ,) =0 for m<0. (1.30)

An object F of K carries a canonical finite increasing filtration

.. C S'Si C ‘9:(i+1

1C... such that &:= 5, /5, | isisomorphic to a direct sum of
Q(—i) .8 . Let Vect "(Q) be the category o_f fmit_e dimensional vector spaces over Q.
Then there is a canonical fiber functor w_,: #— Vect (Q), w_,: F+r—s

® Hom(Q(—1i) A .?1) . Let us denote by L(.4) the Lie algebra of derivations of w: an

element ¢ € L( 4) is a natural endomorphism of « such that ¢ FOF =
1 2
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g05i Oidw(%) + idw(.?i) 95035 . Then L(.) is a graded pronilpotent Lie algebra
such that L(), =0 for i2> 0. Such a Lie algebra is called a mixed Tate Lie algebra.
For any mixed Tate Lie algebra L the category L—mod of finite dimensional graded
L-modules is a mixed Tate category with Q(1) := a trivial one dimensional L—module
placed in degree —1 . The fiber functor is just the forgetting of the L—module structure
functor. So for any mixed Tate category & the fiber functor w A defines the
equivalence of mixed Tate categories w ,: A—— L(4) . Any Tate functor
F: M — A4 (that is, by definition, an exact @  functor such that

F(Q(l).ll) = Q(l).lz) defines a morphism Fg:L(A)— L(4). For Fe ObA
set H'\y(F):=Ext (Q0) ,, F)=H(L(K), v ().

A.A. Beilinson conjectured that for any scheme S there exists a certain mixed
Tate category Ap(S) of (mixed) motivic Tate (perverse) Q—sheaves over 5 — see

[B1]. He also conjectured that in the case S =SpecF , where F is a field,
M (F) := Hr(Spec F) , the following holds:

Bxt g ()0 ¢y 80) () = K311 (g (131)

11. Conjecture A & Conjecture B in the Beilinson World.

Conjecture A’. The complex I‘F(n)Q represents R Hom(Q(0) "“I‘(F) , Q(n) .lI.(F))

in the derived category of 4(F) .

Let L(F) be the mixed Tate Lie algebra corresponding to the category J{T(F) .

Then (1.31) can be rewritten as
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Hi(L(F),Q(n)) = K2 (P)q (1.32)

2n4

In particular we have an isomorphism of @—vector spaces

L(F)!,; = BYL(F).QD) = Fy. (1.33)

-

= @ L(F)

Set L(F)g 5= @
<-2°%.7

; - Sometimes we will write L, L._, and so0 on, omitting F .
It is well-known that for a nilpotent Lie algebra g the space Hl(g) =g/[9,8] can be

interpreted as the space of generators of g. So the space of degree —n generators of

L <2 is isomorphic to L_ /[L 5—2’L S_2] —n ) where
n—2
[L<_2,L<_2] = 2 [L_k,L _( n—k)] . The Lie algebra L acts on
o k=2
L 5-2/ (L S_2,L 5—2] through its abelian quotient L/L <2- The action is described by
a map
Let

£ HL <D — 111(1,5_2)(“_1) ® (L/L¢_y)"
(1.34)

be the dual map.
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Conjecture B.

a)  For an arbitrary field F L(F),_, is a free graded pro—Lie algebra.
v

b) HI(L(F)S_g)_n z 3n(F)Q yn21.

*
¢) The map f (see 1.34) coincides with the differential

6: .ﬂn(F)Q — .,9]1_i(F)Q ® Fa in the complex I‘(n)Q , (n>2).

Proposition 1.25. Conjecture B implies Conjecture A.

Proof. Let us compute H*(L(F),Q(n)) using the graded version of the Hochschild—Serre
spectral sequence related to the ideal L(F)._, C L(F) . Then

*
Ell)’q = APFQ @ Hq’(L(F)S_z:Q(n - p)) .
We have: Hq(L(F) <_2,Q(n)) =0 for q> 2 because the Lie algebra L(F) R

free, B'(L(F)(_5Qm)) = Z;(F)q (m22), B(L(F)_pQ(m))=Q if m=0 and

0 in other cases. So

(0 if q=10
%
ApFQ@ 2 _(Flg if a=1, 0<p<n-2
p.a _
AFQ if q=0, p=n
0 if g=0, p#n

d{)’l : EII)’1 — EIIH-]"1 coincides with the differential in (1.26)
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* *

6:APF® 3 _ (F)g— Ap+1FQ ®7_ (Flg(P+1<n-2)
and df 20 EF 21— EDO with the one in (1.27)

*

§: An_zF; ® .%(F)Q/J(An_aFa ® B(F)g) — A"F¢

Other differentials in the spectral sequence are zero, so we get just the complex

I‘F(n)Q .

Now let us prove that under some natural assumptions Conjecture A implies

Conjecture B.

Let (A®(L' ,d) be the cochain complex of the Lie algebra L_ . It has a natural
) °
1 4]
grading: A.(L o) = nfl A.(L:)n . Suppose that there are homomorphisms
Py - .ﬂk(F)Q — L(F)"’_k , k21, such that the following diagrams are commutative

2(F)g _& 8_1(F)q GF;
Oy l l w1 Noy o k23 (1.35a)

L(F)!, 24— im"),

a(F) — 3 A%

vy l l oy Aoy (1.35b)

L(F)', —— AP,

Then we have a homomorphism of complexes
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%, : Tpk)g — (A*(L(F)"),8), (1.36)
W b ®y A Ay e () @ (v) A Aoy (v ) -

Now let (A.(L;_2),8’) be the cochain complex of the Lie algebra L_, . Then it
follows from (1.35) that 8’ o ¢y ( ‘zx(F)Q) =0.So0 ¢, gives the map

- 1

7 B(Flg— H(L(F)_pQ(K)) (1.37)
where Hl(L(F) <_2,02(k)) is the subspace of L(F)l"_k consisting of functionals with zero
restriction to  [L(F)._,,L(F),_,] N L(F)_ . It is isomorphic to the dual to the space '

of degree —k generators of the Lie algebra L(F),_, .

Proposition 1.26. Suppose that ¢ (see 1.36) is a quasiisomorphism of complexes. Then
L(F)_, is a free graded Lie algebra and Gk is an isomorphism.

* ~
Proof. +, : .ﬂl(F)Q = FQ — L(F)L1 and an easy induction shows that ker ¢, =0
for all k.

Let us prove using induction on the degree that H'(L <) =0 for i>2. Thereis

a filtration F* on the complex A.(L:):
k @, v kv o, v
F A (Ly)=A"L_;®A"(L,)

k ,o, v k. v )
grgh (Lg)=A"L_; ®(A (Ls_z),a').
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Let ae Ai(L;_2)_k , 122 and 8’a=0.Then Bae 5TA(L,);let by be the
image of fa in grlA.(L:) . Denote by 0(1:) the coboundary in the complex
grkgA.(L:) . Then 3(1)03. =0 . By the induction assumption there is an
v i—1,, v 2,0,V
a,el_;® Al (LS—2) such that 8(1)31 =b, . Therefore &a—a;)e F°A(L,).
Let b, be the image of &(a—a)) in grzA.(L:) . Then 8(2)b2 =0 and we can find
an a, e A2(L'_1) ® Ai_z(L;_2) such th?.t 8(2)a2 = b, ; consider a—a, —a, and so
on. Finally we get an element b, e A’(Lv_l) oLi(k—i) such that &b, =0 . The
quotient A.(L:)k/gbk(I‘F(k)Q) is an acyclic complex because ker ¢4 =0 and ¥ isa
quasiisomorphism. So there is an a, € A‘(L:)k such that
i,4V

x’ egrlA.(L:) and xe€ A.(L<_2) . Then @’x=a . So we have proved that
Hi(LS_2) =0 fori>2.

Now let us prove by induction that the homomorphism ¢, (see 1.37) is an

isomorphism. We have by definition that
1 *
H'(Lq,Q(k) = ker (B'(L¢_,, Q) 1!y ;) @ Fg)

) :

and it is easy to see that the image of @ lies in Hl(L <_9Q(k —1))®F which is just
. <

.%_I(F)Q ® FQ by the induction assumption (k> 3) . Therefore there is a

quasiisomorphism of complexes

B (F)q — @_I(F)QOF;L

A | |

(L _,00) —2— B _1(F)q ® F; S,
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So Ek is an isomorphism. Q.E.D.
We see that if we assume homomorphisms ¢, : ‘ﬂx(F)Q — (L(F)—k) providing
quasiisomorphisms ¢, PF(k)Q — (A.(L(F):),B) , and assume also Beilinson’s

conjecture (1.31) (together with the rank conjecture (1.17)), then Conjecture A 2
Conjecture B .

12. Some evidence for Conjectures A and B.

The motivic category #p(SpecF) and the Lie algebra L(F), are rather
mysterious objects, whose existence is not proved yet. However Beilinson’s conjecture
relating Ext’s in the category #F(Spec F) with algebraic K—theory together with a
symbolic description of the first pieces of K—groups gives a key for an understanding of
the structure of L(F), . For example, we have already seen before that L(F)w_1 should
be immorﬁhjc as a profinite Q—vector space to F;v . Further, assume that there is a

homomorphism ¢, : B2(F) — L(F)w_2 making the following diagram commutative

§ 2%

B2(F)Q — A FQ
|

P9 | id J (1.39)
|

L(F)’, - A2F3

(On the right-hand side of the bottom line stands A’L(F)', but it should be
*
isomorphic to A2FQ) The cohomology of the Bloch—Suslin complex (upper line in

(1.39)) is isomorphic to K;nd(F)Q and K,(F)q - Beilinson’s conjecture (see (1.31))



predicts that the bottom line should have the same cohomology. So it is natural to
assume that the vertical arrows induce an isomorphism on cohomologies. Then

¢y By(F)g— L(F)', must be an isomorphism!

In fact the last assumption (that the morphism of complexes (1.39) is a
quasiisomorphism) can be deduced from the Borel theorem and standard conjectures:
rigidity and existence of the Hodge realisation. Indeed, if F is a number field, then the

following diagram should be commutative

B (Bp(2)8Q)
RN

-~ I
~ 2
Py | 2 H {{Spec F,R(2)) = R

-
——
-

-—

(L(F),Q2) &

where rg is the Borel regulator and r 18 the regulator from the motivic cohomology
of SpecF ‘to the Deligne cohomology provided by the expected functor of the Hodge
realisation of our motivic category. By the Borel theorem s is injective, so %2 is also
incjective. By Suslin’s theorem both Q—vector spaces have the same dimension:
dim K:i;nd(F)Q =1, . So &2 is an isomorphism. Now the rigidity conjecture tells us
that ;2 should be an isomorphism for an arbitrary field F . Therefore ¥y is injective.

Further, we have
A2y, : AZF*/.ﬁ(Bz(F)Q) 3 APL(F)Y /8 0 py(By(F)g) -

The left hand side is isomorphic to K,(F)g - So HL(F) )= do ¢y(By(F)q) and

therefore @, 18 an isomorphism.
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Now let us consider weight 3 motivic complexes. Assume a homomorphism

2% .2;,’(1")——;L(F)w_3 making diagram (1.35a) commutative. There is a

homomorphism By(F) — Z(F) (see 8. 9), s0o we get a morphism of complexes
. v v *
(assuming L(F)_2 e B2(F)Q ) L(F)_l 2 Fq)

) * ] 3*
Bs(F) ——— B,(F)®F ——— A'F

3 l Il‘fb@‘»al J l Aa‘ﬁl

L(F) , —2— (P, eL(F)’, & A3L(F),

The bottom complex is just (A'(L(F).)3,8) — the part of grading 3 of the cochain
complex of the Lie algebra L(F), -

The main results of this paper give considerable evidence for the expected

isomorphisms
H'(BR(3) @ Q) —— H(A*(L(F),);) - (1.40)

More precisely, the same arguments as above show that in order to be convinced of
(1.40) it suffices to prove Conjecture 1.15. It is easy to see that (1.40) implies that

Vg : B3(F)Q — L(F)"_3 is an isomorphism.

In any case the complexes (A'(L(F).) p0) for n =23 look like the complexes
I'g(n) . But already the weight 4 part of the cochain complex of L(F), , that is

L(F)', 8L(F)’, ,

LF)', 9 e
(F—y AP,

(1.41)
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2 um) e alF), At , (1.41)

looks quite different from I'p(4) , because we have an extra term

A2L(F):_2 (4=2+2) that has no analog in T'p(4) . So assuming a homomorphism
.%(F)Q — L(F)"'_4 making (1.35a) commutative we get a homomorphism 54 of

[p(4) to the complex (1.41), but it can’t be an isomorphism. However, the following

important lemma shows that $4 : H3(I‘F(4) ®Q) — H3(A.(L(F).) 4) I8 an

. . . v

isomorphism (assuming L(F)_ « ﬁn(F)Q ~B n(F)Q for n=1,23).

Lemma 1.27.

f-eon-oon+ 8], (5] -oes-
3

+ {x}y @ (1)~ 7}y @ (1) + (5}, @ 125 | =6[{x}, A {3}y) =
= {7}, (1x) Ax~{x},@(1-y) Ay.
Proof. Direct calculation. -
More precisely, this lemma proves that HA’L(F),) C (L(F)! , @ L(F) ) if
we assume only 1,(1?)12r=u132(F)Q and @, : By(F) — L(F)", making (1.35a)

commutative (we need not assume that P3 is an isomorphism).

Corollary 1.28. Assume that for n=123 there exist isomorphisms
oy Bn(F)Q = L(F)"‘_3 making diagram (1.35) commutative. Then
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B Y(L(F),,Q(0)) & kex(B,(F)q @ An"zF; — AnF;)/{x}2 ®x A An_3F; . (1.42)

Proof. The left hand side is just the cohomology of the following complex

v n—3,v
L @A "L
® ;3\' n—jl-l\' ¢ LV—2 ® An_21'11 0 AnI"w—l :
AL ,® A" 'L
-2 —1
It remains to apply Lemma 1.27. -

Note that the right—hand side of (1.42) maps to H™ (Tp(n) ® Q) and this map

should be an isomorphism because of the rigidity conjecture: B2(F)Q = tfz?aP2(F)Q .

Consider the following element (p, {a} := ¢, {a},) :

-1
“’3[—{1—1}—{1—?} + %:—; —{1——‘_1}—{;” &>+

-
+ py{x} ® (1-y) — 3y} @ (1%) + 3 2} @ 1= (1.43)
—¢o{x} 4 vy{y}

that lies in L13®L119A2Lv_2 . By Lemma 1.27 its coboundary is zero, so there
should be an element ¢,(x,y) C L"_4 whose coboundary is (1.43). Let us assume that

such an element ¢ 4(x,y) exists.
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Now look at the weight 5 part of the cochain complex of L(F), :

L', oL’ L', ®A%L’
L' 0 __‘Z__, ® ;3" -1 _9, L',® A3L'_1 _a, A5L"_1
L',®L’ TS AN A

We would like to prove that the component 83 9! Lis —_ Li;; @ L"‘_2 of the

coboundary @ is an epimorphism. Unfortunately it is8 not quite clear how to construct
an element in L because L itself is a quite mysterious object. However, assuming
the existence of ¢,(x,y) we can find an element in LL; ® L"’_]L ® L"'_3 @ L_"__2 with zero
coboundary, whose component in LV_3 ® Liz is tp3{x} ® p,{y} . We expect that such
a cycle should bein &L _5)

Let’s do this. We assume a ¢, : Z,(F) — L(F ¥ | making (1.35a) commutative.
4 —~ & _

Consider the following element
85(x3) = By(xy) @3 + o, {Z} € 12 + gy {x} ® (1y) +
+ ¢4(y) @ (1-x) — 05 {x} ® 0 {y} — 93{y} ® py{x} .
Lemma 1.29. pg(x,y) =0.
Proof. Direct calculation using formula (1.43) for d¢,(x,y) . -
The Lia ® Liz component of —1/2(¢5(x.y) + ¢5(x,y_1)) is equal to

#3{x} @ p{y} because {y},+{y'},=0 in ByF)g and {y}3={r'}; in
By(F)q -
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We can pursue this idea further and "comstruct" by induction elements
¢, (x5) € L(F)v.—n (using the same assumptions as above) such that

(o {a} i=1-a2eF)

3¢n(IJ) = ¢n_1(x,y) @ ; + (pn_l g} ® _]1-___;;_ +
(144)
V]

n
+ Y 0¥ {x} e} + (1) Fp_ (v} @ {x})
k=1

for n odd; for n even we have the same formula, but the last term will be

(0M2 g {xh A gy ol

Proposition 1.30. Suppose that d¢ _,(x,y) is given by formula (1.44)n_1 . Then the
coboundary of the right hand side of (1.44)  is equal to 0.

Proof. Direct calculation using the formula
1=
Hop,_1(xy)® % +9 4 {;7} ® 1_.—; =+

4

Y 0o et + ()P R L () @p {x))
k=0

n-1
-1.
(for  odd the last term in this sum should be (~1) 2 ¢__ {x} Ap__ {¥}.
T -
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A topological consequence of Conj B. This section grew up in discussions with
A.A. Beilinson in May 1990. In the Beilinson World any morphism of schemes
f: X—— Y defines an exact "inverse image" function £ MT(Y) — MT(X) and 80
a morphism of corresponding Lie algebras L(Y)  —— L(X), . In particular, if X is a
variety over a field F ;ve have a canonical epimorphism L(X)_ -— L(Spec F)_ . Its
kernel is called the geometrical fundamental Lie algebra of X : LE®O™(X) .

For a generic point of X we have
0 — LE™(F(X)), — L(F(X)), — L(F), —— 0 .

The commutant of Lgeom(F(X)). lies in L(F(X))S_2 and so it should be a free
graded pro—Lie algebra. Now suppose that F = C . Let "XX be the category of "good"
unipotent variations of mixed Hodge—~Tate structures over a complex manifold X (see
[H-Z]). There is a canonical fiber functor wg : Hy — Vecta ,
W g He— 613 Hom(Q(—) 4, gr‘ivH) , where Q(-) o€ H#y is a constant variation

of the Tate structure of weight i . There should be a canonical Hodge realization functor

I 5 : Ap(X) — Hy commuting with these fiber functors:



— 65 —

8
' % ‘ Vecty
Q

d'efx /wag

So we get a morphism of the corresponding mixed Tate Lie algebras
LEZOM(X), —— LEP™(X), that should be an isomorphism in the Beilinson World.
More precisely, A.A. Beilinson proved that this follows from standard conjectures
including the Hodge conjecture — see a future version of [B-D].

