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Introduction

1. The classical p-logarithm function is defined in the unH disc Iz I ~ 1 by the abso­

lutely convergent series

(D n
Li (z):= l !....

P nP
n=1

It has been investigated widely during the last 200 years - see the book of L. Lewin [L].

The most extensive literature exists for the dilogarithm Li2(z), defined by Leibniz

(1696) and studied by L. Euler (1776), W. Spence (1809), N.-H. Abel (1828), E. Kum­

mer (1840), ... ([L]). One of the most interesting results was the functional equation

for the dilogarithm that generalizes the addition formula in x + In y = ln(xy) for the

logarithm (x,y > 0) .

In the middle seventies the dilogarithm appeared surprisingly in the work of

A.M. Gabrielov, I.M. Gelfand and M.V. Losik [GGL] on the combinatorial formula for

the first Pontrjagin class, of S. Bloch [BI 1] in algebraic K-theory and values of

zeta-functions at the point 2, and of D. Wigner in continuous cohomology of GL2(() .
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In tbis paper we propose a geometrical approach to the theory of the classical

trilogarithm function Li3(z) based on the study of configurations of 6 points on the

projective plane, and obtain analogues of most of all the above mentioned results related

with the classical trilogarithm, including:

a) the generic functional equation for Li3(z) j

b) Hs connection with algebraic K-theory, weight 3 motivic cohomology,

characteristic classes and an explicit formula for a 5-eocycle representing a

continuous cohomology class of GL3(() ;

c) the proof of D. Zagier's conjecture [Z3]: the value of the Dedekind zeta-function

of an arbitrary number field at the point 3 is expressed by an (r i + r2)­

determinant" whose entries are rational linear combinations of values of the

classical trilogarithm. at (complex embeddings of) some elements of this fjeld.

2. In § 1 of tbis paper we construct for an arbitrary fjeld F a complex r F(n) that

hypotheticallyafter G) ~ should give weight n motivic cohomology of Spec F .

Namely, let 11 [P~] be the free abelian group generated by symbols {x}, where

x E. p~ . We define for every n ~ 1 a certain subgroup .9ln(F) ( 11 [P~] reflecting the

functional equations for the classical n-logarithm function (for the precise definition

see s. 9 of § I). For example, ~ (F) ia the subgroup generated by the elements

{xy} - {x} - {y} where x,Y E. F*\l (P~\{O,l,(D} , reminiscent of the functional

equation for log I · I . We set

~n(F) := 11 [P~] / ~(F) .

*Note that ~ (F) = F . Then we construct the following complex
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(0.1)

The differential 5 is defined by the following fonnulae ({x}m is the image of a

generator {x} in ~m(F»

5 : {x} 8 Y1/\ ... Ay ~ {x} 1 8 x /\ Y1 A ... /\ Ym n-m m- n-m

if m ~ 3 and

Then 52 = 0 modulo 2-torsion.

Let us denote this complex, where .jln(F) is placed in degree 1, by r F(n) .

For an abelian group A we set A~:= A 8 ~ .

Conjecture A.

[n/2J
Kn(F)Q ~ i ~O H

n
-

2i
(fF(n)Q) .

For a more precise conjecture see s. 9 of § 1.

(0.2)

(0.3)
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The existence of such complexes was conjectured by A.A. Beilinson [B 1] and S.

Lichtenbaum [L 1]. Another construction of complexes that hypothetically should

satisfy all Bcilinson-Lichtenbaum axioms was proposed by S. Bloch [BI 2] and S.

Landsburg [La].

For number fields Hi{rF{n)~) should be zero for i 2: 2 and

Kn{F)~ = Ker 6 C ~n{F) . In this case our conjecture coincides with Zagier's conjecture

[Z 3].

Weight 2 motivic complexes r{Xj2) for a regular schem.e X were constructed by

S. Lichtenbanm [L2]. In s. 14 of § 1 we suggest a construction of weight 3 motivic

complexes r{Xj3) ~ ~ for a regular scheme X and - more generally - weight n

complexes r{Xjn) 8 ~ for a smooth curve over an arbitrary field F.

3. A.A. Beilinson conjectured [E 1] that there sho~d exist a mixed Tate category

~(F) of mixed Tate motivic sheaves over spec F . So the usual Tannakian arguments

tell UB that there should exist some graded pra-Lie algebra

--m
L{F). = EB L{F).

. 1 11=-

such that the category of finite dimensional graded representations -of L{F). is

equivalent to the category vItr{F) (see also s. 10 of § 1). Let ~(n) ~ be the trivial

l-dimensional L{F).-module placed at degree - n and let i be the i-filtration on

K-groups [So].
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Conjecture (0.1) (A.A. Beilinson [Be 1])

v
Let UB denote by W the dual spare to a vector space W over q. If W ia a

profinite vector space, then W
V

will be an inductive limit of finite dimensional vector

Space8. and vice versa. Note that ~ [P~] . ia an inductive limit of finite dimensional

vector spaces and, aa we will see below, the same ia true for Bn(F)(l' So, for e.'"tample,
*v

Fq ia a profinite vector space.

Conjecture 0.1 ia the case i = 1; n = 1 just means that

-(I)

Set L(F)< 2:= fB L(F).. The space of degree - n generators of the Lie alge-
-- i=-2 1

br2. L(F)5_2 is isomorphie to the degree - n subspace of the graded vector space

L(F)5_21[L(F)5_2' L(F)~_2] The Lie algebra L(F) acta on
*v

L(F)5_21[L(F)5_2' L(F)5_2] through its abelian quotient L(F)/L(F)~_2 ~ F~ . It

tumB out that in Beilinson's World (a world where his conjectures are theorem.s)

Conjecture A is equivalent to the following

Conjecture B.

a) L(F)5_2 ia a free graded pro-Lie algebra such that the dual of the spare of its

degree - n generators is isomorphie to 3n(F)~.
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b) The dual map to the action of the quotient L(F)/L(F):5_2 on the spare of degree

- (n -1) generators of L(F):5_2 is just the differential

in the complex (0.1).

In this paper we will give strong evidence for this conjecture for n ~ 5 .

I am very grateful to A.A. Beilinson for many illuminating discussions, interest and

encouragement; in particular, he helped me to understand that Conjecture A ia a

corollary of Conjecture B. I would like to thank M.L. Kontsevich for useful remarks and

B.L. Feigin, Yu.I. Manin, J. Nekoval, A.A. Suslin, V.V. Schechtman and D. Zagier for

interesting conversations.

A considerable part of this work was written during my stay in the Max-Planek­

Institut für Mathematik in May and the Institut des Hautes Etudes Scientifiques in the

beginning of June 1990. This work was completed during my stay at Mathematical

Depanment of the MIT in fall 1990, where I was supported by Alfred P. Sloan

Foundation grant N 90-10-14. My special thanks to Frau Wolf-Gazo and Frau Sarlette

(MPI) for careful typing of the manuscript and to the MPI, IHES and MIT for their

hospitality. I am indebted to Herbert Gang! (MPI) for his help in preparation of the

manuscript for print.
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Let me give some comments that may be helpful to read this paper. Most of all

important results and conjectures are formulated in § 1. Moreover, s. 9-15 of § 1 are

completely independent from the rest of the paper. To understand the proof of Zagier's

conjectnre it ia sufficient to read s. 0-4, 7 of § 1 and § 3, 4, 6, 10 only. Most important

are s. 3 of § 4 and Theorem 4.2. The long calculations in s. 1 of § 5 are given in order to

write the explicit formula 1.10 for the functional equation for the trilogarithm; we don't

use tbis explicit formula, only its geometrical interpretation given by Theorem 1.4 (see

also s. 6 of § 1); s. 2 of § 5 ia a detailed exposition of s. 6 of § 1. The results of § 7 are of

independent interest.
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§ 1. Main results and CQnjectures.

O. The single-valued versions pf p-logarithms. Note that

Li1(z) = -log(1 - z); ~ Lip(z) = Lip--l(z) d log Z •

So using the inductive formula

Z

Lip(z) = JLip-l(t) ~t

o

(1.1)

the p-logarithm can be analytically continued to a multivalued function on

(pl\O,I,m. However, S. Bloch and D. Wigner introduced the function

D2(z) := Im(Li2(z)) + arg(1 - z) . log Iz I

which ia single-valued, real-analytic on (pl\O,I,m and" continuous (hut not

differentiable) at O,I,m. It has a singularity of type x · In x at these points and

It ia called the Bloch-Wigner function.

(1.2)

The corresponding function for log z ia just log Iz I . Analogous functions Dp(z)

for p ~ 3 were introduced in [R] and computed explicitly in [ZI].

However, let us consider the slightly modified function



-11-

Note thai D3(z):= ~(z) + hlog2 1z I • logI z 2 . ~(z) is single-valued,
. (1-z)

real-analytic on (p1\O,l,oo, and continuous at 0,1,00. We have

(I)

~(O) = ~((I)) = 0) ~(1) = l ~ == (~(3) .
n=l

n
(1.4)

(The advantage of the function ~(z) is that, aB we will see below) it satisfies

functional equations without remainder terms.)

Such modified functions {(z) for all p ~ 3 were considered by D. Zagier,

A.A. Beilinson and P. Delignej in [B 1] and [De 2] the Hodge-iheoretic interpretation

of the fnnctions Dp(z) and {(z) is given. The definition of these functions is as

follows ( [Z 3] ):

P ~.B. .
{(z) = .9tp( 1: 7 (log Iz I~ · Lim_j(z))

j=O

where Bj is the j-th Bernoulli number (Bo= 1) BI = - 1/2, B2 = 1/6, ... ) and

~ is the real part for odd m and the imaginary part for even m) LiO(z):= -1/2 .

1. J3(~) and 'F(~) for a number field F. Let 71 [P~ \0,1)00] be the Iree abelian

group, generated by symbols {x}, where x E. P~\O,l,m (F is a field).

There is a homomorphism
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A similar homomorphism can be defined far any IR-valued function.

Now let F be an arbitrary algebraic number field, dF the discriminant of F, r1

resp. r2 the number af real resp. complex places, so [F:~] = r1 + 2r2 ,and 6"j the

set of all possible embeddings F C-....+ (, (1 ~ j ~ r1 + 2r2) numbered so that

ur1+ k = url+r2+k .