On the other hand, L se,‘eom(){). is isomorphic to the Lie algebra of the maximal
Tate quotient of the pronilpotent completion of the classical fundamental group
rl(X,x) , XxEX.

More precisely, Hain and Zucker introduced the notion of "good" variation of a
mixed Hodge structure on an open manifold X (that is some special conditions at

infinity — see conditions 1.5 i), 1.5ii) in [H-Z]) and proved the following

Theorem 1.31 ([H-Z]). Fix any x € X . Then the monodromy representation functor

defines an equivalence of categories

"good" unipotent variations mixed Hodge theoretic representations
of mixed Hodge structures | ' Jof lim Q 11(X,x)/jt defined over @
def ined over ¢ T

( J is the kernel of the usual augmentation of the group ring)
On the other hand, let L ,, (¥), := mixed Tate Lie algebra corresponding to the
category of mixed Tate Q—Hodge structures (over a point * ). Then we have
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0— ngeom(x). — L ofX)g — L g(*¥)g —0

A point x € X defines a splitting L ‘”(*). — L %(X). of this exact sequence.
So a representation of L J‘(X) is just a mixed Hodge theoretic representation of
LEZO™(X) . Therefore the Hain—Zucker theorem implies that the universal enveloping

algebra of LESO™(X is isomorphic to the maximal Tate quotient of
8 N .

lim Qry(X,x)]/ =

Summarizing we see that L8®™(C(X)) o Should be isomorphic to the maximal
Tate quotient of the pronilpotent completion of the classical fundamental group of the
generic point of X(C) . (In fact to give a precise definition of the last object we should
work with the mixed Tate category of good unipotent variations of mixed Tate Hodge
structures over the generic point of X(C) and use Beilinson’s arithmetical fiber functor,
because we cannot choose a point x of the generic point of X(C) ). Combining all this

we see that in the Beilinson World Conjecture B implies

Conjecture 1.32. The commutant of the maximal Tate quotient of the pronilpotent
completion of the classical fundamental group of the generic point of an arbitrary

algebraic variety over € is free.

This conjecture can be considered as a geometric analog of the following

Bogomolov conjecture

Conjecture 1.33 (Bogomolov, 1986). The commutant of the maximal pro-p—quotient of
the Galois group of the geometric type field K containing a closed subfield is free as a

pro—p—group.
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The condition or the field K means that it has a realisation as a field of functions
on an algebraic variety over an algebraically closed field k, or is obtained as a
completion of such a field with respect to some valuation.

Conjecture 1.32 suggests that Conjecture B can be considered as a motivic version

of the following Schafarevich conjecture.

Conjecture 1.34 (Schafarevich) The commutant of Gal(§/Q) is a free profinite group.
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14. The residue homomorphism for the complexes I‘F(g) . Suppose that the field F

has a discrete valuation v with residue class field F_(= F) . The group of units will be
—* —
denoted by U, and the natural homomorphism U——F by u+—— u. An element =«

*
of F is prime if ord x=1 . Milnor constructed a canonical homomorphism (see

[M2],§2)
M M ,z
J.:K) (F)—K n—l(Fv) . (1.45)
It is defined uniquely by the following properties
i) av{:-r, Uy, .- ,un} = {ﬁz, ,En}
ii) 8v{u1, ’un} =0
where u,, ... ,u_ are (arbitrary) units and = is a prime element.
In this section we will construct a canonical homomorphism of complexes

8, : Pp(n) — r]} (n—1)[-1] (1.46)

such that the induced homomorphism
-1
8, : H'(Tp(n)) — B (Pp{n — 1))

coincides with (1.45).
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Let us adjoin to the ring A.E‘* a new symbol ¢ of degree 1 which anticommutes
—%
with the elements of F and satisfies the identity ¢ A £ = £ A (— 1) . We denote the
* — —
enlarged ring by A (F)[£] . It is a free A.(F*) — module with basis {1,{} .

The correspondence a’iu—-»if + u extends uniquely to a ring homomorphism
0_:A(F) — AS(F)[€] . Setting 0 (a)=wa)+¢ - O (a) with ¥a) ,

*
8 (a) e A'(F ) , we get the required homomorphism 4 . It obviously satisfies

conditions i), ii), and so does not depend on the choice of the prime element .

Now let us define a homomorphism s_: 7 [P%.,] — I [P;; ] as follows:
A4

{x} if x is a unit

s {x} = {

{0} in other cases .

Then it induces a homomorphism
8,0 Z(F) — Z(F)
(see s. 9).
Consider the homomorphism
d,: % (F)® AR kR Z(F)® A“‘k‘l(i‘:)

(1.47)
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O : {x}h @y A Ay — s {x} @8, (y A Ay ).

Lemma—definition. The homomorphisms 0v commute with the coboundary @ and

hence define a homomorphism of the complexes (1.46).
Proof. Let x=# - u , where u is a u—unit . We have the following special cases:

1) k=2, i=0, u=1.Then u=1+ #v and

9, 5({u}y ®; & o A Ty _p) = B, ((~ 1) AL+ Ay A Yy p) =0
On the other hand, 84 _({u},®...})=46({1},®..)=0.

2) k=2,i=0, u#1l or k>2, i=0 :is animmediate consequence of

UAD(yy A Ay g) = B(uryy Ao Ay o).

3) k=2,i>0.Then 9 ({x},®..)=0 and
8 5({x},®..) = 8 (Fur (1—7u) s ..)=0.

4) k>2,i#0.Then 9 ({x};®..)=0 and
0.6({x} ®..)=08({x},_;®xr..)=0.

5) i< 0. In this case we may use the relation 2({x}, + (- l)k{x_l}k) =0 in
%(F) . If we don't want to neglect 2—torsion, it is sufficient to check that

-1
—a —8. \\ _ -a . _ .1—7ra'u
O ((1—7"u) A (x "u))=0, a>0.Wehave 1 -7 "u=(-1) wTu_—i—,so
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8 ((1—72u) r (P) = -8 ((-1) - Pu) a (r 2)) =0
because
0 (-1 2 u ) (P )= E+(-T )4 (-at+T)=

—al fa(—)+a-truta-Ea(-u )+ (-1)=(-1).
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15. The motivic complexes I'(X;n) . a) Set I'(Spec F,n) := I'(n) .

b) Now let X be a smooth curve over F and X1 the set of all points of X . A point
x € X! defines a discrete valuation v, of the field F(X) . Denote by F(x) the residue
class field of v, - Let us define the motivic complex I'(X,n) as the simple complex

associated with the following bicomplex

L}y By (FG) —— i_&lAn_lF(x)*
Y

&9
- vy

B(FX) —— g_ (F(X))oF(X)" - — . A%R(x)" .

Conjecture 1.36. Hi(I‘(X,n) ®Q) = grl; K2n—i(x)Q . Of course, this conjecture has a
motivic reformulation. Namely, if J(T(X) is the category of mixed Tate sheaves over

X then the complex I'(X,n)®Q should represent Homy, ( )(Q(O)x, Q(n)y) , where
J‘I‘ x

D is the derived category.
Hp(X) 8

¢) Now let X be an arbitrary regular scheme, X' the set of all points of X of
codimension i, F(x) the field of functions corresponding to a point x € X! . We define
complexes I'(X;n) for n < 3 as follows:

I'(X;0): 7 placed in degree 0

rex): R —2 Ll F(x)
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r(xz2): Afr(x) —2 i_E*lF(x)* _9 L 1,1
5

T

By(F(X))

r(x;3): ASRx)T —4 J_&IHF(;:)* _9, L&zF(x)*_!’_-, L s
X X X
a] 5
t 9
B,(F(X))®F(X) ——-'i_&lBg(F(X))'
o]

B, (F(X))

where B,(F(X)) is placed in degree 1, coboundaries have degree +1, and TI'(X;3) is the
total complex associated with the bicomplex defined above.
The coboundary @ is defined as follows. Let x € X* and v (y),....v_(y) be all

k+1

discrete valuations of F(x) over a point y € X* ' °, y € x. Then the homomorphism of

complexes

9: Bp(xy(n) — L |1 Bpy(a-) 1]

i8 defined setting & = d_ . The definition of other coboundaries & is a little bit
X 1 "x

more complicated. Let x € x¥ and v1(¥),-,v,(¥) be all discrete valuations of the
field F(x) over a point y € Xk+1, y €x. Then F(x],:= E‘Ixiv.(y) D F(y) . (Note
i

that if x is nonsingular at the point y, then F{x). = F(y) and m = 1.) Let us define

a homomorphism of complexes
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o BF(X)(J) — BF(y)(J—l) [-1]
as the following composition (j<2):

\A N x)./F
Bp(x)(d) -—-ﬂ—'lfl Bp‘(;ji(j—l)[_l] Flx)i/ ) By (FD (1] (148)

A priori the highly nontrivial feature here is the transfer homomorphism in the
second arrow. However in our situation we need only the classical transfer

* *
NK [k :K —— k for finite extensions K D k . Now we define

9: By (i) __’yé;ll"*‘l Bpyy(-1[-1]

as 9:=] | 9, . Note that for the upper line in the bicomplex [(X;3) & coincides
yEX
with 82 in the Gersten resolution and so is equal to 0 .

Proposition 1.37. H'(I'(X;n) @ Q) = gr Kppi(X)q for n<2.

Proof. This is trivial for n =0, well-known for n=1 and follows easily from

Suslin’s theorem and properties of the Gersten resolution for n=2 .

Conjecture 1.38. H (I‘(X 3)8eQ) = gr3 6—1(X)Q

Another construction of weight 2 motivic complexes was given by S. Lichtenbaum.
In fact he defines an integral version of motivic complexes (that is quite important!), but

his definition uses essentially algebraic K—theory and is more complicated.
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d) Now it is clear that the motivic complexes I'(X;n) for an arbitrary regular
scheme X should be defined as the simple complex associated with the following
bicomplex

Tpx)@) _3.x2x1 Lp()(a-1) [-1] 9 .29 + @ 2 T (1)

where 8:= ©_ axy and 4, y is defined as the composition (1.48) where the
yEx ) ]

B—complexes are replaced by the I'-complexes. The only difficulty that remains is to
show the existence of the tramsfer. Note that in order to define the motivic complex
I'(X;n) as an object in the derived category it is sufficient to defire the transfer as a
morphism in the derived category. This can be done assuming the homotopy invariance
of I‘(All;,;n) (see below) in complete analogy with the Bass—Tate definition of the
transfer for KI!,I(F) .

More precisely, let F =k(t); vm(f) = —degf, f€k(t). The other discrete
valuations v of F, trivial on k, are in 1-1 correspondence with the monic irreducible
polynomials  x_€k[t]. We have k(v) =k[t] /(z-v) . There is the canonical

homomorphism of complexes T')(n) — I'p(n) .

Conjecture 1.39. (The homotopy invariance.)
(3,)
Pp(n)/Ty(0) —— Jr?_l_ I‘k(v)(n—l) [-1]

i8 a quasi—isomorphism.
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Assuming this conjecture we can define the following morphism in the derived

category
Tp(n)/T(n)
1L e, 2,
J}_L Fk(v ) (n-1) [-1] Iy (vg) (n~1) [-1]=Ty (n-1) [-1]

It seems that it is possible to prove using ideas of [B—T] and [Ka] that the so
defined transfer depends only on the extension L Jk.

Note that to construct a homomorphism from Hil‘(x;n) ®Q to grg K2n—i(x) ®qQ
it is sufficient to construct a map H’I‘F(n) ®qQ —agrg K2n—i(F)Q that commutes

with the residue homomorphism and to use the Gersten resolution.
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16. The groups 2 (F) and the scissors congruence groups of pairs of oriented

polyhedra in P;l. . In this section we define groups B I’I(F) that hypothetically should be
isomorphic to the groups 2 Il(F) . More precisely, we define a map

1
L : II[PF] — An(F)
where An(F) is the scissors congruence group of pairs of oriented polyhedra in P;'.
([BGSV], see also [BMSch]) and set B!(F):= the image of £ (Z[Pf]) in the

quotient A _(F)/P (F) , where P _(F) is the subgroup of "prisms" (see below). We

state a conjecture describing the structure of the groups A (F).

First of all let us recall the definition of groups A _(F) (see [BGSV], § 2). Call an
n—simplex a family of n+1 hyperplanes L= (Ly,..,L)) in Pp. Say that an
n—simplex is non—degenerate if the hyperplanes are in general position. Call a face of an
n—simplex any non—empty intersection of hyperplanes from L. Call a pair of

n—simplices (L,M) admissible, if L and M have no common faces.

Define the group A_(F) as the group with generators (L;M), where (L,M) runs
through all admissible pairs of simplices, and the following relations

(A1) If one of the simplices L or M is degenerate, then (L;M) =0
(A2) Skew symmetry. For every permutation
o: {0,1,..,0} — {0,1,....,n}

(oL;M) = (LioM) = (1)l L;m)
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where oL = (La(O)""’La(n)) , |o| is the parity of o .

(A3) Additivity in L. For every family of hyperplanes (LO"“’Ln +1) and any
n—simplex M such that all pairs (f.j,M) are admissible

n+1 .
Y 1My =0

j=0

-5 .
where L’ = (LO""’Lj""’Ln+1) .

Additivity in M. For every family (MO""'Mn+1) and any simplex L such
that all (L,MJ) are admissible

n+1 S
Y (-1PuM) =0 .
j=0

(A4) Projective invariance. For every g € PGL +1(F)
(gL:gM) = (L;M) .

In the case F = ( there is a canonical holomorphic differential form wy, with
logarithmic singularities on the hyperplanes Li I x;,=0isa homogeneous equation of
L, then wy =dlog(x;/xy) A...A dlog(x o/%p) - Let 8, be an n—cycle representing a
generator of the group H n(PE,U M j) . Then



—-79 —

a ll(I..,M) =1 ¢
h

is a multivalued analytic function — Aomoto’s polylogarithm ([A]). This integral

depends on the choice of AM but does not change under continuous deformation.

*
There is a canonical isomorphism r : AI(F) —F

r:(LgL;;MgM;) ——— (L, L My M, ) .

Now let us define the subgroup of "prisms" P _(F). Let (L’;M’)C PY and
(L",M") C PY"  be two admissible pairs of non—degenerate simplices, (LO,...,Ln) a
non—degenerate simplex in. P®, n=n’ + n". Identify the affine space P"\L, with
the product of the affine spaces (P® \L{) x (P""\Ly) . Then the simplices M’, M"
define the prism M’ x M" in P™\L, and bence in P" (see fig. 1.13 for the case
n’ =n"=1). A cutting of M’ x M" into simplices, M’ x M" =‘UAj , defines the
element ¥(L,A j) € A . (It does not depend on the choice of cutting.) Let us denote by
P (F) the subgroup of A (F) generated by all prisms for all n” 21, n"21,

n’ +n"=n.

L A

o = N \\\ -
~ - -
N ~
\ L|0 \\\\ L
\\ \ \\ 0
v
H;_ o= = - \ L ‘ " \\
\ \ \
\ b O
" Al \ '& ~ s\\ \
(g P 0‘"“" - \ \\\
L " ' : \ \‘\
L M 4 " \ Ly N
1 : vl t )
Ly M, My Lo i
L
' L
fig. 1.13 - 1.14 4
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Let x;,..x  be coordinates in the affine space Pn\L0 such that L, is the
hyperplane X, = 0. Denote the hyperplanes 0= l—x1 ; l—xl =X ;
X = XgiooiXp 3 =X x, =ttE€ F*) by MyM,, MM (1), Set
(L;M(t)) = (LO,...,Ln;MO,...,Mn(t)) . Then (see fig. 1.14)

£,({th) = (LM®) , £,({0}) =£,({=}) =0 .

B!(F) := Image(£_ : I [Pg] —— A _(F)/P_(F)) .

Remark a (L,M(t)) =Li (t) .
Conjecture 1.40 The groups BI’I(F) and 2 (F) are canonically isomorphic.

More precisely, we conjecture that R (F) = Ker(2 :Q [P%,] —
A (F)/P(F) Q).

*
Note that Bj(F)= .2,(F)=B (F)=F . It was proved in [BVGS] that
B (F) = By(F) .

@
It was conjectured in [BSGV], see also [BMSch] that A(F)Q = @ An(F)Q ,
n=0

(AD = I} , can be equipped with the structure of a commutative graded algebra such
that An(F)Q = U(L(F).)V_ o (the dual to the subspace of degree —n elements in the
universal enveloping algebra of the Lie algebra L(F).) This conjecture and Conjectures
B and 1.40 imply the following striking pure geometrical conjecture describing the

structure of the scissors congruence group of pairs of oriented polyhedra in P?, .
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Conjecture 1.41 There is an isomorphism of Q—vector spaces

k
A_(F)p = ® S
T ocka, g 20

i 1+ A +1m=n—k

* / /
Fq @Bil(F)Q ®..0 Bim(F)Q :

Indeed, it is well-known that the universal enveloping algebra of the free Lie
algebra generated by a vector space V is isomorphic to the tensor algebra

0]
V)= @ v

n=0

The multiplication 4 : An, x An" — An/ 4" should be defined by the formula
p((L7;M7),(L";M") = E(L,Aj) — see the definition of "prisms" above. So by definition
@ ,u(An; x An.,) =P_. Therefore A (F)/P_(F)®Q should be isomorphic to

n’+n"=n
?

L(F)! . In particular A4(F)/P,(F) = B4(F),
?
A F)/P(F)@Q= Bi(F)Q ®A2B2(F)Q. Note that by definition B;(F)Q is a

subgroup in A, (F)/P,(F)®Q and the quotient should be canonically isomorphic to
A2B2(F)Q . The existence of the canonical embedding
A2B2(F)Q = A,(F)/P(F) ® @ is a very intriguing problem.

Note that A _(F)/p (F)+B’ (F) ®Q#0 for n>d4. Geometrically this means
n n

that we cannot cut a generic pair of simplices in PE , n24,to a sum of prisms and

polylogarithmic simplices (L,M(t)). The reason is quite typical: 4=2+2. More
[11]

precisely, set t(F)—n =A_(F)/p (F) ® Q. Then r(F). = @ I:(F)_11 is equipped
n n=1

with the structure of a graded Lie coalgebra. The coboundary & : L(F) « — Azf(F).
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is induced by the comultiplication A:Ay— A @A, . For example for n=4 we
ol (F)_g®

9 Q and soon. Let «: A —of be the canonical
Aﬁ(F) s

have §: L(F)_, —

projection. Then
§(x B/(F)) CxB!_,(F)®F C LE)! (gn) @ F; :

In particular, all f(F)"_k A f(F)l'_k2 — components of &(x Bl,l(F)) are zero if
1 .

k; >1, ky>1. But it is easy to construct an element a € A (F) such that the

A no ®Ay — component of A(a) has a non—zero projection onto

£’ (n-2) * £ - (For example, for n=4 the last group is isomorphic to

A%By(F)g) -

Xy,

Ys Uy

fig. 1.15, 1.16

Let me state another conjecture describing the @Q-—vector spaces L(F)"’_Il
underlying the Lie coalgebra L(F): . Let ﬂ" o(F) be the quotient of the free abelian
group C, (Pi},—l) generated by all possible configurations of 2n points “‘0""’9’211—1)
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in P;‘"I by the following relations
RO) (The skew—symmetry.) (£g,....84 ;)= (—1)|"I (f'a(o)"“’f‘a(h—l)) .
R1) (P'O”“’F'2n—1) is zero if there are 2k+2 points in a k—dimensional plane
among these points.

R2) (The 2n+1—term relation.) For any 2n+1 points (Z,....8, ) in P;',*l

2n

Y (D)'(Lgroiyprratg) =0
i=0

Conjecture 1.42 L(F)i11 ® Q is a quotient of 7~ n(F)Q .
Remark. Relation R1) means that all semistable configurations are zero.

Note that in the case n=3 we have a mysterious relation R3) and its higher
analogies is the main problem that remains.

We  believe that there should be a canonical homomorphism
oy H[P%,] —_ L(F)in. Let wus describe the canonical homomorphism
¢, Il[Pé.] — f o(F) that should make the following diagram commutative ( p is
the canonical projection predicted by Conjecture 1.42.)

¥ fngF)
I[Pl L p

~
~
o

0p T~
! LR,

Let xy,...x,_; be points in generic positionin PR and y, € Xx_ 7 1 (theline
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generated by x, and X0 indices modulo n; see fig. 1.15, 1.16 for the cases
n=43) Nowlet z= 1-(372373...5'11_1 Ixo,xl,yo,yl) (the cross—ratio of the configuration
of 4 points on P%‘ obtained by the projection with center at the (n—3)-plane

Yo--¥p_1) - Set

¢Il : {z} — (XO’YO’XI'YI""'xn—l’yn—l)

Lemma 1.43

I(Y2---Yn_1 | xO*xl’yO’yl) = r(Y3---Yn_1Y0 | xl,xz,yl,yz)

Proof. Projection of the configuration (x ,l,...,yn_l) with center at the point

Y,—1 &ives a similar configuration in P?fz . So we can assume n=3. In this case

project the picture onto the line X, x, — see fig. 1.16. -
This lemma shows the correctness of the definition.
The last conjecture tells us that there should be a canonical homomorphism
py: ¥ o(F) — AL(F)/P_(F)
such that
Pu(Xg:YgrXp_1p¥p_q) = *(L,M(z))

where z = r(y2y3“'yn—1 |x0,x1,y0,y1) .
Let me emphasize that elements of #(F) are represented by configurations of 2n
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e n-—1
points 1n PF

, while elements of A _(F) are pairs of simplices in P4, and hence
produce configurations of 2n+2 points in P;l.. It is interesting that the best

construction that I know of the element (L,M(z)) € An(F) uses the configuration

(XO}YO:" ¢ rxn)yn) :
(L,M(2)) = (xg:¥ ¥ 53 g_g 3% %o+ % ¥ )

Remark 144 The configuration (xO,yO,...,xn_l,yn_l) was independently
considered by J. Dupont and S.M. Sah in their study of the homology of GL 0 (I know
this thanks to the beautiful lecture of J. Dupont given at the "Polylogarithmic
conference" at the M.I.T., 1990) and by I.M. Gelfand and M.I. Graev in their theory of
generic hypergeometric functions. (Note that hypergeometric functions also live on
configurations of points in CP" ; however it seems that they still live rather separately
from polylogarithms: the only connection that I know is the observation of I.M. Gelfand

that Aomoto polylogarithms are very special examples of hypergeometric functions.)

Conjecture 1.42 implies also that there should be an absolutely canonical R—valued
function on configurations of 2n points in Pg—l (expected to be real-analytic on
stable configurations and continuous on semistable ones.) The reason is that there should
be a canonical realisation functor from the category of mixed motivic Tate sheaves over
Spec C to the category of mixed Tate R—Hodge structures J?R. Therefore there
should be a canonical homomorphism of the corresponding mixed Tate Lie coalgebras
L(dl)v — I( Je’R)' . A.A. Beilinson and P. Deligne constructed a canonical

homomorphism £_:L(J/¥ Y — 3 R.Sothe composition
n R/—n
v v
fn(C) — L(d:)_11 — L( ‘%’R)—n —R (*)

gives a canonical function on configurations of 2n points in PE_I .
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Recall the definition of £ :L(J#g)’ — R (see, for example, [D], § 2). By
definition JB‘R is the tannakian category over R of mixed R—Hodge structures such
that hP"9#0 only for p=q. An object HC Hp is a graded C—vector space
Ho=©H p together with a real structure Hp on @ Hp such that the weight filtration

=@ H
W_zp edp P

is defined over R, ie (Hpn W_’zp)@d:= W-Zp' The Hodge filtration

FP :=£? H p is opposite to the weight filtration. The real structure HR induces a
2P

real structure on grz:2 pHﬂZ = Hp. We have 2 different real structures on

Hg = @H) : the structure Hp and the structure gr Hp . Let X C GL(H) be the
subgroup of all transformations that preserve the weight filtration and induce the

identity on graded quotients. Then there is a uniquely defined n € X/X(R) such that

Hp = n°(erR) .

Set

Then bb=1, N=-N, N =XN, where Ny has degree k . We have
N, (B'eE?) =N, (8h)e1 ,+1  eN (a?) .
1k2 1 H H 2

Now let us recall the following construction of L{ J(R)_v__n (see § 2 of [BGSV] or
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ch. 2 of [BMS]). Let HE€ HKp, W H=¢, Wy H=H. Say that H is framed if
the isomorphisms i_ : R(-n) —— grgnH y g grgH —— R(0) are fixed. Consider
the set of all such framed mixed R—Hodge structures. Introduce on this set the coarsest
equivalence relation for which " is equivalent to H? if there is a morphism of mixed
Hodge structures H; — H, compatible with frames. Denote by J?n the set of

equivalence classes. One may introduce on ¥~ a structure of an abelian group in

complete analogy with the Baer sum on Ext groups. The multiplication
o ‘;{”k0 J‘L_"' J‘kH’.

is induced by the tensor product of Hodge structures. It is commutative. Then we have

the canonical isomorphism
L(Hp) =%,/ © u(K &K,
R/—n 2yt f=n k £
Lemma-—Definition. Let H € 7% . Then the "matrix coefficient"

iGN« R(=n) — R(0)

is a multiplication on £(J¥) . It is equal to zero on . ? w(H¥, ® H,) and hence
+2=n

defines the homomorphism
v
f’n s I J?R)_n —R.

Note that according to a theorem of A.A. Beilinson L(H¥p) is a free graded Lie

algebra over R . Its space of degree —n generators is isomorphic to €/(27i)"R . The
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homomorphism £ gives an element of L( H# ) - These elements generate the Lie
algebra L( ‘”R) . It is interesting that the canonical polylogarithmic function (*) on
configurations of 2n points in PE_I , which coincides with the Bloch—Wigner function
for n=2, can be expressed by the classical trilogarithm .2’3(Z) for n=3 (this is one of
the main results of this paper) and cannot be expressed by the classical n—logarithmic
< (z) for n24 (because of the reasons that we discussed above). However, I suppose

that the following conjecture is valid.

Conjecture 1.45. Let l[Czn(P?\—l)] be the free abelian group generated by stable
configurations (0,0,...,9,211_1) of 2n points in P]I_;l,_1 . Then there exists a canonical

homomorphism
-1 1
P :I[C, (Pp )] — I[Pg]

(the generalised cross—ratio of 2n points in pt1 ) such that

a) for a generic configuration (&0,...,1211) of 2n+1 points in P?\_l
2n ]
P () (-1)'(€gslypnnly)) C 2 (F)
i=0
b) for a generic configuration (mo,...,m2n) of 2n+1 points in Pi},
2n . X
P( T (-1)i(m, | mg,..mmy ) € 2 _(F)

i=0

¢) for a special configuration (XO’yO’""xn—l ,yn_l) (see above)
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Pn((XOlYD:"',xn_lvyn_l)) = {I(Y2)Y37'"1yn_1 I xO:xPYO!yl)} *

Nowlet F=C x€P¢ ' and g €GL (C). Then part a) of Conjecture 1.45 just

means that the function

2 (P_(8g%Bgy_X))

is 3 measurable (2n—1)-cocycle of GL_(C) . So it defines a class in H?:;l(GL 2(0) -

It can be proved that part c) of Conjecture 1.45 guarantees that this class coincides with
the Borel class. Moreover, it can be shown that part b) of the conjecture provides us
with an explicit construction of the cocycle representing the Borel class in
Hzfgl(GLN(d'.)) forall N > n (see the forthcoming paper). So Conjecture 1.45 implies
Zagier’s conjecture, and in fact it is a way how to prove it.

Finally, I am sure that the mysterious subgroup # (F) coincides with the image of the

(2n+1)-term relations a) and b) in Conjecture 1.45 under the homomorphism P_ .

Zagier’s conjecture about (p(n) follows immediately from Conjecture 1.45. In fact this

conjecture is stronger than Zagier’s.
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§ 2 The value of the Dedekind zeta—function at the point § = 2.

1. The formulation of the theorem. Let F be an arbitrary algebraic number field, dp
the discriminant of F , I and I, the numbers of real and complex places

(ry+2,=[F:Q]), o the set of all possible embeddings F =<— € numbered in

such a way that ar1+k-= 0r1+r2+k .

Recall that the Bloch—Suslin complex is defined as follows:

Z[Pg\0,1,0] /Ry(F) %2, A%

*

[x] — (1-x)AXx

| Theorem 2.1. Let CF(s) be the Dedekind zeta—function of F . Then there exist
p e ¥y, € Kerdy C Z[PE\0,1,0]

such that

2(r;+r,) .
CF(z) =q-x ) ldplj » det | D2(0r1+j (yl))l

where 1<1i,j< L, and q is some rational number.

We give a proof using only one hard result — the Borel theorem. The proof of the

analogous result about (p(3) follows the same scheme, but it is more complicated.
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Recall that Theorem 2.1 was proved by D. Zagier [Z] using different methods;
another proof follows immediately from results of A. Borel [Bl 1-2], S. Bloch [BI1]
and A. Suslin [S 3].

2. The Borel theorems. Set R(n)= (2x)"RCC and Xp:= ZlHom(F’C) . Let us
define the Borel regulator '

1, Ko 1(F)—Xp @ R(m -1). (2.2)

The Hurewicz map gives a canonical homomorphism
Koo ((F) = my_(BGL(F)Y) — B, (BGL(F)*,I) =H, _(GL(F),1). (23)
For every embedding o : F <— { we have a homomorphism
H, _,(GL(F)Z) — H,__,(GL(C),I). (2.4)

AThere is a canonical pairing

222 Y(GL(C),R(m - 1)) x B, (GL(€),Z) =225 R(m — 1) (2.5)

, 2m-1 , : :

Let us define a canonical element

by, € H 2P {GL(€),R(m - 1)) C B¥™(GL(€),R(m - 1)) .

2m-1

Recall that (cf. [Bo 1])
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(GL(€).R) ¥ H,_ (U,R)

cts top

where Ht op(U,R) is the cohomology of the infinite unitary group, considered as a

topological space. Further,

) Op(U 1) =8 (5! % 5% x $% x 1) = Agfuy g, )

where u; denotes the class of the sphere st.

Combining the above isomorphisms we get an isomorphism

cts(GL(C) R) — A”(ul,n ..)®R. (2.6)

4
Set by =27 ¢ (u2m ;) and

b (2x)21 . p!

2m-1 € cts(GL(c) R(m —1)).

om—1 "

So combining this with (2.3) — (2.5) we get

Ky ((F)— Ko () — Xp®R(m —1).

@
Hom (F,C)

It is known that if A e Hgont(GL(C),R) and ¢ denotes the involution defined

by complex conjugation ¢, then in (2.6)

¢ @A) = (- 1)%(c Ay,
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2m—1

where ¢ acts alsoon S C €™ . Note, that

*

m
N il LR
So we see that

d
r Ky (F)— [Xp®Rm-1)]" =R ™

where

n,+1,, if m is odd
d =
m Iy if m is even

and on the right—hand side stands the subspace of invariants of the action of c.
In fact, we construct a homomorphism
t{®): Prim H,__(GL (F),l)— [X;@R(m-1)]" .
For any lattice A of (Xp ® R(m — 1))+ define its (co)volume vol A by
det(A) = vol(A) - det [Xp ® R(m—1)] 1.
Theorem 2.2 (Borel [Bo 1], [Bo 2]). For every m >2 and sufficiently large n

a) Im ng:ln) is a lattice in (Xp ® R(m — 1))+
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b) R_:=vol(mr{®)~qQ - lim (s-1+m)_dmcF(s).

s—=1—m

x *
Here a~Q b means that a = kb for some K¢ Q .

According to (§ 1) we can assume n = 2m —1 . However, we will not use this

result.

Remark 2.3. The functional equation for ( F(:a) shows that

x  (rt2ry)m—d

~Q - m ., 4 “i.R
SOLT IR |dg | o
3. The Gragsmannian complex and the Bloch—Suslin complex. Let us say that n

vectors in an m—dimensional vector space are in generic position, if every k <m of
them generate a k—dimensional subspace. The notion of n points in P™ in generic

position is defined in a similar way.
Definition 2.4. C_(n) (resp. Cm(Pi;l‘)) is the free abelian group, generated by
configurations (P,O, ..k 1) of m vectors in an n—dimensional vector space V,

over a field F (resp. m points in P%) in generic position.

Let us define the Grassmannian complex Cp(2) as follows (see [S 1], [BMS]
and [GGL])

ey -Lic,2 Loy
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m
d: (2 o slp)— ) (1) (R4 5l ) -
i=0
Let us define a diagram
c,(2) —4— c.(2)
4 3
(2) (2)
J i 5 i2) .
1 2 2. *
C4(Pg) — -"= 2 A°F

Let we det V; be a volume form in V2 . Set
A(£1,£2) =< 0k, A £,>, P’i eV,.
Put
2).
12 (2185 — B(2G.2y) A AL L)) -
(2.7)
A(P,O,ﬂ.l) A A(ﬂl,lz) + A(R.O,P.z) A A(P,l,f.z) .

Lemma 2.5. i[()z)(lo,ﬂ.l,ﬂz) does not depend on w .

Proof. An easy direct calculation.
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Lemma 2.6. Modulo 2—torsion

AEgL,) - A(LyL,) \ A(LgLy) - A(L},L,)
AEyly) * A(R1,8)  A(RgL,) * AL ,L,)

§2 od: (g, .. Lg)— (2.8)

Proof. Direct calculation (a Aa =0 modulo 2—torsion) .
Corollary 2.7. ft()z) o d(f.o, ,13) does not depend on the "length" of the vectors f,i:
2
{2 0 d[(Ly, - by - 1bg) = (Eg, e ALy, e ,E5)] =0,
*
where Ae F and 0<i<3.
The proof follows immediately from (2.8). So [(()2) od defines a homomorphism
5,:C,(PL)y— A%F
2" 74V F )

Every 4—tuple of distinct points IO’ ,I3 on P%, is PGL2(F)—equiva.lent to

(0,0,1,z) , where

__Altpty) - Aty ty)
A(LgLy) - A(L},L,)

is the cross—ratio of (¥, ... ,€5) and it does not depend on the lifting of the points T,

to vectors P‘i .

Further, the identity
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A(R,L,) - A(2,,8,) —A(L,8,) - A(R),8,) = A(R(,L,) - A(L,,L,)
shows that &, : (0,m,1,2) — (1-2)Az.
Set
6, : Cg(Pp) — C,4(Pg)

~

4
by : (Ty, o Ly) —> 2 (- )Ty - T o Ey) -
i=0

Lemma 2.8. §,(65(E, ... ,£4)) = 0.
Proof. Consider the following commutative diagram

c(2) -4, 2) 2 cy(2)

(2) (2) (2)
l fs f . f5
)
1 2 1 2 2.*
CS(PF) — C4(PF) —=— A‘F
where 1-%2) is the projectivisation and =o. -

So we have constructed a homomorphism of complexes
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cs(2) 4o ¢, (2) —9o cy(2)
l 1 f(2) J ((2) 29)
]

2 2*
0 —— By(F) —=— A’F

4. The 5—term functional equation for the Bloch—Wigner function.
Lemma 2.9. dDy(z) = —log|1—z| d argz + log|z| - d arg(l —2z).
Proof.
dD,y(z) = Im [d(Liy(z) + log(1l —2) - log|z|)]
= Im[—log(1 —z) d log z + log(1 —z) d log |z| + log |z| d log(1 —z)]
=—log |1—2z| dargz+log |z| darg(l—z).
Proposition 2.10. Let F =, then
D2(62(x0, e Xy)) =0

Proof. It follows from Lemmas 2.8 and 2.9 that

d(D2(62(10, - Xg))) =0
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where D2(62(x0, .. y%4)) 18 considered as a function on the manifold of configurations
of 5 points in Pdll . So D2(62(xo, ,x4)) = const. Recall that D2(z) is continuous on
Pdlj and D,(0) = Dy(w) = Dy(1) =0 . So the specialisation to the configuration

(x,x,y,y,z) shows that this constant is equal to zero. -

5. Explicit formula for the regulator r§2) : Hy(GLy(€)R) — R . Let &_(n) be the
free abelian group generated by the m—tuples of vectors in generic position in an
n—dimensional vector space. Let us define a differential d: ﬁm(n)-——oﬁm_l(n)

setting

m—1

d:(Rg, Ry () Y (- 1) (RN RN SN (2.10)
i=0

Lemma 2.11. The following complex Cy(n)
48,0 L 8, m) L8 ()

(ﬁi(n) placed in degree i—1) is acyclic in degree > 0.

N :

Proof ([Bl 1]). Let 2 ni(ﬂ,((]l), ,l’.l((l)) be a cycle in Cy(n) . Choose a vector v in
i=1 .

a generic position with ngl) . Then

N - . N . -
a(y nveld el =¥ @), eldy. g
i=1 i=1
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Note that ﬁl(n)/dﬁz(n)=ﬂ , 80 Cun) is a resolution of the trivial
GL_(F)-module . By definition C_(n)=C (n)/GL_(F) . So we have a canonical
homomorphism

H*(GLB(F),E) — H*(C*(n)) .
In particular

H3(GL2(F):H) — H3(C*(2)) .