Let üB denote by ~(F) the subgroup of II [P~\O,l,CD] generated by the

expressions

{x} - {y + {nu - :-:=;} + {~},

where x f y J X f 1 , Y f 1 .

Set B2(F):= II [Pi] /~(F) .

Let üs consider the following homomorphism

(1.5)

6": {x} ......... {x}2 QDx

({X}2 is the projection of {x} onto B2(F)) .
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Theorem 1.1. Let 'F(s) be the Dedekind zeta-function of F . Then there exist

Y1' ... ,y + E. Ker 6' ( ~ [PF
1

\O,l,m]r 1 r 2

such that

For s = 2 a similar result was proved in [Z 4]. It also follows directly !rom

results of A. Borel [Bo 2], S. Bloch [BI 1] and A.A. Suslin [S 3] . A more elementary

proof, which uses only the result of Borel [Bo 2] and the 5-term functional equation for

the Bloch-Wigner function is given in § 2.

D. Zagier has conjectured that the analogous fact should be valid for all integers

s ~ 3 and has given some striking numerical exampIes [Z 3] .

For the proof of Theorem 1.1 we give an explic:it formula, expressing the Borel

r l +r2regulator r3 : KS(() ---t IR by ~(z), and then use the Borel theorem [Bo 2] .

2. The pronerties of the Bloch-Wigner function. First of all let us recall the remarkable

2-variable functional equation for the dilogarithm, discovered in the 19th century by

W. Spence [S], N.H. Abel [Ab] and others [L]. Its version for D2(z) is as follows.

Let r(xl' ... ,x4) be the cross-ratio of a 4-tuple of distinct points on pI. Recall that

the cross-ratio is PGL2-invariant. If ~. are coordinates of the points x. , then
1 1
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(1.6)

For every set of 5 distinct points on pi set

4
i A 1

~(xO' ... ,x4):= l (- 1) [r(xO' ... ,xi' ... ,x4)] E. 7Z [P \O,l,m] . (1. 7)

i=O

Then for D2 : 7Z[P~\O,1,m] --.IR (D2 [z] := D2(z» we have

(1.8)

The Bloch-Wigner function D2(z) also satisfies the relation

(1.9)

where Iq I is the sign of the permutation (J. This means that

(1.9')

The relation (1.9) is equivalent to the degenerate case of the functional equation

(1.8) when just two points Xi coincide. Indeed, in this case D2(r(xa, ... ,x3» = 0

according to (1.2). So if, for example, ~ = x4 = x then (1.8) means that

D2(r(xO,xl'x3,x» + D2(r(xOJxl'x,~» = 0 and so on.
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The relation (1.9) can be deduced formally from (1.8). This means that the

difference of the left- and right-hand side of (1.9) can be represented as a sum of several

expressions (1.8).

Moroover, it seems that any functional equation for the Bloch-Wigner function

D2(z) can be deduced formally from the one (1.8). The reasons lie in algebraic

K-theory- see s. 10 below.

U is well-known that log I · I is (up to a multiple) the unique continuoUB function

satisfying the functional equation f(xy) = f(x) + f(y) . Thanks to S. Bloch, we know a

similar characterisation of the dilogarithm:

Theorem 1.2 [BI 1] . Any measurable function on Pt satisfying the functional equation

(1.8) is proportional to the Bloch-Wigner function D2(z).

3. The generic functional eguatiQn for the trilogarithm.. We see that for better

understanding of the properties of the dilogarithm we ought to interpret its argument as

a cross-ratio of 4 points on a line and then consider 5--tuples of points.

1t turns out that the generic functional equation for the trilogarithm also has a

geometrical nature: it corresponds to a special configuration of 7 points on the plane.

Namely, let xl'~,x3 be vertices of a triangle in pi (Le. these points are not on a

line); Y1'Y2'Y3 are points on its "sides l1
x1~' ~~ and x3x1 and a point z ia in a

generic position (see fig. 1.1).
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•r

fig. 1.1, 1.2

Further denote by (Yl 1Y2'Y3'~'z) the configuration of 4 points on a line, obtained by

projection of the points Y2'Y3'~'z with center at the point Y1 (see fig. 1.2). Set

(1.10)

+ {r(z IYl'~,xl'Y2)} + {r(z I~,~,xl'Y2)} - {r(z Ix3'Yl'xl'Y2)}]
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where T: xi ........... xi + 1 , Yi .......... Yi+1 (indices modulo 3) (for example

r
2

0 {r(y1 1Y2'Y3J~ ,z)} = {r(y3 1y1'Y2,x1,z)} and so on) and, by definition,

{I} = {x} + {1 - x} + {I - x-1} for sorne x E. F*\1 . As we will see below, the

choice of x is inessential for our purposes.

Theorem 1.3. In ihe case F = ( ihe following holds:

a) Ji({x}-{x-1})=0

b) Ji({x} + {I - x} + {I - x-1}) = Ji(1) == 'Q(3) .

Remark. Let us consider all possible configurations of 4-tuples of points on a line,

obtained by projection of same 4 points among xi'Yi'z with the center at a fifth one. Let

us 8ay that two such configurations are equivalent if they differ only by apermutation of

points. It is interesting that formula (1.10) contains just one represeniative for every

equivalence class of configurations obtained in tbis way.