Combining with the homomorphism of complexes Cy(2) — B(2) (see (2.9)) we get a

canonical homomorphism
2
g1 : Hy(GL,(F),Z) — Ker 6, C B,(F) .

According to Proposition 2.10 in the case F=C the function D,(z) defines a

homomorphism B2(d}) — R . So we obtain a homomorphism
2
D, o g2 : Hy(GL,(€),R) — R (2.11)
i.e., an element in H(GLy(C),R) .
If xe P1 then
C

'ﬂl(g{)’gl ’g2’g3) = Dz(gox:glxrgzxaggx) (2.12)
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is a cocycle, representing the constructed cohomology class. (The cocycle condition is

just the 5—term functional equation for the Bloch—Wigner function D,(z)) .

Notice that this cocycle is not continuous near the identity. However, the

corresponding cohomology class lies in

Im(]E{3

3. (GLy(C),R) — H(GL,(C),R)) . (2.13)

To see this we repeat an argument of J. Dupont [D 1]. Recall that Qz(go, ,g3) is
equal to 2/3 times the volume V(gyx, ... ,g5x) of the "ideal" tetrahedron in the
Lobachevsky space H> with vertices at gyx, ... ,g4x on the absolute 9H v €P' . If
he H? , then the volume V(ggh, ... ggh) of the regular tetrahedron is also a

continuous cocycle and it is cohomologous (actually in a canonical way) to

V(gyx, --- :83%) , x € gus .

On the other hand, it is not hard to see ([D 2] ) that the cocycle V(ggh, ... ,g5h)
represents the class (21r)2 . ¢p_l(u3) (see 2.6). So formula (2.11) defines the Borel
regulator 142) : Hy(GL(€)) — K.

Note that there is an easier way to see that the cohomology class of cocycle (2.12)
lies in (2.13). Indeed, the function D,(z) is continuous on PI(C) and so is bounded.
Hence cocycle (2.12) is bounded and as a result its cohomology class lies in (2.13) — see
[Gu]. So the only problem is to check that the constructed cohomology class coincides

up to a rational number with the one constructed by Borel.

In order to construct explicitly the Borel regulator 1, : H3(GL(C),R) — R we
will study in the next section some bicomplex C%(n) which will also be useful in § 4.
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6. The bicomplex Cy(n) . Let us define a differential d(k) : ﬁp(n) — ﬁp_l(n) as

follows:

p—k

d® (e, . L) ¥ (- D, - L)

i=1
Note, that d(®) = d — see 2.10.

Lemma 2.12. The following complex is acyclic (k > 0):

o)

(k)
e — ak_*_?(n) Uk_l_l(n) 4, Cy(n).

The proof is in a complete analogy with the one of Lemma 2.11.

Let Sym, : ﬁp(n) — ﬁp(n) be the symmetrisation of the first k vectors:

. 1
Sym, : (P,l, ,f,p) — 2 o (xa(l)‘ X ()R L ,xp) .
UG.Sk

Define a homomorphism AlK) . Cp(n) — ﬁp(n) as follows:

A e,

p

Pk

i—1
2 (_ 1) Symk+1(£1, vee ,f.k,f.k+l,f;k+2, .ae ’£k+l’ oo ,Qp) .
i=1
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Lemma 2.13. d(k+1) o A(k) ,\(k) o d(k)

Proof. It is obvious for the homomorphism x(k) that is defined by the same formula as
A(k) , but without symmetrisation.

It remains to symmetrise the first k + 1 vectors. -
Lemma 2.14. A&t 6 2(K) _ ¢

Proof. Straightforward. (Note, that (k+1) o x(k) $0.) -
Therefore we get the following bicomplex & §'(n)

e — 64(n) 4, ﬁ3(n). 4, Uz(n) 4, ﬁl(n)

[ A . '*(1)(1) [\ " [
o Bym) L5 B L5 B L5 8 ()
| \® ) -A(z)m A2 (2.14)
e — 64(n) A 3(11) A (n)
N6 )
— 64(11) d®) 63(n)

|

e — Cm_l(n)

Remark 2.15. The bicomplex C2(3) was considered by A.A. Suslin in § 3 of [S 3].
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Let (Z,™(n),d) be a complex, associated with the bicomplex CY(n) . It is
placed at degrees —1, 0, +1, ..

Z,i=0

Lemma 2.16. H{( #™(n)) = {0’ P40

The proof follows immediately from Lemmas 2.11 and 2.12.

The group GL (F) acts naturally on the complex F™(n) . Let us denote
complex Q:m(n)GL (F) .Q,m(n) . Lemma 2.16 implies that there is a canonical
n

homomorphism.
Hy(GL,(F),I) — Ho( 2" (n)) - (2.15)
Our next problem will be to construct a homomorphism ¢ of complexes

2 @) L K D) —

l v ; lso (2.16)
0— By(F) —% A —o0

We will often use the following notations. Let (21, ,P.k, ,tm) be a configuration of
m vectors in a vector space V . Denote by < ﬂ.l, 'f'k > the subspace generated by

the vectors (& E.k . Then let us denote by (f.l, ,£k|f.k+1, ,P.m) the

1
configuration of m —k vectors in the vector space V/< £, .. ,¢, >, obtained by the
projection of the vectors P‘k+1’ wes o ané by (4, .. ,!Lkll'k_l_l, L) the

corresponding configuration of points in the projective space P(V/< 11, S >).
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Let us define the homomorphism p:C_(n) — C__,(n—1) by the formula

pi(ly i) — ¥ (DN, k). (217)
i=1

Then we get the bicomplex

d
C4(3) — C,(3)

l P 1 P (2.18)
c(2) =9 c,(2) =9 ¢, (2)
5 4 3 )
Let us define a homomorphism f from the associated complex to the Bloch—Suslin
complex Bp(2) in the following way: it coincides with the above constructed

homomorphism (2.9) on the subcomplex C4(2) and is zero in other places:

C4(3) _1_4/04(3)

= 0,7 |»
Cy(2) —-»2 04(2)/ ,-4, (33(2)2 . (2.19)
P, 1P
0 — By(F) —2 A%F

The correctness of this definition is provided by the following lemmas:

Lemma 2.17. po f82) =0.
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Proof. Let wg be a volume form in a 3—dimensional vector space V3 and

(2 £4) € C4(V4) . Then Awa(ﬂ.i, *,*) isavolumeformin V,/< £ > .50

l’ b
p (o} f( ) R’ s P, —_— A 2’ l Q’ ' .‘\ A 2, f, ’Q, ' Ty
( 1’ ? 4) ( 1, 2’ 3 ( I’ :2 4)

0

It is easy to check that the right hand side is zero.
See also the proof of Lemma 3.1. -

The assertion that fg2) op=20 is an immediate consequence of the following

useful fact.

Lemma 2.18. Let Xy e Xg be 5 points in generic position in P% . Then

5
Y (= 1) [xGxp, - Xy e X)) = 0 in By(F) (2.20)
i=1

Proof. There is a (exactly one) conic passing through the points Xy oee o Xp - Choose an
isomorphism from this conic to P%, . Let 5; be a point in P]%, corresponding to X by

this isomorphism, then

(xilxl, S ,x5) = (yl, SH A ,y5) .

So (2.20) corresponds just to the 5—term relation in By(F) . -
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Now in order to construct a homomorphism of the complexes (2.16) we define a

homomorphism @ from the bicomplex (2.14) to the following one

€y () Lo
[ e e O e
—¢g(3) Lo, 3) Sy o c,3) Loy a) L 1 (2.21)

L e

—c,(2) e L, e, 1

Namely, if (£,...,2,) € C_(n) is placed at the level k in the bicomplex (2.14)
(this means that we apply to (R.l, ,R.m) the horizontal differential d(k)) , then we

set

P (El, ,E.m) — (P.l, ’P‘klp‘k+1’ ,f,m) € Cm-—k(n - k).
It is clear that ¢ is a homomorphism of bicomplexes.

Finally, we define a homomorphism from the complex associated with the
bicomplex 2.21 to the Bloch—Suslin complex as a prolongation by zero of the
homomorphism f — see (2.19), i.e. it is zero for all groups C_(n) different from C,(2)
and C3(2) . So we construct the desired homomorphism of the complexes (2.16) and, in

particular, a homomorphism

g®) : Hy(GL_(F),Z) — Ker 6, C B,(F). (2.22)
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Lemma 2.19. The restriction of this homomorphism to the subgroup GL,(F) C GL (F)

coincides with the one
2
g2) : H(GL,(F),Z) — Ker 8, C B,(F)
constructed in § 2.5.

Indeed, choose n—2 linear independent vectors Vi Voo in an
n—dimensional vector space v, and a 2—dimensional complementary subspace

V2 PV =<V 0> @ V2 . Then there is a homomorphism of complexes
¥: Co(Vy) — B V)

where ¢(C4(V,)) lies in the lowest line of the bicomplex (2.14) and 4 is defined by
the formula

Vv (B,l, ,lk) — (vl, SN AN e ,(’.k) .

From the definitions it is clear that we get a commutative diagram (the left arrow was

constructed in § 2.3)

Cu(2) —¥ & 2n)

\ //w

B(2) =

Finally, let us consider the composition
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D, 0 g™ : Hy(GL (€)R) —R. (2.23)

2

The same arguments as in § 2.5 show that it defines an element in Hﬁont(GL 2(CL.R) .
By Lemma 2.19 its restriction to the subgroup GLZ(C) coincides with the Borel class.
But dimRﬂg ont(GL,(€),R) = 1. So the map (2.23) is just the Borel regulator

rgn) . Q.E.D.

Finally, let me note that if we are interested only in the proof of Theorem 2.1, then
section 6 can be cancelled if we are ready to use Suslin’s results about homology of
GL(F) ([S1]) and finiteness of K%’I(F) for number fields. Indeed,
Ha(GL4(F)) = Hy(GL(F)) and H,(GL,(F))/Ha(GLy(F)) = KI;{(F) up to 2—torsion.
So in the case of number fields Hq(GL,(F),Q) — Hy(GL(F),Q) -

However, section 6 is necessary for the construction of characteristic classes from
K—groups of an arbitrary field to the cohomology of the motivic complexes BF(2) and
Br(3) . (In fact the stabilisation trick that we used in s. 6 for the case Bp(2) is based
on the same idea as Suslin’s trick in § 3 of [S3]). Our proof of Zagier’s conjecture about

(p(3) also used constructions from s. 6, but in a more complicated situation.
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§ 3. The trilogarithmic ¢complex: generic configurations

1. Qur plans. From now on we will work up to 6—torsion.

Let CG(PI%) be the free abelian group generated by all possible configurations
(Ql, ,9.6) of 6 points in P]2? .

Definition 3.1. ﬂ;(F) is the quotient of the group CG(P%‘) by the following relations

R1) (£ ,26) = 0, if 2 of the points coincide or 4 lie on a line

1’ “na
R2) (The 7—term relation) For any 7 points (£,, ... ,&;) in P%

7
2 (= 1)(Rg, o okyy s Rg) = 0.

i=1

Note that the configurations from the relation R1) are just the unstable ones in the
sense of D. Mumford [Mu].

Lemma 3.2. (The skew—symmetry relation). In the group %(F)
_nle
8y, - tg) = (= 1) |(aa(1), e )
where |o| is the sign of the permutation o € §; .
Proof. Let us apply the 7—term relation for a 7—tuple (£,...,¢,) such that

g, =t ) (i £5) . Then R1) implies that we get just the skew—symmetry relation for

the transposition (i,i + 1) . -
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Let %0 (F) be a subgroup of ﬂ;(F) , generated by the configurations in generic

position. In this section we will define the following commutative diagram

ce(3) —4— ¢, (3) —4— c,(3)

1 () l () J @ ey

ABoE) -4 By(F)8F —& — A%

and prove that fgs) o d(ll, ,9.6) does not depend on the "length" of the vectors £

(see proposition 3.9). Hence we define § on the generators of the group . Further,

~

6
6(Y (- D)iEy . Ty T = 11D 0 dod(Ey, ... L) =0.
i=0

Hence we get a correctly defined homomorphism
0 *
§: 43 (F)— By(F)®F .

* *
Recall that the homomorphism & : B,(F) ® F —A%F s defined by the

formula §: [x] ®y»r— (1 —x)Ax Ay.
The property & o § = 0 follows immediately from the commutativity of (3.1).

In § 4 we define § on degenerate configurations and hence get a definition of the

homomorphism

#3(F) — (By(F) @ F*)Q .
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Then we do the second crucial step: compute § for a configuration (mO’ ,m5)
as in fig. 1.8 and prove that, in a rather miraculous way, 6(m0, ,m5) is a linear

combination of the expressions [x] @ x . More precisely

4
§(my, ... ,mg) = %62 (- 1)’L§{r(m5|m0, SHR PR M)
=0

where the homomorphism Lé - I [PII;.\O,I,m] —_— CG(P%) was defined on p. 20 of § 1.

So, if we define 73(1?‘) as the factor of the group %(F) by the following

relations

I
o —

4
R3) (mO’ ,ms) 2 (- l)lLé{r(ms]mO, SH. T ,m4)} + é-113

then we get a complex
4 er) b 3n*
%(F) —— (By(F)®F )Q —— (A°F )Q .
In § 5 we prove that there is a canonical isomorphism
1
M, : %(F) — Z[P5\0,1,0] /Ry =: B4(F)

commuting with § (where R, ‘is the subgroup generated by the functional equations
for the trilogarithm which were defined in (1.3).



-113 -

Finally we obtain the following commutative diagram

— C (8 —4 g (3) —— ¢ (3) d ., ¢,(3) —

[ ] (5]
0 —— g(F) —— (B2(F)0F*)Q 5, (A"F")Q

| s [ I

By(F) —2— (By(F)OF )y —L (%)

Let us denote by Bp(3) the complex in the lowest line of this diagram; the group
B3(F) is placed in degree 1.

Therefore we construct the homomorphisms

o{3) : H(GLy(F),I) — B (C4(3)) — B (BR(3))
(32)
¢{3) : H,(GLy(F),I) — H,(C4(3) — HA(BL(3)) .

A stabilisation trick with the bicomplex Cﬂ_s(n) permits to construct the

homomorphisms
{0): B (GL_(F),1) — HY(BL(3))
(V) : H,(GL_(F),I) — B(By(3))

which restricted to GL4(F) coincide with the homomorphisms (3.2). So we get the

canonical maps
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¢, : K% (F)q— H'(Bg(3))
¢y K1 (Flq— E2(B5(3)) -

In the case F=C the function ¢, (z) is identically zero on the subgroup R, s0 it
defines a homomorphism %, : Ba(di) — R . We prove that the composition

4

C
H,(GL(C),R) — Ker §; C By(€) — R

is just the Borel class in H-, (GL(C),R) . This fact together with the Borel theorem
[Bo 2] implies Theorem 1.

Now let us begin to realise this plan.

%x
2. The homomorphism f((]m) : Cm+1(m) —A"F . Let V_, bea vector space

of dimension m and w e det V:l . Set
Aw(f,l, el ) =< LA AAL >.

Often we will write simply A(P.l, ,i’,m) . Set

m
» M s *
2):=) (1) A ALy, - g L) e ATF .
i=0 j=0
j#i

f{m) . (e

0 0’ s
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2 . .
For example fg is given by formula (2.7) and
3
320,80, 85) = B(L0LgLa) A B(EG L, L) A ARG,L L)
— (8, 80,05) AA(L),L1,80) A ARG, E,)
F AR Lpg) A ARG, Lg) A AL L)
— (2, 00,05) A A2, 80) A AL L)

Lemma 3.3. £™)(€, ... ,£_) does not depend on w.

Proof. It is not hard to prove it directly. However we give another proof that might

clarify the situation.

Let So’m(f,o, ~.,&) be a simplex with vertices 5(0), ... ,S(m) that (formally)
correspond to the vectors 2,0, L m - e will denote by S( gy oo ’ik) its k—dimensional
face with vertices S(io), ... ,8(iy) - Centers of codimension 1 faces are vertices of the

dual simplex §= Sm’o(to, ,P,m) . For example, g(i) is the center of the face

~

5(0, ... ,i, ... ;m).
Let g(io, - ,ip) be an f—dimensional face of §(0, ... ,m) with vertices at
S(iy), - S(ig) - Demote by Cy(S™(Ly, .. ,).I) the group of E—chains of this

simplex.

Let us consider a homomorphism
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t *
¢, Co(S™0 ey, .. £ ) T) — AF
that takes S(io, ,iﬂ) to

ALy ) A A(ao,...,Eil,...,tm)A A A(LO,...,EiQ,...,Lm) e ALF.

O,l..’ io,...,
Then by definition
™ ey, - ) = 0,500, ... m)) (33)
where & is the differential in the chain complex Cy(S) .

*
Now let wl=Aw, AeF . Then

(Pry = ) Bligs - ig)) = AN 0, (8l . ig)) - (34)
Now the property # =0 and formulae (3.3) and (3.4) prove Lemma 3.3. g

Remark 3.4. The symmetric group S acts naturally on C +1(m) . For

m+1
oeS ., and ce Cm+1(m) we have f(()m)(ac) = (- 1)|a|f(c) .

m .
Example 3.5 (Compare [S1]). If £y = ) a2 and A(Ly, ... £ )=1,then
i=1 .

{2y, .. £) = 3 A= a)A .. A((— 1)“5'1am) .
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Lemma 3.6. The composition

me) mg*
Cm+2(m+1)—L-»Cm+1(m)——oA F

is equal to zero.

Proof. Let S(0,..,m + 1) be a simplex with vertices corresponding (formally) to the

vectors Q‘O’ ’£m+1 . Then

fl(Jm)°P=f.¢",,3(f7§(0, wem+1))=0. -

3. The homomorphism fga):Cs(.'s)——»Bz(F)OF* . Let (fj,..,84) be a

configuration of 5 vectors in generic position in a 3—dimensional space V3 . Set

AR,L) = ALy, . L,

i {0

1=

{3 k) =—2 ¥ (0[] 8g, o By 2] OTA (Ei,Ej)
i=0 i#i
(3.5)
¢ (By(F)®F ) ® u[%] .

A A *
Recall that A(l’,i,f,j) i defined using a volume form w € det V.

Proposition 3.7. fgs)(ﬂo, .. ,&4) does not depend on w.
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Proof. The difference of the elements fgs)(ﬂ ... ,&4) defined using the volume forms

0)
*
A-wand w(AeF ) isequal to

4 ~
e B G LA NN SN 0 KPS
i=0

It remains to use Lemma 2.18 . -

Proposition 3.8. The following diagram (defined modulo 6—torsion)

C4(3) » C4(3)
| 4 | 4
B, (F)@F § A%

is commutative modulo 6—torsion.

We prove the proposition by direct calculation. Here we indicate the main steps.

First of all, using (2.8) we get

5(10,11,12) ' A(£0:£3s£4) 6(2'012'1)2’4) ' A(QO,£2,P,3)

§: (8| Ty Ey g ) — Y Y o BN (P A SN T (7 o

12734

Then we compute § o fgs)(f,o, SN 5 4) using this formula. The skew—symmetry relation
in the group B,(F) implies that
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f§3)(aa(0), e g = (=) 71643, ... L) -

Any summand in § o f{s)(to, N A 4) can be transformed by some permutation of

the vectors f'i to one of the following expressions:
a) A(£0,£2,£3) A A(QO,Ql,f.a) A A(f.o,f,l,tz)
b) A(£0,£2,£3) A A(£0,£1,£3) A A(£0,£1,2,4)

¢)  ALgLyly) AA(LyL;,05) AA(L,,L,L,)

A simple computation shows that the first expression appears in

60 #4308, ... .,) with coefficient 1, and the second and third with coefficient 0 .
e f3) :
The computation of f;™ o d(£, ... ,&4) gives the same result. -

Proposition 3.9. The composition

i

d * 1
Cg(8) = C4(3) —— (By(F)®F ) ® E[B-]
does not depend on the length of the vectors f'i ,i.e.
{3 o d[(R0, . 2 = (Al o Al)] =0, (A € F
1 0" 05 070 55 » (Y eF ).

Proof. It is sufficient to consider the case when ’\1 =..= A5 =1, '\0 = A . Recall
that
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5
d(Lg, - Lg) = E (- ey, - L o L) -
j=0

The first summand (£, ... ,15) does not give a contribution to the difference
3
£3) 0 d[(Lg, - L5 — (A Ly - )] - (3.6)
The contribution of the second summand — (£0,£2,£3,£ 4,!;5) is equal to

% [f(£2|tot3‘[4[5)] - [I(£3|E0,E2,'E4,'E5)] + [f(£4|]:0al-2:[3,[5)]

(3.7)
— [x(&5 | Ty Lo EE,)] © 23 € (By(F) 8 F ) @1 [%] .

Applying Lemma 2.18 to the 5—tuple (EO,'Ez, ,Es) of points in PI% we see that

(8.7) is equal to [r(ﬂ,O[I £.,0,,L.)] ® A . Analogously the contribution of the

summand (- l)j(lo, NN 2

2273745
j - obg) in (3.6)1s

”~

(=1 (e | Ty, - Ty T)] @A

Summarising we see that (3.6) is equal to

5 N

Y (-1 (e, T, T - T5)] © (3.8)
=1

But the left factor is just a 5—term relationin B,(F),s0(3.8)is 0. g
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Let é3) be the projectivisation map:

£3): (2g, . L) (Ey .-

Now the commutative diagram (3.1) is constructed.



1. The homomorphism §: %(F) — By(F)®F . Let C/(3), (m 25), be the free

abelian group generated by the configurations of m vectors in the space Vg such that

no 4 lie in a plane.

First of all let us define a skew—symmetric (with respect to permutations)
*
homomorphism 43) : Cg(3) — (By(F)®F )@ Il[é] . On the subgroup Cg(3) of
generic configurations it was already defined in § 3.

Up to permutations there are exactly two types of degenerate configurations in
C g(3) — see fig. 4.1 where the corresponding configurations of the points in P2 are
presented.

fig. 4.1

By definition fgs) takes the configurations of the second type in fig. 4.1 to zero.

Now let (2,0,9.1,2,2,!;3,9,4). be the configuration of the first type such that

P.O,P,l,f,z are in the same plane.
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Denote by ?_’3 and ¥ 4 the projections of the vectors !,3 and £ 4 onto the
*
1-dimensional space V3/ <£4,2,,8,> . Let us define v(¥ 4/13) e Fasfollows:

Y, =_v(t4/13) -4,
Put
£y, . L) = [ | L - ,25)] @ v(E, /Ty e B(F)OF . (41)
It is clear that

3 1
£, Ok, . 8y = 3 (24| L - 1)
(4.2)
A(Lg, 1,80 A(LgL0,2,) AL, L00E,)
LY S 0 .1 0 8 LY. 1

Remark that (£2,]2),2,,20,85) =(23]23L;2,2,) , and (4.2) can be considered as a

"regularisation" of the formula (3.5) for the homomorphism f§3) . Namely, we removed

from (3.5) all factors A(£,,2,,2,) which are zero in our case.
Proposition 4.1. Let (&, ... ,&5) € Cg(3) . Then
3
(£, 0 )[(Ey, - L) ~ (Agkg - A5ts)] =0

The proof is in complete analogy with the one for Proposition 3.9, and even

gimpler.
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Now let us define the homomorphism & on generators of the group %(F) as
follows: § is zero for the configurations satisfying the condition R1) and § = f§3) od

in the opposite case.

2. Computation of the homomorphism § for degenerate configurations. We begin with

the remembrance of some notations.

If 2, ..,8; are vectors in V, and EO' ,P:s ~ corresponding points in
%*
P (V,), then

T Ty e A(L,Lq) AL ,,L,) et

0> 07 AT, kL) - A(T ), Eq)

Sometimes we will omit bars and write 1(2,,2,,2,,8,) instead of 1(Z,,T,,L,,0,). We

use the symbol [.] only for denoting elements of the group By(F) .

All possible combinatorial types of the configurations of 6 points in p2 , where no

4 lie on a line, are presented in fig. 4.2.
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fig. 4.2

Theorem 4.2. For a configuration (T, ... ,Lg) asin fig. 43
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4
0Ty .. E)=+3 3 (~03{E Ty, . T, . T} (4.3)

i=0

where 8 {r(xp,X;,%,,%5)} = — 6{x(X X Xy Xg)} — 26{r(X(. X0, X5)} -

fig. 4.3

Proof. Let (£, ..,2,) bea configuration of vectors in generic position in V, . Denote
by W the plane generated by 10 and £1 .

Let (mg, ...,m,) be a configuration of covectors in W defined as follows (the
dual configuration — see § 7).

Let m,,m,m, be functionals dual to the basis €y8qt, in Vg, andlet m; be
the restriction of fiii to the plane W (i = 2,3,4) . Further, let m,, m, be the basis

*
in W | dual to 9‘0’ P‘l'
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Projectivisation of the kernel of the functional m ; is a point on the line P(W) .
We denote it by E{j — see fig. 4.4.

fig. 4.4

Let us fix the volume elements in V, and W' . Then A(P.i,ﬂ_j,ﬂ,k) and A(mi,mj

are defined. We will denote them (Qif.jf.k) and (mimj) for short.

Proposition 4.3.

”~

4
ey, . ) =3 Y )@y .. @, @O TT (mymy). (44)
i=0 RIS RY

Proof. By definition
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A

4
t3ey, ... ,14)=:1;.§ )T, - T O TT (m; m; ). (45)

j
i=0 0<j<Jg<ip<d g
if{j 113943}
Lemma 4.4.
[T, [Ty - T, . Q] = [x(my, .., . )] (4.6)

It can also be proved looking at fig. 4.4. For example, projecting the points P‘-l’ ,'[4
with center at the point 1'0 onto the line 121’53 and then projecting the obtained

points with center at ¥, onto the line mgm, , we obtain the configuration

(54,53,52,51) = (51,52,53,54) and so on . =
Lemma 4.5.
(£y¢,L,) = A(mgm,) ; (?.09.19,3) = AMmymy) ; ... ; (9.21,39,4) = A(moml)
b 3
where A e F .

Using (4.6) and Lemma 4.5 we can rewrite (4.5) as

>

4
-3 ) U@y, - m - mg)] 8T T (mymy) -
=0 j=0
j#i

(4.7)

>

4
LY (V@ -, - m]) @At
1=0
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The second term is 0 .

Finally, substracting 4.4 from 4.7 we get

4 A~
-3y V'@, .. @, m)le  TT (m ) =0

i=0 0<k, <k, <4

Now let us compute the homomorphism &4 for a configuration (EO, ,9,5) as in
fig. 4.3.

Let (mg,ml,m3,m4,m5) be a configuration of covectors in the plane
W=« 2.0,21 > , dual to a configuration of vectors (P,O,QI,P,3,P,4,P.5) in V3 . Note

that T, =m, (secfig. 4.4.).

Using (4.4), Lemma 4.5 and looking at fig. 4.4 we obtain:

o (2,2,2,) L (m,m.)
— [1(my,mg,m,,m,)] 9(1%&[%- = - [1(mg,m,,m,,m,)] Qﬁ%. (4.8)

Similarly

_ (mgm,)
—f3(20,00,00,04,8,) = [(@, Ty, )] @(ﬁ (4.9)
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o — o (mgmy)
~183)(80,8,,0,84,L) = [x(@y T, Ty, 5)] e(%m:) (4.10)

o (mgm,)
€328, Lty ty) = [(Tym, 0, )] e(n%m:) (4.11)

3) -
— 1130 00 00,8,) = 0.
Using the 5—term relation in the group B, we can rewrite the sum of (4.8) —

(4.11) as follows:

(- [r(mo,ml,m4,m5)] + [r(ﬁo,ml,m:;,ms)] - [r(ﬁo:ﬁl—l,ﬁ;;sﬁ,l)] )® (moml) +

(- [1'(50:51163754)] + [I((mo m, m, m5)] - [r((ml m, my m5)]) ® (m3m4)
(4.12)

+ [r(my,mg,m,,m.}] @ (mym,) — [r(m;,mg,m,,mc)] ®(m,m,)
+ [1(my,m;,msm.)] @ (mgm,) — [r(my,m,,m,,m)] ®(mym,) .

Note that for a configuration (xo,xl,xz,xa) of 4 vectors in v,

o o (xgxg) (xgxg) (x,%p) (X, %)
B {r(Fy Ry R a)} = [K(R Ky RpEy)] ® 02 08 L2
(xoxl) ' (x2x3)

(4.13)

6Ly, .-
(4.16), after some arithmetical calculations we obtain:

Lg) is equal to the sum of the right—hand side (4.14) and (4.15). Using

8(Lg, - L5) = 3 S({x(@y 5 M y)} — {x(my,mg,my,my)} +
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+ {8 By T83)} — {x(By By T ig)} + {2y g, )})
It remains to note that (see fig. 4.4) the configuration (m,,m)mg,m,,m,) which
seems rather awkward in this notation, coincides with the configuration

(Ts] IOEII2I3I4) . Theorem 4.2 is proved completely. -

Remark 4.6. Looking at (4.15) and (4.4) we see that every term of these formulae
depends on only 4 points ﬁi . So it i8 not too surprising that after some computations

we get that 8(Ly, ... &) lies in the subgroup 8(Z[PE\0,1,0]) of B,@F .
Lemma 4.7. For a configurition (E, ... ,E5) represented in fig. 4.5.

6Ty, .. [Eg) = 6{x(Ty | T T Ea T} -

fig. 4.5
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Proof. Let (£, ..,L5) be some configuration of the vectors corresponding to the
configuration of points (¥, ... ,T;) . By definition

£3)e

i Lo i sle) =0, 2012,

0 " 3
According to 4.1

L.2,L,)
f(?’)ﬂ,t,t,t,t =f(3)£,£,£,£,e = [r(2.|%,,T,,L, T @(145=
1 (Ry:lg,lg,0 4 05) = 177(8,8,8,,84,8,) [(5|1423)]W

— [T | T K, T, o f1tats)
51707134 (lﬁlli4li3j :

Similarly

0.2,
8 e, 0. 0,.0,,8.) = [r(L. |TELE o Folsts
1 (Lgolanla,ly,te) = [(&5| T T, E4T,)] €,L.E,)

22,2,
{3 8, 0.0, = [T T, LT o litals)
i (tptptatyts) = [ttt )] O )

Adding, we get

(LR45)(L 258 )
8Ly, - L5) = [1(&5| LT T,E,)] @ LT~

§ {I(I5 I £0;11,£3,£4)} . ]
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We will see below that the conﬁgﬁrations of type 5 in fig. 4.2 correspond to the

classical trilogarithm.

Note that there are two natural numerations of points of this configurations

corresponding to different orientations of the triangle (102.122) — gee fig. 4.5 and 4.6.

fig. 4.6

Let us denote by 13 the intersection point of the lines 2011 and € 42,5 . For
similarly defined points £, and { —see fig. 4.7.
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fig. 4.7

Lemma 4.8.

(0,8 L,k a) = (8,80, 0 1 ) = x(L,,85,L L) .

Proof. Looking at fig. 4.7 we see that
(L5180 0k 0) = (2612000, E,,L,) -

But r(fg|C,21,E,,0,) =1(Ls]|2;,85,8,,E,), 50 we get the first equality. Analogously

projecting from 2.3 we get the second one. -

Inversely, for every x e P%‘\{O,l,m} we can construct a configuration Ca(x) as
on fig. 4.5 with r(£5|£0,£1,£3,£4) = x . In fact, we can do this canonically, namely,

choose 4 points £0,8,,85,8, onaline L, in P? such that r(2y,2;,85,,)=x,and
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add the fifth point £, not on the line L, . Then the configuration in fig. 4.8 is

constructed uniquely.

The configuration C,(x) defines an element of the group %(F) that we have

denoted L3(x) . So we construct the canonical homomorphism

1
Ly : I[PE\0,1,0] — #(F).
Remark that although the configurations C,(x) and Cs(x_l) are different, the second

one can be obtained from the first by permutation of the vertices o : (1,2,3,4,5,6) —
(2,1,3,4,6,5) . If this permutation is even, then

Ly({x} - {x "} =o0. (4.14)
Recall that a configuration of type 6 in fig. 4.2 is denoted by g -
Lemma 4.9. For every x € PR\ {0,.,0}
Lo({x} + {1-x} + {1-x "} = n,. (4.15)

Proof. Let us write down the 7—term relation for a configuration (£, ...,¢¢) on fig.
4.8: |
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(21,8983 8 0 0sfe) = (L0, Lg kgl Le 06) + (£0,81,00,89,8 4 Ls) =
= (L4l Lyl ol ) -

@127y

(The other 3 summands are zero according to the relation R1). Using the

skew—symmetry relation in the group ﬁ;(F) , we have
(£ 8000, 05 006) = (£1,86,84,84,8¢,8,) = L3{r(2.1,£6,£3,£0)} =
= L3{r(£0,£3,21,£6)} |
—(£,,2,,2,,0,,L 26) = (!LO,R. £.,2.,0 22)- = L3{(r(£0,£ L 9.4)}

02734 6534 63

(20:£1r£2123:£4|£5) = L3{r(£0)£1:£3=£’6)}
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(20o8 o808 golxlg) = (£0,8 1500086 8 4 L) = Tlg -

Therefore

L3({r(£07£1,2'31£6)} + {I(f-o,lﬁ,ﬁl,ia)} + {r(£0:£3:£6r£1)}) = ﬂ3 .

If r(€,,2,,¢ 2,6) = x we get (4.15). -

13

Set
(o(x) = {x} + {1-x} + {1-x""}.
It is easy to check that §({4(x)) =0.

Lemma 4.10. §(n3) = 0.

Proof. Using Lemmas 4.9 and 4.7 we have

6(7g) = BLg((4(x)) = LyB(Ca(x)) = 0.

Note that according to Lemma 4.9
L3(C3(x)) - L3(C3(Y)) =0.

So we get the following commutative diagram

(4.16)



1
H[E\O,l,w] § - B,(F) ® P
3{x} 7, ¢ (x)~4()
. l l id (4.17)
% (F) b (By(F)®F) @[]

3. The group %(F) .
Definition 4.11. fB(F) is the quotient of the group Nfa(F) by the following relations

R3) I (P,O, ,9,5) is a configuration as in fig. 4.3 then

5

(R - 2g) =5 3 (= 1L4{r(Ls| Ly - &is - 2} + 375 (4.18)
1=0

where Lg{x} :=—L,{x} —2L,s{1—x}.
Of course, this relation is motivated by Theorem 2.
Let us explain the reason for the summand 31;1)3 in formula (4.18).

Consider the skew—symmetry relation

(£921: 2985, 84,85) + (£7,80) L0 L5841 85) = 0 (4.19)

Let us express each term of (4.19) using a slightly modified formula (4.18), where 7, is

taken with an undetermined coefficient A . Then using (4.14) we get
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Ly(~ 3 [{x(L51 Ll gy} + (k5] Lol pt o)} + {x((Lg] L latyl))}]
+ 2 [{r(Rg ] 1 0prt )} + {(Lg] L g0ty )} + {x(Es [ L0y 80)}]
+ 3 [{x(tg ] 8l gt D} + {r(85] Loa ity L0} +
{185 Ltal  Lg)}]) + 2 Ay = 0.

Applying (4.16), we get —ay,+ 2\ =0 and A=g . It is clear, that the
permutation of the points 9,3 and 2.4 gives the same resuit.

Other permutations lead us to new configurations (that do not satisfy the condition
1’.2 = EOEI n 13[ 4) . In fact, we need the skew—symmetry relation in order to express

them as linear combinations of elements L3{x} .

Proposition 4.12. For a configuration (P,O, - ,2g) asin fig. 4.9 we have in the group

#(F)

(Rp k) ==3 3 1T 0+20
0<i, j<2
(4.20)

) 1
{18y 180 o8 By o gy olg)} + 375

where, by definition

X ©° (R.l,£2,£3,£4) = (9,1,23,9.2,24) . (4.21)
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P 4
€y ® s
-o o ‘
&, 2 o
fig. 4.9

Proof. Apply the 7—erm relation to a configuration as in fig. 4.10 and use the relations
R1) and R3). -

Propogition 4.13. A configuration of type 3 as in fig. 4.2 defines the zero element in

(F).
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Proof. Consider the 7—{erm relation for a configuration as in fig. 4.11 and use the
relation R1).

ls
0y
ts
/
/
/
/ .
@_,_ - == —————ee e
86 62_ €y o
fig. 4.11

Theorem 4.14. The homomorphism
1
Ly: H[PF\O,I,m] — %(F)
{x}— Cg(x)
is surjective.

Proof. According to the definition of the homomorphism L3 , Lemma 4.9, Relation R3)
and Propositions 4.12, 4.14, elements of the group ﬁ;(F) corresponding to all
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degenerate configurations (presented in fig. 4.2) liein Im Ly(Z [P \0,L,0]).