Let U8 give a more conceptual version of the functional equation. The function

Ji(r(xI , ... ,x4)) that apriori is defi~ed on configurations of 4 distinci points in (pI

can be prolonged continuously to the sei of 4-iuples such that just 2 of ihem coincide by

the following rule:
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2
Let (lO' ... ,f,S) be a 6-tuple of distinct points in P( such that lO' ll' l2

lie on the Bame line, but there are no 4 points among the t i with thiB property. Put

~'(r(xl' ... ,x4)) := - ~(r(xl'~,x3,x4)) - 2~(r(xl'x3,~,x4)) + ~(1) and set

It can be proved using the identity ~(x) + ~(1 - x) + ~(1 - x-I) = ~(1) that

these definitions are correct.

, Now let (lO' ... ,l6) be a configuration as presented in fig. 1.1'. Then for every i

'"there are 3 points among (lO' ... ,li' ... ,t6) that lie on the same line.

fig. 1.1'

Theorem 1.4. For a configuration (lO'.'. ,f,6) as in fig. LI'

6

l (_l)i ~(f,O' ... ,ti' ... ,t6) = 0 .
i=O
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We will prove in § 5 that the functional equation (1.10) can be deduced from tbis

one using only the relation from Theorem 1.3 b). (This is not quite obvious: for example,

all coefficients in 1.11 are 2:: 1/3 ).

2Now let (to' ... '(5) be a configuration of 6 points in generic position in P «: . Put

t 6 := lQll nt::;l3 (see fig. 1.11 in s. 6 below) and

(The right-hand side was already defined in (1.11)). We will prove in § 5 that this

function ~(to' ... ,(5) is skew-symmetric with respect to permutations of points t i

and satisfies the 7-term. relation

6

l (_I)i .M3(to' ... ,ti' ... ,(6) = 0 .
i=O

(1.12)

4. Exolicit formula for a 5--cocycle representing a dass of continuous cohomology of

.ill!3({)

Choose a point x E. (p2 . Then there is a measurable cocycle

~x) : GL
3
(() x ... )( GL

3
(() -i IR

, v ~

6 t imes

(1.13)
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It is certainly invariant under the left action of GL3(() . So the 7-term relation (1.12)

just means that r<x) is a measurable cocycle of GL3((). Different points x give

cohomologous cocydes.

The function ~(z) is eontinuous on (p1 and henee bounded. Therefore the

funetion r<x) is also bounded. Applying Proposition 1.4 from eh. Irr in [Gu] we see

that the eohomology dass of ihe eocycle (1.13) lies in

(1.14)

*where Hcts(G,R) denotes the eontinuous eohomology of a Lie group G. Recall that

(see [Bol])

(1.15)

2i-1( ())where ui €. Bets GLn (,R . The subspace generated by the element ui is called the

indecornposable part of H~~;l(GLn({),R). In partieular, dirn H~ts(GL3((),R) = 1 .

The eonstructed cocyele represents a non-trivial eohomology elass.

5. Funetional eguations for the trilogarithm in coordinates. Let us now write

R:J (xi ,Yi'z) in coordinates. Choose homogeneous coordinates for the points

follows:

[;
0 0 1 1 0

;]1 0 1 a 1

0 1 1 0 b
- - - - -

xl x2 x3 z Y1 Y2 Y3

X.,z,y. as
1 1
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Then R:J(xi'Yi'z) coincides with R3(a,b,c), where

R3(a,b,c):= l8 ({ca-a + I} + ea;:+1} + {cl + n~~~tHb}-
cycle

(1.16)

_ {ca-a+l} + { bc-e+l a} _ {(bc--e+1Joc} _ {I}) + {- abc} .
c ca-a+ ca-a+1

Here Ei f(a,b,c):= f(a,b,c) + f(c,a,b) + f(b,c,a) , and according to Theorem 1.3 a) we
cycle

do not distinguish between {x} and {x-I} .

It is interesting that all coefficients in this formula are equal to one.

Let üS consider a specialisation oI this formula setting a = 1 . Then we get

R3(l,b,c) = - {(bC-<:!l)} - {(bCli+1)} - {(bc -c + l)b}
· bc

(1.17)

+ 2({(bc&+1)} + {- {bc~+11} + {bc - C+ l} + {- bc} + {b} + {cl - {l}) .

From the geometrical point of view R3(I,b,c) corresponds to a configuration of 7

points as in fig. 1.3 (z lies on the line x3Y1) .
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fig. 1.3

The corresponding functional equation for the trilogarithm coincides with the

classical Spenee-Kummer one, discovered by W. Spence in 1809 eS] and,

independently, by E. Kummer in 1840 [K] - see eh. VI in Lewin's book (L]. To see

. bc~+l b-l
this let ns set x = fie y = 0 . Then we get

{
(x-Y)x}' {xe l-Y)} { x }

- ~ - x-y - (x-y) (I-y) +

+ 2({~} + {x~y} + {Fr} + {y -x} + {l-y} + {x} - {I}).

Substituting v = ---.!=L, u = +i we obtain the last formula in section 7.2 of eh.y=x=r x-y
VI in [L].

The Spenee-Kummer equation (1.17) can be deduced formally from Theorem 1.3.

More precisely, it eau. be represented a8 a sum of 3 generic equations (1.16) - see the

proof of Proposition 5.6. The validity of the converse statement ia an interesting

problem.
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Let üS emphasize that the functional equation for the function ~(z) has no

remainder terms (such as products of logarithms and dilogarithms). For the

Bloch-Wigner-Ramakrishnan function D3(z) or the ordinary trilogarithm this is no

longer true. The functional equations for {(z) have no remainder terms for any p.

Subsequent specialisation of (1.17) gives

~(l,l,c) = - {c2} + 4{c} + 4{- c} ;

R3(1,1,1) = 3{1} + 4{-1} .

So we have (compare with the formulae (6.4) and (6.5) in [L]):

J3{c
2) = 4( ~(c) + J3{- c», ~(-1) = - 3/4 ~(1) .

The corresponding configurations of 7 points in p2 can be seen in fig. 1.4 and 1.5.
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fig. 1.4, 1.5

6. The grOUD of "abstract trilogarithms ll
• For a G-fipace X points of G\X x ... x X

are called configurations. Let C6(pi) be the free abelian group generated by all

2
possible configurations (to"" ,t5) of 6 points in P F .

Let (xl'~'~'Yl'Y2'Y3) be a configuration of 6 points in P~ as in fig. 1.6 (Le. Yj

lies on the line xjxi+1 ' indices modulo 3) such that
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fig. 1.6, 1.7

Let us define a homomorphism

setting

The configuration where y1'y2,y3 are on a line will be denoted by "3 (see fig.

1.7).

Definition 1.S. P3(F) is the quotient of the group C6(pi) by the following

relations

Rl) (to' ... ,lS) = 0 if 2 of the points t i coincide or 4lie on a line.
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R2) (The 7-term relation). For any 7 points LO' ... ,L6 in P;

6

l (-l)i(l.O' ... ,li' ... ,(6) = O.

i=O

R3) Let (mo' ... ,ms) be a configuration of 6 points in P; such that

~ = mOID! nm3m4 and mS is in generic position (see fig. 1.8). Set

Then

4

3 · (IIlo' ... ,mS) = l (-1)iL3{r(ms lMO' ... ';i' ... ,m4)} .
i=O

fig. 1.8
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Remark La. Let U8 considel the action of GL3(F) on 6-tuples of JX>ints in P~. Then

a configuration (lO'''' ,lS) is stable (respectively semistable) in the sense of Mumford

if and only if among the points lj there are no 2 coinciding or 4 lying on a line

(respectively 3 coinciding OI S lying on a line) - see [Mu]. So relation Rl) means that

(lo' ... ,ls) = 0 if the configuration (lO' ... ,ls) is semistable OI unstable.

Lemma 1.7. In the group ~(F)

where lu I is the sign of the permutation (J •

Proof. Consider the relation R2) for a configuration (to' ... ,la) where just 2 of the

points coincide and apply Rl). •

The homomorphism t3 induces the homomorphisID

It ia not hard to prove that this map is an epimorphism. Indeed, the relation R3)

implies that a configuration as in fig. 1.8 lies in the image of L3 . It remains to apply

the 7-term relation to configurations as in fig. 1.9 - 1.11.

Let us prove that relation R3 does not follow from the relations Rl and R2. Denote

by C~(p2) the free abelian group generated by configurations of 5 distinct points in p 2

such that there are no 4 points on a line among these points. Then there ia a

homomorphism IJ: Ca(P2) --i C~(p2) defined as follows: degenerated configurations
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satisfying condition Rl map to 0 and 8(1.0, ... ,1.5) :=

5

Alt( l (-l)i(I.O' ... ,ti' ... '(.5)) , where Alt is the skew-symmetrization. Note that if

i=O

the points mO ' mI , ~ lie on a line I. and ~,m4 t t , then there exists an

element g E. PGL3(F) such that the 5--tuples of points (mO,ml'~Jm3,m4) and

(mO,ml'~,m4,m3) are equivalent under the action of GL3(F). Therefore

Alt(mO' ... ,m4) = 0 . So 8([3{x}) = 0 , but fOI a configuration (mO' ... ,m5) as in fig.

1.8 we have 8(mo' ... ,mS) = (mO' ... ,m4) .

134
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Let UB denote by ~(F) the subgroup in II [P~\0,1,00] generated by the

following elements (compare with Theorem 1.3)
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{x} - {x-I} ,

({x} + {I - x} + {I - x-I}) - ({y} + {I - y} + {I _ Y-I}) ,

* 2where x,y E. F \1, xi'Yi'z E. PF and the configurations of the points

(xl'~,x3'Yl'Y2'Y3'z) are aB in fig. 1.1, where there are just 3 lines, containing exactly 3

points of a configuration. Set

Theorem 1.8. The homomorphism L3 induces the i~omorphism

The inverse homomorphism

can be defined explicitly on the generators of the group ~(F) as follows. Set

t 3{x} = - {x} - 2{1- x} + {I} . Then for a configuration (to' ... ,tS) as in fig. 1.9

compare with (1.11) and for a generic configuration (to' ... ,lS)
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5

L;I(tO' ... ,l5):= l (-I)i-lLgl{lO' ... ,ti' ... ,ta)
i=O

(t.a ia defined in fig. 1.1), where the right-hand aide was already defined above. The

proof of the correctness of this definition uses the basic relation R3(x.,y.,z) in the group
- 1 1

B3(F) - see s.2 of § 5.