The 7—term relation for a configuration as in fig. 4.12 shows that the same is valid

for the generic configurations. m

» o
)/
//

Cz v o %

// '

4
<
€ & Lo

fig. 412

4. It follows from Theorem 4.2, Lemma 4.7 and Lemma 4.10 that the Relation R3 lies in
*
2 kernel of the above defined homomorphism & : #3(F) — (By(F) ®F ) ® I{z] . So

we get the homomorphism
*
5: go(F)— (By(F)®F )@ I[7] .

Moreover, there is the following commutative diagram
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Z1[PR\O,L, @] /{x} = {x} S BymeF)y L (A%,
C3(x) = €3(Y)

1 Ly || u

* § *
75 (F) L (By(F)®F )g —2 (A°F)q -

Corollary 4.15. Im§(#,(F)) lies in a subgroup generated by the expressions

[x] ®x. -
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§ 5. Functional equations for the trilogarithm

1. Computations. Let (20, ,!.5,3) be a configuration of 7 points in p? represented
in fig. 5.1.

fig. 5.1

In this § we will denote for brevity the element {r(x;|x;x5,x53,x,)} as
{xo|x1,x2,x3,x4} , omitting r . Consider the following element Ra((’,o, .. g,z) of the
group H[Pl\O,l,m] :

Ry(Lg - o252) =y (=1)Fxo {22y, .. .2, .. &y g} =
0<i<j<5
5
- ) GGt g} + {1 Lply s} +
i=0
(5.1)
+ {B'l [ ﬂ3)£5:£orz} + {ﬂ3|£5,£1,£2,z} + {9'5 | 11113:2-4;2} -

{812,842} — {51 L5,01,00,2} — {£5] L) Lg, 00,2}
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where by definition yxo {xO,xl,Lz,xs} = {xo,xz,xl,x3} . We consider all indices

modulo 6.

Theorem 5.1.

a)  Ly(Rg(Ly, ... ,8,2)) + 379 =0
b) S0 R(Ly, ... Lgz) =0

It is clear that b) follows immediately from a), Lemma 4.10 and the commutativity

of diagram 4.17.

Proof. a) We will demonstrate that using equality (4.16) we can identify
La(R(2, ... ,€,2)) + 37, with the 7—term relation for the configuration (P_O, ,Qs,z)
multiplied by (—1).

Taking into account the skew symmetry of the elements (x,, ... x¢) € %(F) with
regpect to the permutations of the points X, , We can rewrite the 7—term relation in the

following form:

(Lol 8g:laly2) + (29,054,808 0,2) + (£4,8,80,81,85,2)

— (gl 00 05,0 e2) — (Lorlg, g, 05,81,2) — (4,85,00,1,85,2) (5.2)

+ (£g,Lg Ly La ls) = 0.

Note that the terms in the first line of (5.2) have type 3 and in the second one type

5 in the list of all possible combinatorial types of configurations in fig. 4.2.
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All lines in (5.2) are invariant under a cyclic transformation

Til— (r3=id;-roz=z).

Roughly speaking 7 is a "rotation" of the picture 5.1 on 2x/3 in a direction given
by an orientation of the triangle (!,0121 4 -

Let us set

T{P'il bt b= {£i1+2|£i2+2’£i3+2’ -}

3

and so on. Then (5.2) can be written as

(1+7+ ) o [(£g:81:8 9L gL1,7) — (£0,8 180,85, 0c2)] +
(5.3)
+ (Lgiloily,ly,8g,8) = 0.
Applying Proposition 4.12 and Relation R3) from the Definition 4.11 to this

formula we obtain:

4
315(1 +r4+)o(l+2x)o0 Ly ) - 1)1_1{"’“;0’ ’Ei' kg + (5.43)
i=0

+ {21 2,89,05,0} — {2] L5l la e} + {5408 85,L5} (5.4b)
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— {852, 858q,2} + {€5] 85,80, 85,2} — {L5] 2,8, 24,2}
(5.4c)

+ {851 2,,89,05,2} — {€5] 2,05, 85,2} + {£4] lo,ﬂl,ts,z}]
+ {€5] 80,280,085} . (5.4d)
Note that there is no term 3 in this formula. It is clear that
Q+7+ 1'2) o(l+2x)o [{13 | €0, 1,252} — {£5|£2,£3,£1,z}] =0.
Therefore (see the first and the last term in 5.4c):
ererPol+200L, [- {8 ]88 052) + {24] ao,al,es,z}] -
=gl +7+7) oL, [- {8518, 80852) —2{t | £}, L5, 02} +
(5:5)
+ {€5]29,85,L,,2} + 2{£5|£2,£1,£3,z}] :
Using the equalities
La{€g|8),89,802} = La{ly|2y,L 85,2}

and

La[{L5] 285,802} + {€5| Ly, 85,0,,2} + {£5|£2,£1,!;3,z}] =
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we obtain that (5.5) is equal to
—(1+ 7+ 1) 0 Ly{l4 | € Lalpz} + 1y (5.6)
Analogously the contribution of the third and fourth term in (5.4c) is equal to
%-(1 + 7+ 1'2) o(1+2x)oL, [— {€5124:8, 852} + {&5] 13,14,11,z}] . (5.7)
Note that (£5[24,24,2,,2) = (£5|24,8,,2,,2) .
So (5.7) is equal to
M1+ 74 1) 0 Ly[— 05| £4,8,,85,5} —2{85 | £4,85,0,,2} +
+ {251 85,8,,8,,2} + 2{l;|L4,2,,0,2}] = (5.8)
= (14 7+ 7)) 0 Ly{Lg| Lyt 0,2} — 15 .
the sum of (5.6) and (5.8) coincides with the last two lines in (5.1).
Further note that (see pic. 5.1)
(E5]2L0,80,85,2) = (L5] 4,000 4,2) =
= (z|£4,£2,£3,£5) =7 (2]8,8,2,,L,) .

So the sum of the second term in (5.4c) and the fifth in (5.4a) is equal to
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M1+ oL, [{z| Lolgl g} +2{z| Lo,k 0,0} — {2 0,80, 84} -

2
—2{z]| 20121123}] = (1+ 7+ 7%) 0 Ly{z| L Lo ky} — 1y = (5.9)
=—(1+7+ 72) ° L3 [{2|£0,22,£1,23} + {5110:11,22;13}] - 27}3 .
Similar computations for the fifth term in (5.4c) give the following result:
2
~(+7+P) oL, [{z|f.1,£3,£2,£4} + {z] 21,12,13,34}] . (5.10)

Note that the sum of (5.9) and (5.10) is equal to

5

—(1+x) 0Ly ) {2188, 1.8 085} - (5.11)
i=0

Now let us consider the first and third term in (5.4b). Accounting that

(z] 9,1,22,9,3,@5) =70 (2| 15,10,11,13) , We have:

1 2
g1+ 7+7) 0L, [{Z| Lty g} +2{z| L5k 005} +
(5.12)
2
{ZIEO’£1’£3’E5} + 2{2 I 2,0,13,21,15}] = (1 +74+ 7 ) (o] L3{Z ' 103131E1;£2} + 113 .

Similar computations can be produced with the second term in (5.4b) and the third

in (5.4a), and also with the second and fourth term in (5.4a).

We obtain the following results:
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2
(1+ 7+ 7) 0 Ly{z| g g8,.84} + 1y (5.13)
and
(1+ 7+ 7) 0 Ly{z| L5858} — 15 (5.14)
Finally,
(L8l late} = Lofle|€oLo,ls Ls} - (5.15)

Adding (5.6), (5.8), (5.11) — (5.15), we obtain the right—hand side of (5.1).

Many alternative forms of (5.1) can be obtained using the relation (4.16). I give an

expression with the minimal possible number of terms.

Let (xl,x?,x3,y1,y2,y3,z) be a configuration of 7 points as in fig. 5.2. Put

2
R3(xi,yi,z) =(1+7+7%)0 [{yllyz,y3,x3,z} + {Yl |y2,y3,x1,z} +

+ {z|x1:Y3a12:Y2} + {ZIY3:Y1312:Y2} + {Yl:x3:x2:yZ} + {x3,x1,x2,y2} (5.16)

— {Z | xl,yl,x?yz})] + {Yl |y2,y3,X1,X3}

where TIX X s Vi Vi
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fig. 5.2

Lemmg 5.2. If the configurations (xl’xz’x3’yl’y2’y3’z) and (1’.0,2.2,2.4,21,13,25,z)

coincide then
L3B.3(xi, i,z) = L3R3(£0, ,Es;z) + 61 .
Proof. Transform the third and fifth terms in (5.16) using (4.16). -

Therefore in the group fa(F)

L3R3(xi)yi)z) = 3773 =0.

The remarkable feature of the formulae 5.1 and (5.16) is that all their terms have
coefficients *1 .

Every term in (5.16) is obtained by the projection of 4 points from (xi,yi,z) with
the center in a fifth. Consider all possible configurations of 4 different points of p!
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obtained in this way. Let us say that the two configurations are equivalent, if they differ
only by a permutation of points. It turns out that every such equivalence class is
represented by just one term in (5.16).

Let us emphasize that some configurations can be written in different forms, for

example: (x;|¥3,¥9.¥7:2) = (2| X9,%X3,71:%) 5 (¥3]x171%32) = (2| x9¥,X3y4) and so

on.
2. The main theorem. Let us recall that (4(x):= {x} + {1 -x} + {1 —x—l} . Set

By(F) := Z[P'\0,L0] [{x} = {x"
(409 = (3() (5.17)
Ry(8;72) + 3(5(x) = 0

where (EO, ,£5,z) is any configuration of 7 distinct points in P2 such that (see fig.
5.1): a) the point L., 41 lies on the side Lo, of the nondegenerate triangle (£5298,) 5
0<i<2 (Ry ¢ L) ; b) z is in generic position with respect to Ly, ... L5, €) Ly,

£, and £, do not lie on the same line.

Note that the main relation in (5.17) can be rewritten in such a way that the
relations {x} = {x_l} and (4(x) = (4(y) can be deduced from it. But we do not need
this result.

Let us denote by (, the image of the element (,(x) in B.(F) .
3 8 3 3

Now we begin with the construction of the homomorphism
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M, : Fa(F) — By(F)
which is inverse to the epimorphism L3 .

Let us define the homomorphism M, on the generators of the group %(F) .

a) Set M3(q3) = C3 .
b) Put

My(Rg, - 1) == {26 | L5l gl g}

for a configuration (£, ... ,¢;) as in fig. 5.3a).

¢) Put

.

My(Lg, - 2g) =—7 3 (=1'(1+2x) 0 {&| &g, . Ly, By} + 3
i=0

for a configuration (£, ... ,£) asin fig. 5.3b).

d) Put

X L
Mgk, kg :=—5 ) (~DH1+290
0<i, j<2

A A 1
{QO’ “es ,li’ are ,£2,£3, e ,£2+j, ses ,2,5} + 3-C3
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for a configuration (£, ... ,2.5) as in fig. 5.3c).

g
’ .
ls
7
° L5 ° o 65
ag ma o -

fig. 5.33), b), ¢)

The skew—symmetry property in the group ys(F) provided the definition of the
homomorphism M, on the configurations that differ from the ones considered above
ones by some permutation of points. Lemma 4.8 and the considerations after the

Definition 4.11 proved the correctness of this definition.

e) Now let (!LO, ,1’.5) be a configuration of the generic position. Denote by a the
intersection point of the lines EOII and T 425 . Set

5
= i ?
Ms(ﬂo, nee ,£5) . — 2 (— 1) M3(£0’ aea ,Qi, nes ,15,3) .
i=0

All terms on the right—hand side were defined above.
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Let {0,...,5} = {iy,indq} U {j;)dosia} - Set x:=T; E ﬂE £. and
{ } {11213} {JlJ2]3} i) g Lk

5
MLy, . L) = T (DR By )
i=0

Proposition 5.3. (Mg") - My)(Lg, - L5) = 0.

Proof. Set y =T, R, NT. L. and
h! i 33

- 2 (-1t (s - ok - og.¥)

Lemma 5.4. (Mg") — MgY))(to, g =0,

M —Me, .. ) =

5
Y (—1)'M, [(ao, N A e (2 T ,25,;:)] .
i=0

In order to investigate the right—hand side of this equality we need the following

lemma.

Lemma 5.5. Let (xO, ,xs) be 7 points in P2 gsuch that there are 4 points on a line

among them. Then
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6
.20(-— 1)1M3(10, o Xy e Xg) = 0. (5.18)

A

Note that all configurations (x, ... X;, ... ,)Xg) are non—generic, 5o all terms in

(5.18) were defined above.
The proof of this important lemma will be given below.

If i¢{i,,i,},then £ & xy are four points among £, ...,L. ... L. xy,
172 i, 0 1 5

belonging to the same line. So applying Lemma 5.5 we get

M, [(zo, ey e e ®) = (B o ,zs,y)] -

(5.19)
5 FaN Fal
= ) £My(Lg, - oL, . Ly o LgXy) -
=0
j#i

The same result is true when ie{ii,} . Indeed, the configuration
(f.o, "’i’ ,9.5,x,y) has the same combinatorial type as a configuration from fig. 5.1
(see fig. 5.4). So the image of the corresponding 7—term relation by the homomorphism

Mj is a relation in the group B,(F).
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fig. 5.4

It is easy to see that the sum of the right hand side of (5.19) from i>0 to i>5
is zero. Lemma 5.4 is proved. -

Similarly the homomorphism defined with the help of the pairs (il,i3) & (jl,j2)
also coincides with ng) . Changing several times an index in one of this pairs, we can
transfer the pairs (il’i2) & (jl’j‘z) to (01) & (45), and as a result prove the proposition
5.3. -

Proof of Lemma 5.5. All combinatorial types of configurations of 7 distinct points in

p? containing 4 points on the same line are shown in fig. 5.5.

The equality (5.18) for configurations of type 1 in fig. 5.4 follows from the
definition d) of the homomorphism M, .
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For configurations of type 2 and 3 all terms in (5.18) are zero according to Lemma
4.13.

Equality (5.18) for the configurations of type 4 and 6 is an easy consequence of the
definitions (see Proposition 4.12).

Finally, let (f.o, ---,&g) be a configuration of type 5, as shown in fig. 5.6.

R

@ @

@ ® i@

fig. 5.5

Then

1
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# {Lg] 1t t0} — {861 €80 kgl o} + {2)] €10, 00t ) +
375~ My(R,L1,85,Lp kg 8g) = —3(1 + 2x) 0 [‘ {84]LgLpt st} +
{24185.808 1,80} — {2, €3, 868,85} + {L4]3.86.80.85)
—{24|Lylelol } —3 75

Let us add the right—hand sides of these formulae and group the i—th term of the
first one with the (i + 3)—rd term of the second (indexes modulo 5). Further, remark
that (£¢]8; .8, &, ,2,)=(8,]L, & & o) if 0<i s <3, (£4]L, ... )=

1 2 73 1 2 73
(L4123, ... ) and (&g|Lg, ... ) =(L6| L, ... ) - Then an easy computation shows that

we obtain
{E'ﬁ I 21914:£3|£0} - {2‘0 I f‘3:£0:£4:£2} =
- M3 [_ (£0,£2:£’31£4)£5)£6) + (10,21,243,14,945,&6)] R

According to the relation R1 in the group %(F) , the other terms in (5.18) are

zero for the configuration from fig. 5.6. -

So we define the homomorphism M, on generators of the group %(F) It
follows immediately from the definitions that M3 transfers the Relations R1 and R3 in
the group %(F) to zero. We proved that the Relation R2 for 7 points in P? is also
mapped to zero, if among these points there are 2 coinciding or 4 lying on the same line.

The other combinatorial types of the configurations of 7 points in P2 are shown in fig.
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5.7, where all lines containing more than 2 points of the configuration are also
distinguished.

Proposition 5.6. The homomorphism M, annihilates the 7—term relations for all

3

configurations represented in fig. 5.7.
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We need the following very simple lemma.

Lemma 57. Let £,..,&;, be 8 points in P? and let it be known that the

homomorphism M3 annihilates Relation R2 for the 7 points, obtained by removing the

point f'i ,where i =10, ... ,6 . Then thesame is truefor i = 7. -
Proof of Proposition 5.6. We will refer to the points of our configuration as

"distinguished points". There are two distinguished lines in the configurations 3, 7, 12
and 13 in fig. 5.7 such that its intersection point is not distinguished. Let us add this
point. Then after removing any other distinguished point there are 4 distinguished points

lying on the same line. It remains to apply Lemmas 5.5. and 5.7.

Proposition 5.6 for the configurations of type 4 in fig. 5.7 follows from the definition of
the homomorphism M3 for the configuration of 6 points in generic position, obtained

by removing the intersection point of two distinguished lines.

We will write (1‘:—1) 3 @ if the validity of Proposition 5.6 for the configurations
of type m in fig. 5.7 implies the one for a configuration of type n.

Applying Lemmas 5.7 and 5.5 to the configurations in fig. 5.8 a) and 5.8 b) we

obtain that (4) 2 (2) and (Y& (D)2 (7).
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79

4]

o ——
d)

fig. 5.8
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Theorem 5.1 claims that the 7—term relations for a configuration of type 5 in fig.

5.7 transfer to a (basic) relation in the group B,(F) .

Applying the Lemmas 5.7 and 5.5 to a configuration of 8 points in fig. 5.8 ¢) we get
that @ & @ 3 , because after removing the points £, and £, we obtain a
configuration of type 4, and after removing the point £, one of type 5.

Similar considerations for configurations in fig. 5.8 d) show that
@ & 2 @ (after removing the points £, and £, we get a configuration of

type 8, and after removing 2'0 one of type 2) .

Removing points £, or 25 from a configuration in fig. 5.8 ¢) we obtain a

configuration of type 12, and removing EO one of type 8 . Hence ‘ 12) & 2 @ .

Finally, let us add a generic point to a configuration of type 10 or 11. Then
removing any other point of the obtained configuration we can get neither a
configuration of type 10, nor 11, because every point of these configurations lies on some
distinguished line.

So all possible cases were considered and hence we have proved Proposition 5.6. g

Theorem A. For an arbitrary field F containing sufficiently many elements:

a) The groups $#(F) and B3(F) are canonically isomorphic.
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b) There is a canonical isomorphism of the complexes

#(P) g~ (By(F) @ F)g 2o (a%F")g

11“3 o [ICEY

By(F) g L (By(F) @ F)g (A"*F")Q

Q

Remark. Diagram (5.20) exists and i8 commutative even if we consider all groups only
modulo 6—torsion instead of @ Q .

3. The homomorphism M, and the specialisation. Let 33(F) be the quotient of
I [Pllz.] by the subgroup generated by the following elements

{0}, {0}, {1} = (), =} — {7}, By(Ly, - E50)
where (£, ... ,£,2) is a configuration as in fig. 5.1.
There is a canonical isomorphism
£: By(F) = By(F)
£: {0}, {o} —0; f: {x} > {x}, xc Px\{0,1,2} .

Note that if just 2 among 4 points 9.0, ,2,3 on a line coincide, then



0 if Ly=0, or ¢ =¢,
ey k) =11 if Ly=10, or Ly=1, (5.21)
o if Lyg=0y or & =0, .

Let us define the homomorphism ﬁs : %(F) —_— ﬁs(F) as follows.

First of all, it is zero on semistable and unstable configurations (i.e. configurations

satisfying condition R1).

Now let (£, ... ,9,5) be a stable configuration such that &,, &, , £, areona

line. Set

ﬁs(lo, ) = -%- E (- 1)i+j(1 +2x) o
0<i,j<?2
(5.22)

A ”~ 1
{:(€y | Lgr - oy - by, by B} +3 {1}

Let us emphasize that we can compute all degenerate terms in this formula using

5.21 because £ # !;j and there are no 4 points on a line among (£, ... ,£5) -

The definition of the homomorphism ﬂs for generic configurations coincides with

the definition of M3 ;

Lemma 5.8. The composition %(F) 3, 53(F) SN B,(F) coincides with M, .

Proof. It is sufficient to check the lemma for the configurations in fig. 5.3 b), 5.3 a) and

M3
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a) Applying formula 5.22 to a configuration 5.3 b) we get

*% (1 + 2X) ° [{r(£5 I 2’0’£1’£31£4)} - {I(f’s | "0:£2s£3’£4} + {r(£5 | 11’12’f‘3’f,4)} -

(5.23)

— (x| 058 25,8 0)} + {r(Lg] L0l 800800} + 5 {1} .
Note that

(241 L0:01:E3.85) = (L5] 80,0 1,89,8 )

So (5.23) coincides with M, (£

3(Lgy - oLg) -

b) For a configuration in fig. 5.3 a) formula (5.22) gives
— 3 [{r(Rg | £p L0 0a)} + 2{x(Ls | €0 0,81 800} + {1(L5] 1,805 )} +
2{r(L5]£,,83,00,8,)}] +3 {1} .
Taking into account (£5|2,, ... ) = (&, L, ... ) , we can rewrite this formula as

1
— 3 x5 12ty £ 0)} + 2{r(Eg £ Ly 1 L)} + {1(E5 [ Ly L)} +
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(kg | Ly )} + 5 {1} = {1(;] L tpty L)} = My(Ry, - L)

c¢)  For the configuration 1, (2,84 and & in fig. 5.3 a) lie on a line) formula 5.22
gives {r(ec|€;,2,,2,,2,)} = {1} according to 5.21.

So in order to compute in the group Z[Pg]/({x}-{x"'}, {0}, {o},
{1} —{4(x)) the image of the 7—term relation corresponding to the degenerations of a
configuration in fig. 5.2 under the homomorphism M, it is sufficient to specialize
formula (5.16) using (5.21).

In particular the Spence—Kummer functional equation for the trilogarithm is just
the image of the 7—term relation for a configuration in fig. 1.3 under the homomorphism

M, — see formulae (1.12) and (1.13).

On the other hand we have proved in 8. 2 of this § that the Spence—Kummer

relation is a linear combination of 3 generic relations Rq(2, ... ,£5,2) -
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§6 H'(Bp(3)) and the algebraic K-theory of 3 field F .

Recall (see 5. 6 of § 2) that %™(n) is a complex associated with the bicomplex

CT(n) . It is placed in degrees — 1, 0, 1, ... . There is a canonical homomorphism
Hy(GL_(F),I) — Hy( 4™ (n), 1) . (6.1)

In this § using the results of § 3—5 we will construct a homomorphism of complexes

(modulo 6—torsion)

— L) — A () — A ) —

l ¥ l ¥s l ¥ (6.2)

* *
0— B,(F) — By(F)8F — AP  ——0
Let us consider the following bicomplex

C,(5) 3 C4(5)
-p p
c,(4) 4o cy4) 4 4) (63)

P P P

C,(3) Lo c4(3) 4 ¢ (3) 4, (3)

Then there is a homomorphism f of the complex, associated with this bicomplex

to the complex Bp(3) that is defined (modulo 6—torsion) in the following way
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C,(5) 4 C4(5)

_pl 7

/ lp
d /(/l/
C7(4) __’/06(4,)« —-—-—5/05(4) (6.4)
P

/
C.(3) Lce(3}%4 C4(3) /L-, C,(3)

lfgf}’/ / 1f:(11/)/ lfi(iﬁ)

€y .6 * 6,30t
0 ——»B3(F) —— By(F)®F = A°F ——0

where all dotted arrows are zero.
Theorem 6.1. f is a well-defined homomorphism of complexes.
Proof. By Lemma 3.6 fgo) op=0.

*
Lemma 6.2. The composition fgl) op:Cqg(4) — By(F)®F  is zero (modulo

6—torsion).

Proof. Let us prove that

{0y, . £ = 33 (D K12y, - 8y - 2] © ];[ AEpty b)) (69)
111
izt

4
Indeed, according to Lemma 2.18 ) (=1)'[x(£;| &, ... &, - ,&,)] = 0. So
i=0



-171 -

4

X 3
i=0
0$j1<j2<j354

But the sum of (6.6) and (3.5) is just the formula (6.5). g
Theorem 6.3. The composition fgz) o p is equal to zero.

This theorem follows immediately from Corollary 7.6 and Theorem 8.1 that will be
proved in § 7 — 8.

Theorem 6.1 follows from the Lemmas 3.6, 6.2 and Theorem 6.3. g

Now in order to construct a homomorphism of the complexes (6.2) we define a

homomorphism @ of the bicomplex Cin_a)(n) to the following one

(6.7)

— 08(5) — C7(5) — 06(5) — C5(5) — C4(5) — C3(5) — 02(5) —C(5) 1
l | l l l l !

— C,(4) — Cg(4) — C;(4) — C4(4) — C4(4) — CH(4) = C(4) — I

! ! l l l l l

—Cg(8) = Cy(8) — C4(3) = C3(3) = Cy(3) —C;(3)— I

Namely, if (2;,..,L )€ C,(n) is placed at the level k in the bicomplex
02‘3(:.) , i.e. we apply to (2,1, ,P.m) the horizontal differential d(k) , (see 2.14
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where the bicomplex C%(n) is presented) then we set

~

@ (g, ) — (8, ... .0 | f’k-{-l, ,f'm) € Cm—k(n -k).
The composition of this homomorphism and the homomorphism f gives the

desired homomorphism of complexes (6.2). Therefore we get the canonical

homomorphisms
Hg_j(GL,(F)T) — H'(By(3)) . (6.8)

(Recall that Bpg(3) is placed in degrees 1, 2, 3) .

In particular
{0 B (GL_(F),1) — BY(B(3)) (6.9 a)
o) : B,(GL,(F),1) — BX(By(3)) (6.9 b)

In § 3 — 5 we have constructed the homomorphism of complexes

C;(3) — C4(3) — C.(3) —Cy(3)

l 1{2) l i{1) l £{) (6.10)

*
0 — By(F) — B,(F)8F — A%F"

So using Lemma 2.11 we get the canonical homomorphisms



-173 -

o{3) : H(GLy(F), 1) — HY(BL(3)) (6.11 a)
%) : B,(GL,(F),T) — BY(BL(3)) . (6.11 b)
Lemma 6.4. The restriction of the homomorphism (6.9 a) (respectively (6.9 b)) to the

subgroup GL,(F) C GL (F) coincides with the one of (6.11 a) (respectively (6.11 b)).
The proof is in complete analogy with the one of Lemma 2.19. g

Finally, the restriction of the homomorphism (6.11) to the subgroup
GLy(F) C GL3(F) is equal to zero, because the resolution C.(3) of the trivial
GL3(F)—module I hasa GL,(F)—invariant section

/4

|

» 8y(3) — T,(3) -

(Namely, if Va=V,8<v>, dimV,=i, then the map n+—n - (v)e 61(V3)
defines a GL(V,) —invariant section Z — Ty(V,)) -

So we have constructed canonical homomorphisms (see § 1)
2 1
¢ K@)y — B (By(3) @ Q)

¢y K[ (F)g— B(By(3) @ Q)
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§7. Th ity of the configurations

1. Generic part of a Grassmannian and the configurations. Let W be a vector space

*
over a field F with basis e, ... € - Let us denote by fl, ,fn the dual basis in W

1!
and by h; the hyperplane #=0in W(He) =6 P

i Let am(n) be the manifold of all m—dimensional subspaces in W transversal to

the coordinate hyperplanes.

R. MacPherson defined a canonical isomorphism between G m(n) and the generic
configurations of n vectorsin V ~([M], [GM]). One of the possible constructions is
as follows: the restriction of the functionals § to a subspace S e G _(n) defines an

*
n—tuple of vectors in generic positionin § .

Sometimes another definition is more convenient: Let 815 e By be a basisin S,

then

The columns of the matrix (a‘ii) form n—tuples of vectors in the coordinate space
F" . Another basis in S leads us to a GL o(F)—equivalent n—tuple of vectors. So the

configuration is defined correctly.

Conversely, let (21, ..., ) be a generic configuration of vectors in V m - Then

n—m

f'm-{-i: z
]=

bje,
1
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and the subspace in W , generated by the vectors

n—m n—m

J . i
e+ ) bleyyiiiey+ ) LECT (1.1)

cotresponds to the configuration (L;, €, . T this case the matix (a}) has the form

1 n—m
1 0....0 b,...... b
o 1 : 17T
Do : = (IB) . (1.2)
" oy 1 n—n
0......... 1 bm ...... bm

Both constructions give the same configuration of vectors because the restriction of

the functionals

. m . e
fm+-|—2 b-i|fl , J=1,...,m
i=1

to the subspace S is 0.
The correspondence
Se am(n) —s Sti={fe W' such that fls =0}

defines the duality G_(n) — G___(n).
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The projections 'Ei of the vectors e, in W/S form a configuration, corresponding

to the subspace S (because (SJ')* =W/S).

n
Note, that 'é'i = - 2 b;‘ 'é'm 4 So the columns of the matrix
j=1
ooyl e e e Y -
-b - 1 0....0
1 m 0 1 0 t
: = (-B ,Im)

give a configuration of vectors in F* ' | dual to the initial one in F™ (formed by the

columans of the matrix (7.2)).

Later on we will be mainly interested in the case n = 2m . A generic configuration
of 2m vectors in F'" may be represented by the m x m matrix B with non—zero
minors. Namely, such a matrix represents a configuration, defined by the columns of an
m x 2m matrix (I,B) . In this case the dual configuration is given by the matrix
_ (B—l)t .

Let T" C GL(W) be the maximal torus preserving all 1-dimensional coordinate
subspaces {Aei} . It acts freely on G (n) . The quotient Gm(n)/Tll can be
canonically identified with the configurations of n points in generic position in P?_l .

So we get a duality
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configurations of n configurations of n
*
points in generic — points in generic
position in PR T position in PR
2. Geometrical deﬁmtlon of the dugn of configurations. We start with the

conﬁguratlons of points in PF (pro;ectlve conﬁguratlons)

Note that a configuration of hyperplanes in PIIE_I gives a configuration of points

ﬁm-l Sm-—1

in Pp " . Let us choose a (projective) isomorphism g : PI}?_l AN Pp * . Then we

get a configuration of points in PIII;.I_1 . This configuration does not depend on the choice

of g, because every two such isomorphisms differ by an element of PGL(n) and hence
give the same configuration. So from now on we will identify configurations of points and

hyperplanes in PI]EI,I_1

Let (21, ,f.zm) be a configuration of points in P?‘l in generic position. Let

us denote by L; (respectively Lp;) the (m —1)-simplex with vertices £,,....0

(respectively € ’£2m) . Then the codimension 1 faces of these simplices form a

RTES
configuration of 2m hyperplanes in Pm_1 and hence a configuration of 2m points in
Pm—l

More precisely, let L. (respectively L _ .} be the codimension 1 face of L

m+i

(Lyy) that does not contain £.(€ +i) .

Proposition 7.1. The configuration of hyperplanes (L;,..,L, ) is dual to the
configuration (£, ... ¢, ).
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Proof. Let (El, ,Ezm) be a configuration of vectors in V that projects to a

configuration (£, ...,L in P(V), dimV =m . Let us denote by f{,, ... f
1 2m 1 m

*
(respectively £ ;... ) the basis in V  dual to the basis ...t

(respectively o) in V.

m+1’

Lemma 7.2. The configuration of vectors (1, ... ,f o’ —fm TR f2m) is dual to the
configuration (tl, ,Z2m) .

m m
Proof. If fm 4= 2 b-i]zj then fm 4= 2 c-i'fj , where we have the relation
=1 =1 |
C=(BT)" between the matrics C=(c)) and B=(b) . Indeed,

n

< fm+i,zm+i/ > = E c;] . b'i]/ = 6ii' . But we have already proved above that the

=1
dual configuration of vectors is described by the matrix — (B_l)t - m

Proposition 7.1 follows from Lemma 7.2. g4
There is a rather surprising geometrical corollary of Proposition 7.1.

Corollary 7.3. Let £, ... ,£, bea (2m)—tuple of points in generic position in P%}_l

and

{1, . 2m} = {i, i U g, i} -
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Let us denote by M; (respectively M jk) the hyperplane generated by the points
k

A

L. ,...,L ,..,L
o % 'm

ively €. ,.. 0. ,..,L; ).
(respectively iy " lm)

Then there exists a projective transformation g e PGL{m) such that
g-M =L, 1<i<2m.

In other words, the configurations (Ll' ,L2m) and (Ml’ ,M2m) coincide,
(m ﬁg. 7.1). ]

0y 43
Liy Lis
05 " — {4
eﬁ Lag' el Mg H‘(
M Mj
Lig 4
2 S Y
Lb L“I
s s
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Proposition 7.1 permits to deﬁné the duality geometrically for any n>m + 2.
Namely, let (£, ... ,8 +k) be a (m + k) —tuple of points in generic position in
PRl apg 2 <k <m. Let us denote by H the (k — 1) — dimensional plane generated
by the points £

. - +k - Set (see fig. 7.2)

m41

fe. 7.2
L=<y, 08,... 0 >,
Mm+j =< £m+1, ’R'm+j’ 't'm+k >,

Mi=LiﬂH (ISISID)

Proposition 7.4. The configuration (Ml’ e M +k) of hyperplanes in H is dual to

the configuration (£, ... . +k) of points in pol
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In order to prove this proposition we need the following

Lemma 7.5. Let (f.l, ,P.n) be a configuration of points in generic position in
m-1
P , (Yl’ .. 2
Then the configuration (E,l, SH Sap ,P,n) in P®1 is dual to the configuration
(Y, NY,...Y, NY,) in Y,.

. ,Yn) the dual configuration of hyperplanes in pim-1

Proof. Choose an se€ G _ (n) such that s-T  corresponds to a configuration

(el, ,en) in P™1  Then by definition, the projections of the basis vectors

L £, onto P(W/s) form a configuration that coincides with (£,...,€ ) . The

1o
configuration of hyperplanes P(Y, Ns) in Ps is dual to it. Lemma 7.5 follows

n

immediately from these considerations. g

Corollary 7.6. Let us suppose that (yl, ,yn) = *(xl, ,xn) (* is the operation of

duality on configurations). Then (yl, S AR ,yn) = *(xi|x1, SHES R ,xn) Cm

Proposition 7.4 follows from Lemma 7.5 and Proposition 7.1 by induction. Namely,

let (2, ..,8, ) be a configuration of points in generic position containing
(£y5 58 +k) . The dual configuration can be represented by codimension 1 faces
Ly, -.,L and Lm+1, - L of simplices (P,l, ,R,m) and (P_m+1, &g ) - The
configuration (11, ’£2m—1) is dual to the one (L1 n Loms = Lom g n L2m) . The

last (m —1) planes are just codimension 1 faces of the simplex (£ TS Lom_p) in

L and soon the geometrical description of the duality in the case n > 2m can be

2m
obtained by inversion of this construction. Namely, let (Ll' - n) be a configuration

P | Let us realize it as a configuration of hyperplanes in an

P ’Mn—m be hyper-

planes in P" ™! such that M, N H =L, . They determine a simplex in P

of hyperplanes in

(m—1)—plane HCP ™ 1 (n_m—1>m-1). Let M
n—m-1
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with vertices mi=.ﬂ_Mj, 1<i<n-m.Let m_ .= N L be the ver-

—m+1 i n-m+)

tices of the simplex (L .o )Ly} in H . Then the configuration (m,, ..., m ) is

n—m+1’
dual to the one (L, ... L ).

The following description of the duality between the configurations of n + 3

points in P and p! may be useful.

Recall that an irreducible curve in P; that does not lie in a hyperplane has degree
> n . Such curves of minimal possible degree n are called rational normal curves. If a
rational normal curve has a point over the field F, then it is projectively equivalent to
the following one

-1 -1
(xo LX) — (xf)l : xg :xoxll1 : xlll) .

For example in the case n = 2 such a curve is a conic.

It is known that through every n + 3 points in generic position in p" passes

exactly one rational normal curve.

Let £, ... ,&

rational normal curve passing through these points. Let us identify C with PII;‘ . Then

be n+ 3 points in generic position in PIFI‘ and C be the
we get a configuration (yl, ,yn+3) of n + 3 pointsin P%‘ .

Lemma 7.7. It is dual to the initial one.
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Proof. Let (Sr'l, ,Sr"n +3) bea configuration of n+ 3 points in P%\ dual to the one
(L) - ,£n+3) . Then according to Corollary 7.5

~

~ ~ ~ ~
(yl’ syiv syn+3) = *(xilxlt yxi: :xn+3) .

By induction we get

P

(;1’ e ’f;i’ b 7;n+3) = (YIP b :Yin b JYn+3)

So we have

~ ~
(yls )yn+3) = (YI; )yn+3) . ||



— 184 -

§ 8. Projective duality and the group ¥ 4(F) .

Let (£g, ...,&5) be a configuration of 6 points such that there are no 4 points
lying on a line. Let us denote by *(to, ,2.5) the dual configuration.

Theorem 8.1. In the group §(F)
*(2.0, ,2,5) + (P,O, ,!;5) =0.
Proof Recall thatif a, ... ,a, are 4 distinct points on a line, then (sees. 2 of § 4)
Lé{r(al) 134)} = _L3{r(a]_)a'2’33sa'4)} _2L3{r(a’1:a3’32334)} + '73
and
Li{x} + L§{x1} = 0. (8.1)

We will abbreviate Lé{r(£j|£i1, ,P,i4)} by writing (j[i; ... i) .