7. The trilogarithm is determined by Ha functional eauation. Let Meas Cm((pn) be

the space of all measurable functions on configurations of m points in (pn. Define a

-map

m
* . A

by the formula (dmf)(xO' ... ,xm) = l (_1)1 f (xO' ... 'Xi' ... ,Xm) .

i=O

Recall ([Mn]) that a configuration (to' ... ,tm-I) of m points in (pn is

stable if and only if for any subspace L ( ( pn

The number of po i nts

(firn L+1

t.
1

in L m
< n+l·

Let Cont C~((pn) be the space of all continuous functions on stable

configurations of m points in (pn. We have the following complexes Meas C.((p2)

and Cont C:(tp2) :
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* *d d
--+ Meaa CS«(p2)~ Meaa C

6
«(p2)~ Meas Cr<tp2) (1.18 a)

(1.18 b) .

Note that the complex conjugation z~ z acts on (p2 and hence on these

complexes. Denote by H6(Cont:«(p2))+ the subspace of invariants of this action.

Theorem 1.9.

c) The function ~(to' ... ,lS)

H6(Cont C:«(p2))+ .

represents a nonzero element in

Let us consider a degenerate configuration' (to'''' ,t5) presented in fig. 1.12. It

*depends on one parameter z := r(t.sl t O,t,2,t1,t3} E. (: • In this case

~(to' ... ,t,5) = ~(z) .

ftg. 1.12
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Theorem 1.10.

a) The space of continuons functions f(z) on (p1\0,1,m that satisfy the functional

equation f(~(a,b,c)) = 0 (see 1.11) is generated hy the functions J5(z) and

D2(z) • In Iz I .

h) Let F(i O' •.. ,ts) he a continuous function on the set of all stable configurations

of 6 points in G:p2 that is skew-symmetric with respect to permutations of t.
1

6

and satisfies the 7-term relation l (-l)iF(io' ... ,li' ... ,t6) = 0 (for any

i=O

stahle configuration (iO"" ,t6)) . Then the restrietion of F to the degenerate

configuration (lO' ... ,lS) presented in fig. 1.12 is alinear comhination of ~(z)

and D2(z) · lnlzl .

s S * * *Remark. Let f €. Cont CS((P ) . Then, of course, d6(dsf) = 0 , hut the value of dSf

at a configuration (iO' ... ,lS) aB shown in fig. 1.12 can be an arhitrary continuous

function on (p1\O,m. So the skew-symmetry relation does not follow from the 7-term

one for stable configurations (compare with Lemma 1.7).

The following proposition proves part c) of Theorem 1.9.

Proof. Suppose that

skew-symmetric with respect to permutations of points x· . So we have
1
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where Alt g(xO' ... ,xn- 1) = l (-1) Iu Ig(xU(O)' ... ,Xu(n-1) .
ue.Sn

Note that if for a confignration (VO' ... ,v4) of S points on the plane vo' vp v2 lie

on a line and v3' v4 are not on this line, then the configurations (vO,vl'v2,v3,v4) and

(vO,vp v2,v4'v3) are equal. Hut for a configuration (to' ... ,tS) as in fig. 1.12 all
, A *

configurations (tOJ '" ,ti' ... JtS) are of this typeJ 80 dS Alt f( t OJ ... JtS) = 0 . •

Now let us construct a representative of H6(Cont C:((P2)) . Let V3 be a

*
3~mensional vector space with a volume form ""3 e. det V3

~(totrt2) := ( w3,tOAt 1 At 2 ) . Set for a generic configuration of S vectars

(to' ... ,t4) in V3

1t does not depend on "" (Proposition 3.7). Further, (d*q3))(lOJ ... ,lS) :=

5
. J3) Al (-1Yq (to' ... ,tj , ... ,tS) does not depend on the length of the vectors t i

j=O

(Proposition 3.9) and so defines a function on configurations of 6 points in V3 . It can

be prolonged to an stahle configurations (see § 4). The restrietion of the function so

ohtained to adegenerate configuration presented in fig. 1.12 is just D2(z) • In Iz I (see

Lemma 4.7). The constructed function is skew-symmetric, 80 the proof of Proposition

1.11 shows that it does not lie in d; Cant C~((p2) .
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We will see in § 9 that tros function can be obtained by transgression of a non-zero

element in H~ts(GL2((),R) in some spectral sequence.

Finally, H4(Cont C:((pl)) = ker d: ' because all 3-tuples of distinct points on

(pI are PGL2(()--equivalent and 80 for a generic configuration of 4 points on (pI

3

we have I (- l)i(to' ... ,ti' ... ,t3) = 0 .

i2:0

Theorem 1.12. There exists a C<D - function ...Kn(tO' .•. ,t2n- 1) on the manifold of

generic configurations of 2n vectors in an n-dimensional (-vector space such that

2n

a) I (_1)i ...Kn(to, ... ,ti' ... ,t2n) = 0 for a generic configuration (to' .... ,t2n) .

i=O

b) vln(~tO,g1 tl' ... ,g2n-1 t 2n- 1) , ~ E. GLn(() , is a measurable 2n - 1 - cocycle

of GLn(() representing the indecomposable dass in H~~;1(GLn((),R).

The proof of tros theorem uses a variant of Suslin's spectral sequence [S 1].

The existence of such a function was conjectured in [HMJ, see also [GGLJ and

[GMJ.

8. The classical trilogarithm and weight 3 motivic cohomology. Now let F be an

arbitrary field. The groups Kn(F) were defined by Quillen [Q 1J as homotopy groups

K (F):= 11" (BGL(F)+)
n n
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where BGL(F)+ is the H--5pace having the same homology as BGL(F), Le. the same

as the homology of the discrete group GL(J)(F) == GL(F) .

Hy the Milnor-Moore theorem [MM]

(1.19)

*Rec&ll that KO(F) = N., K1(F) = F .

On the other hand, we have the Milnor ring K~(F) which is defined as a quotient

ring of the tensor algebra

* * *T(F ) := EB F ~ ... GD F (n timea)
n 71. 7J.

* * *by the homogeneous ideal generated by all tensors (1 - x) Q;D x E. T2(F ) = F ~ F . It

is not hard to prove ( [M 1] ) that

(1.20)

n * -n *where A F := w-F /{ ...xi~i+l ...+ ...xi+l8xi'''}'

There ie the canonical ring homomorphism m: K~(F) --+ K.(F) . Thanks to

Matsumoto we know that it ia an isomorphism for n = 2 (see [M 2]). It is injective

~odulo torsion ( [8 1] ). Hut the Coker(m) ca.n be rather big.

Set
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where the 8ubgroups Rp (p = 1,2) are generated by the following elements

*R1(F) = {[xyJ - [x] - [y] I x,y ~ F \1} ,
4

R.:!(F) = {L (_l)i [r(xO' ... '~i' ... ,x4)] , xi E Pj, xi f Xj} •

i=O

and the subgroup R3(F) is defined in s. 5 in a similar way. The definition of these

groups is reminiscent of the functional equations for the classical p-logarithms, p ~ 3 .

*Note that the map [x] ---+ x defines an isomorphism B1(F)~ F .

Let us consider the Bloch-Suslin complex BF(2):

52 : [xJ t---+ (1 - x) Ax

with the group B2(F) placed in degree 1. Note that 62(R2(F)) = 0 , so the definition is

correct.

Let K~nd(F):= Coker(K~(F) ---+ K3(F)) . Using some ideas of S. Bloch,

A.A. Suslin proved the following remarkable theorem (see also closely related results of

[DSJ and [Sa]).
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Theorem 1.13 [S 2]. There is an exact sequence

* * N ind0---+ Tor(F ,F) ---+ K3 (F) ---+ Ker 62 ---+ 0

* * * *where Tor(F ,F )N is the unique nontrivial extension of 1l/211 by Tor(F ,F ) .

Historical remark. The kernel of the homomorphism 6: H. [P~] ---+ A2F* is called the

Bloch group. It was introduced by Spencer Bloch in his pioneering work [BI 3]. The

relation of this "group to K;nd(F), and also the interpretation of elements of ~(() as

functional equations for the Bloch-Wigner function together with a geometrical spectral

sequence for the computation of H~ts(CL2((),R) appeared in [BI1]. Influenced by

these ideas, J. Dupont and C.H. Sah and independently A.A. Suslin divided 1l [P~] by

~(F) and clarified the relation of H1(BF(2)) with H3(GL2(F)) and K;nd(F). I

recommend also to read the excellently written first part of [D] . The group B2(() has

a beautiful interpretation as a scissors congruence group of tetrahedra in the

Lobachevsky spate.

Theorems of Matsumoto and Suslin claim that

Let us define the complex BF(3) 8 ~ as follows:
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where the lelt group ia placed in degree 1 and

6{x} = [x] e x; 6( [x] e y) = (1 - x)A x Ay .

(Here {x} ia a generator in the group B3(F) and [x] ia a generator in the group

B2(F)) .

The correctness of the definition ia provided by the following theorem.

*Theorem 1.3 1
• 63(~(F)) = 0 in B2(F) e F modulo 6-torsion.

Now let us introduce- the rank filtration on Kn(F). According to the stabilisation

theorem 01 A.A. Suslin [S 1]

so

Therefore

(1.22)

gives the canonical filtration on Hn(GLn(F),OH and hence defines a filtration
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Set

K[i] (F)' .- K(i)(F) /K(i+l)(F) (1.24)
n ~.- n ~ n q.

Theorem 1.14. There are canonical maps

RemaU. A. 8uslin proved in [8 1] that K~O] (F)fl = K~(F)fl . More precisely he

proved that the homological multiplication

defines an i80morphism module (n -I)! - torsion

In particular we have

Conjectnre 1.15. Cl and ~ in Theorem 1.14 are isomorpmsms.
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9. Polylogarithms and the weight p ffiQtivic comolexes r F(l!). In this section we give

an inductive definition of subgroups ~p(F) C U. [P~] and hence define for all p groups

~p(F) := U. [P~] / ~(F) .