Set Lo:=T, T, NT,T, (see fig. 8.1 a)). Using the 7—term relation for a
configuration (2,0, ,16) , Relation R3 and Proposition 4.12 we have
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& "
Wy
Mg
my
Mg My
a) b)

fig. 8.1

(¢

o -+ 5) = (5]2634) - (5]1634) + (5[1234) — (5]1264) + (5]1263)
—(0]2534) + (0]2536) — (0] 2546) + (2] 0534) — (2| 0536) + (2] 0546)
— (5] 0234) + (5]0236) — (5]0246) + (0]1563) — (0| 1564) + (0| 1534)
—(1]0563) + (1]0564) — (1]0534) + (5]0163) — (5]|0164) + (5]0134)

(8.2)

— (0]4512) + (0|4516) — (0]4526) + 4| 0512) — (4] 0516) + (4|0526)
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—(5]0412) + (5]0416) — (5] 0426) + (0]3512) — (0| 3516) + (0|3526) — (3 0512)
+ (3]0516) — (3|0526) + (5|0312) — (5] 0316) + (5|0326) — (0]2634) + (0| 1634)
— (0 1234) + (0| 1264) — (0| 1263) .

Now let us denote by m,, m;, m,, My, m,, mg the lines Ellz , Pﬁolz ,
EOEI , E4I5 , E3E5 , E3E4 , — see fig. 8.1 b). We will consider them as points in P%‘

Then according to Corollary 7.6 (my, ... ;mg) = *(&, ... ,L5) .

Let mg :=m;m, N mgm, . The corresponding line in P%\ is Eols :

We can express (mo, ,m5) asasumof 2-5+4-9=46 terms of type

Lé{r(m-|m. y .., )} just in the same way as (L, ... ,£.) — see formula (8.2). Let
) L %) iy 0 5

us prove that the sum of this formulae is equal to zero.

For every term of type Lé{r((’.5|£i , & )} occurring in formula (8.2) there
1 4

exists a unique term of type Lé{r(m0|m.i ) M )} such that either
1 4

(2.5 | f.ii, ,P_i4) = (molmjl, ,mj4)

and the corresponding terms have opposite sign in our sum (P.O, ,2_5) + (mg, ... ,m5)

and so cancel out, or



—187 -

(€512, 2 l)(mlmm,mm)

1’1’1’ W3

and in this case the corresponding terms have the same sign, so according to (8.1) their

sum is again zero.
For example, we have
Lé{f(£5| 11:2—2:13:[" )} - Lé{r(mo|m1,m2,m3,m4)} =0

because (see fig. 8.2)

2

fig. 8.2
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(£5 |£1,85,84,84) = (m0|m2,m1,m4,m3) . (8.3)
Indeed, by definition the right configuration of 4 points coincides with the one
(myNmy , myim, ,myAm,,myNm,) onaline m; (in formula (8.3) the lines

m, are considered as points of the dual projective plane), and (8.3) is clear from fig. 8.2.

Another example:

- Lé{r("5| 21)£6:£3!£4)} - Lé{r(mo I m51m2|m3!m4)} =0

because (see fig. 8.3)

Mo

fig. 8.3
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(L] 11,16,13,14) = (mo | ma,ms,m4,m3) .

Similarly (by duality) the same assertion is true for Lé{r(£0|£j - ,l’.j )} and
1 4

Ly {x(mg|m; , .. m; )}
Lemma 8.2.

a)  Lj[{(Ey| Ly tq )} — {x(m; | mymgmem)}] = 0.
b) L3l {r(Ly| Ly sy te)} - {x(my| mpmym;,me)}] = 0.
Q) Lj[{r(Ey] Ly e )} — {x(mg| momgm, me)}] =0

Proof. a) Let x=Eq8, NE,E, (seefig. 8.4).
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fig. 8.4

Projection onto the line m, shows that
(£2|£ £.,L 24) = (£5|x,£2,£3,£4).

Ut T

Projection onto the line m, gives

(L5 x,L5,84,2,) = (m; [my,my,m,,m,) .
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So we get a).

b) Projection onto the line m, gives (see fig. 8.5)

fig. 8.5

It remains to use (8.1).

¢) Itis proved in complete analogy with b). g
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Similar lemmas are valid for the projections with center at the points ?,1 , £3 and
£, , occurring in formula 8.2. Theorem (8.1) is proved.
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§ 9. Theorems 1.9 and 1.10

1. There is the following complex Mea.s(C.(CPn)) of measurable functions on

configurations of points in cp? (see 1.18 a)):
— Meas C,(CP?) — Meas Cg(CP?) — Meas C,(CP%) — ...
Theorem 9.1. dim H%(Meas C (€P%) = 2.

Proof. (Compare with proof of Theorem 7.4.5 in [Bl 1]). There is a complex of
PGL4(C)—modules (c‘,a) , where Cl .= Meas ((CP2)i+1,R) is the space measurable
functions on (QZP2)H'1 . It is well-known ([Bl 1]) that C® is a resolution of R by
topological PGL,(€) — modules. Indeed, if feC' is a cocydle, i21, then
i+l )

2 (- I)Jf(xo, e X s ’xi+1) =0 (a.e.). Choose y € €P? such that

j=0

f(xg, - %) = 3 (= 1YH(yxg, ... ,Qj, )
=0

for almost all (x, ... ,x;) . Taking g(xO, e X_g) = 13Xy, o %) weget Jg=1.1f
feCO, df =0 then f=const.

* *

°
So we have H_ .(PGLy(C),R)=H_ .(PGL,(C),C") . Let us compute the

spectral sequence

P4 _ g4

D' = BY 4 (PGLy(€),CP) — HR TS (PGLy(C),R) .

cont
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Let P, be the stabilisator of i generic points of €P? . Then P, =P, = {e} ;
P, = (QZ*)2 and P, (respectively P;) is a semidirect product of (C*)2 (resp.
¢ x PGL,(C)) and the abelian group €2 . A measurable version of Shapiro’s lemma
([Gu]) shows that

EP9 = HY(P

P R).

p+1’
The standard trick (see [S1], § 1 for a discrete version) shows that
* * * 92

* * *
H, (P,R) = H (€ x PGLy(C),R).

cts

So (see fig. 9.1)
41 31 3,2 _ .. »2,3_ 1,3 _
E1 —O,E1 _E1 —O,El -~E1 =0
: ]
5 0
4IR0\\ L)
3 ¢ ‘5\0\ ® 9
S~
~ ~ 4,5
2 [ ] ® — @ ds\.o [ ]
\\
0
.
0o © ® . ® . e
0 1 3 4 5 P
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Lemma 9.2. di’2 : Ei’z — E§’2 is an isomorphism.

4

40 _ o4 ot _
Note that E = H_, (C x PGLy(C)R)=R . But H,,_

(PGL4(C),R) =0 . So we

have a nontrivial differential

4,0 4,0, 4,0 0,5 0,5
d5 .E5 gEl —-»Es gEl .

Therefore
dim E®® = dim B, (PGLy(C),R) + dim H_ (€ x PGL,(C),R) = 2.
Theorem 9.1 is proved. =
Corollary 9.3 dim H°(Meas C4(€P%)) = 0.
Proof. Follows immediately from the proof of Theorem 9.1. -

Analoguous but more complicated arguments prove a continuous version of

Theorem 1.10 (see Theorem 1.9).

The complex involution z——z acts on the 2—dimensional vector space
E(I)’5=H6(Mea.s C.(CP2)) with eigenvalues +1 and -1 . The corresponding
eigenvectors are (2, ... ,L5) and d*f£3)(£0, - ,€g) —sees. 5ands. 7 of § 1. Their
restriction to a degenerate configuration presented in fig. 1.12 is  #4(z) and
Zp(z) - log|z| , where z = r(£5|2,0,ﬂ,2,£1,£2) (see fig. 1.12). This proves Theorem
1.9.
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Theorem 1.10 follows immediately from Theorem 1.9. Indeed, we have the
isomorphism M, : 73(F)Q = B3(F)Q , 50 any continuous function f satisfying the
functional equation f(R3(a,b,c)) =0 defines a continuous skew—symmetric function
M, of on stable configurations of 6 points in cp? satisfying d;(M3 of)=0.

Therefore we have
Myof=dgp+ A « K+ - (d 1),

(M= ALy, ... L) and d*fgs)(to, ... Lz) are functions constructed in 5. and s. 7
of § 1).

*
But the restriction of d ¢ to a degenerate configuration represented in fig. 1.12 is

0 (see proof of Proposition 1.11), and the restriction of the other terms is

AL 4(2) + Ay By(2) - log|z| (z:=1(Lg| L5002 ,24))

2. Let Cn(Pz) be the abelian group generated by all n—tuples of points in P2 and
Cz'lt(P2)Q the subspace of skew—invariants in Cn(P2)Q with respect to the action of
the permutation group S . Then C:’lt(Pz)Q is a resolution of the trivial PGL,(F) -
module Q and

Hy(PGL,(F) Q) = Hy(PGLy(F),C3'4(P2)) .

So we have a spectral sequence associated with the stupid filtration on Cillt(P%)Q It is
easy to prove that Eg’s is generated by classes of (degenerate) configurations in fig.
1.12 (in fact, we already used the necessary arguments in 8. 6, 7 of § 1). (Unpleasant)
computation of higher differentials in this spectral sequence shows that
ker(Q [Pll;.] — B2(F)Q ® F;) maps to H(PGL4(F),Q) . In particular a configuration
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in fig. 1.7 (that corresponds to A{1} € Q [P%.]) gives a class in H,(PGL4(F),Q) for an
arbitrary field F .

J. Dupont told me that he studied this spectral sequence several years ago and got
similar results (unpublished, private communication). In fact his arguments are more

clear and elegant. I hope we will have the pleasure to read his paper in the near future.

Recall that in 5. 5 of § 1 we have constructed an honest, everywhere defined but
discontinuous 5—cocycle of PGL4(C) . Its restriction to a class in H,(PGL,(C),Q)
represented by {1} is equal to .%(1) = (0(3) (because the restriction of the function
"‘3(2’0' ,2,5) to the configuration in fig. 1.7 is just .%(1) —see § 1). On the other
hand by the Borel theorem for F = @ the restriction of the Borel class to a class in
H5(PGL3(Q),Q) is a rational multiple of CQ(s) . So the class constructed above is a
rational multiple of the Borel class in Hgts(PGLa(ﬂl),R) . Another proof of the
5 (PGL4(C),R) follows from Theorem 1.9 —

cts
see 8. 7 of § 1. The non—triviality of this class follows also from explicit formulae of the

non—triviality of the constructed class in H

next § combined with recent results of J. Yang [J2] about the relation of the
. . . 5
Hain—MacPherson trilogarithm and H_, (GL4(€),R).
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§ 10. Explicit formula for the Grassmannian trilogarithm.

Recall that am(n) is the manifold of all m-dimensional subspaces in the
n—dimensional coordinate vector space W transversal to coordinate hyperplanes. R.

MacPherson considered the truncated simplicial Grassmannian 6(3) :

% 0~ S, . %0 .

T G4(8) T Gy(5) 7 G,(4). (10.1)
— — —3

% 85 Bg

Here 8 denotes the intersection with the i—th coordinate hyperplane. We have the

following homomorphism of abelian groups:
m:Z[G (n)] — C_ (n—m) (10.2)

where m(S) is the image of the coordinate vectors in W/S . Applying it to (10.1) we

get a truncated simplicial abelian group

5 50 50
T Cg(3) T C5(3) T C4(3)
—t —t —

The corresponding complex of abelian groups is just the Grassmannian complex C(3) .

In § 3 — 4 we have constructed a canonical homomorphism of complexes

f:Cg(3) — BR(3):



-199 -

—4 g8 4 c(3) —L- (3

R
By(F) —— B, (F)eF —0 A%

Now let F = ((X) be the field of functions on an (open) manifold X/€ . Let us

construct explicitly a homomorphism of complexes

B, (€(X)) —3— By(€(X)) @ ¢(x) —— A3e(x)’

l (3) l (3) l (3)
0 1 2

0
€ — % — O

(Qx,d) is the C®-de Rham complex on X . Then the composition ri(3) o fgig om
defines an i—form w, on 6}3_1(6 —1) . The collection of these forms will represent a
cochain w in the complex computing the Deligne cohomology 115(&(3),R(3) g) of the
truncated simplicial Grassmannian such that Dw = Re(vol3) , where D is the total

differential in this complex and vol3 is the canonical holomorphic 3—form with
dx, . dx, . dxg
X

logarithmic singularities on G, (4) = (€')® | voly = =
1 X2 %3

precisely this means that we will construct a collection of forms w; such that

. More

s ok .
J

Set

$i2)} = ()
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{3{1(2)}, ® g(z) := — %(1(z))darg g(z) +

7 log|g| (tog|1—£| dlog |f| —log|f| dlog |1—f|)

SRACRIONAOE
LS (1)l9lo-(siog|t, | darg £, darg fy-og|, |dlog| £, | Adlog |1, ).

aeS

fa—y

2 3
A A
Tz_Ts—]

"1

a) dr(3)(f A f2 A £3) = [df
b) dor(3)—r(3)odfor i=0,1.
Proof. a) — clear;

b) d4(z)=- 4(z)dargz +
+ 3 log|z| (log |1 —z| dlog |z| ~log|z| dlog |1—z|),
d(~ %(z) darg w + 310g| w|(log| L —2| dlog |z| —log|z]| dlog |1-2|)) =
= (log|1 —z| darg z —log|z| darg (1 —z)) A darg w —
~ 3 (log|1—z| dlog |z]| —log|z| dlog |1—z|) & dlog|w| .
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In the following paper we will see how these formulae enable one to compute
explicitly the (3—d)—th Chern class in the Deligne cohomology of an n—dimensional

vector bundle over X .
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Appendix
The duality of configurations of poinis in the plane and a "resolution" for K,(F) .

The Bloch—Suslin complex Bp(2) can be considered as a "resolution” for K(F) .

More precisely, H[P%\\O,l,m] is the free abelian group generated by all Steinberg
*

relations in A2F  and R,(F) C ll[PFl,\O,l,m] is a subgroup of the kernel of the

homomorphism
2[PL\0,1,0) £ A%F
§:[x]—(1-x)Ax

which is defined universally for all fields F . So (by Suslin’s theorem) K:i,“d(F)Q is the
quotient of Ker § by the "universal" kernel of § (modulo torsion).

Now let us try to continue the process of comstructing of the "resolution" for

K, (F) . For this let us consider the homomorphism

Cy(Pg) 5 € (PR A(Rgy Rypxg) + (xXgxgx)} =
(1)

Z(PE\0,Le]l /{[x] + [x 1}

4

(xgp x> J (=1 o Ky e 1%y)
i=0
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(We factorize by the skew—symmetry relations [x] + [x'l] only for convenience).
Then by definition R,(F) = §(C4(P')) -

It is obvious that J(CG(P%.)) C 05(P11,) lies in the kernel of the homomorphism
(A 1). Let us construct elements in this kernel that do not lie in J(CB(PFI.)) .

Let us define an involution s : Cs(P%,) — 05(P%,) as follows. For a configuration
(xU, e %y) € CS(PII;.) consider the configuration of 6 points in P% as in fig. A 1.1 such
that

(,.'N

fig Al
(L5] Ly, - 84) = (xg, - X4) -

Put n= E0E4 n l’lls . Set

S(xgs - xq) = (L5 | L5, L1m,840.0 ) -
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We will prove that s2 = id a little bit later.
Lemma A 1

(£51€in,8308,) = (25| L0l La:y)
(L5121 L58,) = (L5280 Lo )

(£5) €081 m25) = (5| L0 Ll yi5)

(€51 Lol mLy) = (5] 20,8,,85.8,) -

Proof. Consider the projection onto the line nEOE 4 — see fig. A1 — we have

(£5)£0m,258) = (£5] Lo Esly) = (E5]20,8 185, L)
The projection onto the line EOE1E2 gives

(f's | 20,11,15,22) = (£5 | £0)£’1)£31£2)' |

It follows immediately from this lemma that 6((xg, ... x4) —8 * (%, ... ,}%4)) =0 in
H[P%‘\O,l,m] {[x] + [x_l]} . Now let S,(F) be the subgroup of C5(P%‘) generated
by #(Ce(Py)) and the elements (xp, ... ,x,) —8(xp, . %,) - Then we have the
following complex ﬁz(F)

Cy(PL)/Sy(F) - T[PLNO,L0] /{[x] + [x 11} - A%F

(the left group is placed in degree 0 .)
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It was A.A. Suslin who first considered the subgroup S,(F) (unpublished). In fact,
he defines in coordinates the elements (xy, ... ,x,) —8(xg, ... ;x,) . (Our contribution is
an invariant geometrical definition.) A.A. Suslin proved that Ho(ﬁ2(F)Q) =
K P] (F)Q . According to the rank conjecture 1.22 and the Beilinson—Soulé conjecture
for K,(F) the last group should be zero. So S,(F) should give all relations between

5—term relations for the dilogarithm.

It would be interesting to find all relations between the functional equations
R,(a,b,c) for the trilogarithm.

Now set

(mg, .. ;mg) = *(Lg, ... &) .

Lemma A 2. If (£, ...,¢;) is asin fig. A 1 then the dual configuration is as in fig. A 2

and
(m2 | mO,ml,ms,m3,m4) = (£5 | 2.4,13,11,%1,?.0) . (A2)

Proof. Let us use the geometrical definition of the duality of configurations. Consider a
pair of triangles (£,,8,,8,) and (£,2,,8;). Then we have 3 sides m,:=T,T

0"~ "475
m, := E2E3 y My = E0E4 that contain 9,4 , and 3 sides mg ;= EOEI y My = !:02:5 ,

m = EOE4 containing £, . So the dual configuration (m,...,m) is as on fig. A 2.
Further, the intersection points of the lines mg, m;, Mg, Mg, M, with the line m, are
obtained by projection of the points £ n 2,3, n, 2.1, "0 with the center at 1’.5 . So we
have (A 2). ]
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It follows from Lemma A 2 that s2 =id.

Note also, that Lemmas A 1 and A 2 prove Theorem 8.1 for configurations

(2 Lg) asinfig. A L.

0 -

Proposition A 3. For a generic configuration (P.O, ,15) of 6 points in P%

5 .5
8() (<1) (4] Lg - oy oo slg) = ) (<1) (m;]mg, ... 0, .. mg)) = 0.
i=0 j=0

my

fig A2
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