*Set ~ (F) = F . Let UB consider the homomorphisms

5: {x} .......... (l-x)/\ x, x E P~\O,1,m; 5: {O},{l},{m} .......... 0

and

6: {x} .......... {x}p-l ~x, x E P~\O,l,m; 6: {O},{l},{m} .......... 0

where {x}p-l is the image of a generator {x} in U. [P~] / ~p-l (F) . These formulae

reflect the differential equation (1.1) for Lip(z). Then the subgroup ~(F) is defined

as follows:

Let X be a curve over F and F(X) be the field of rational functions on X.

Consider an element

N

a = l nj {9 dl[phx)J .
i=l
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A rational function fi defines a map fi : X --+ P~ . So for any point u E. X

there ia a apecialisation

N

a(u) = l ni{fi(u)} E. 7l [P~] .

i=l

~(F) := Ker(71 [P~] ~ F* AF*) .

1Let us denote by stp(F)) where p ~ 2 ) the subgroup of 7l [PF] ,generated by

{o}) {m} and a(u) - a(u') where X runs through all connected smooth curves over

F J u J u' run thro~gh all points of X and a E. .A'p(F(X)) .

It is easy to prove by induction that {x}p + (-l)P{x-l} E. .Ap(F(P1)) . So

({x} + (-1)P{x-1} )-({o} + (-l)P{m} ) E. ~ (F) andhencep p p P-])

{x}p + (- l)P{x-I}P E. stp(F) . Therefore 2· {I}P E. ~p(F) for p even. We will see

below that {l}p t 9lp(() for p odd.

*Lemma 1.16. 5( ~(F)) = 0 in ,jI'p-l(F) S F .

Proof. First of all let us prove by induction that for a variety X/F and an irreducible

codimension 1 subvariety Xo e.......,. X over F there is a specialisation map sO:

,jI'p(F(X)) --+ ~p(F(XO)) that is defined on generators by sO: {f} --+ {fl x
o
} if

XoCSupp div f and sO{f} = 0 in the opposite case. We need to check that

sO( ~p(F(X))) ( ~p(F(XO)) . Suppose that we have already proved this for ,jI'p-l.
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Then there is a homomorphism (we suppose that p ~ 3 ; the case p = 2 can be

considered analogously)

• *So : ~p-1(F(X)) ~ F(X) --+ ~p-1(F(XO)) ~ F(XO)

[

{ f IX
o

} ~ gl Xo if Xo( Supp div gU Supp div f

So : {f} ~ g t---+

o otherwise

and So 06= 6 0 So . So if Y --+ X is a curve over F(X); iO,i1 : X --+ Y j

j : Xo e:........t> X; Y(XO) is a fiber of Y over XO:

Y(Xo) <....-+ Y

iO1i 1 11 iO1i1 11

g = \ n.{2.} E..A (F(X)(Y)), g= E n.{g I }.
l 1 '-"l P P 1 Y(X)o p

Lemma 1.16 follows immediately !rom So 0 5 = 5 0 So . •

Set

(1.24)
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Let us define a complex r F(P) as follows

*where ~p(F) is placed in degree 1 and APF in degree p,

for k > 2 and

5({x}2 8 Y1 A ... A Yp-2) = (1 - x) Ax A Yl A ... A Yp-2 .

Then 52 = 0 modulo 2-torsion.

Conjecture A: There is a canonical isomorphism

(1.26)

(1.27)

Let U8 denote by K~m}(F)~ the 8ubspace of Kn(F)~ where the Adams

operations "pi., act by multiplication on t m (see [So]).

Conjecture 1.17. The rank filtration (1.22) is opposite to the Adams '}'-filtration after
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It seems that this conjecture was first stated by A.A. Suslin (unpublished).

In the case of number fields Kim}(F)~ f 0 only if n=2m-l. Recently J. Yang

[Y1] showed that an improvement of arguments of A. Borel [Bo 2] permits to plove

for number fields F different from ~ that Kip)(F)~ f 0 only if n=2p+l. So

Conjecture 1.17 is valid for number fields F f ~ .

Now let us give a motivation for the definition of the groups .2
n

(F) and the

complexes (1.25) and prove that Zagier's conjecture on (F(n) for number fields ia an

immediate consequence of (the refined) Conjecture A and Borel's theorem.

2
k

• Bk
Proposition 1.18. Set 1\ = k! ' where Bk are the Bernoulli numbers, then

2n-2

d J2n(z) = ~n-1 (z) d arg z - ( l 1\. logk-1, z I · .J2n-k(z)) • d log Iz I (1.28a)

k=2

2n-1

d J2n+1(z) = - ~n(z) d arg z - ( l 1\ · logk-1 1z 1 • J2n+1-k(z)) · d log I z I

k=2

(1.28b)

- ~n • log2n-1 1z I • (log Iz I • d log 11 - z 1 -log 11 - z 1 • d log I z I)

r

Proof. Straightforward calculation using the identities -l 1\. ßr- k = r • ßr + 2ßr- 1 '
k=l

r

- l (-l)k1\. ßr- k = r · ßr that follow easily from the generating function for the

k=l
ß. , E ß x r = 2x .
r-k r ~le -
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There is a little bit more natural formula for the function

{
~ (z), n odd

.? z:= . nn( ) 1· Jh(z), n even

n-2

d .?n(z) = .?n-l(z) d(i arg z) - ll1c logk-l lz I .i'n-k(z) d log Iz I (1.28c)

k=2

-ßn logn-11 z I(log Iz Id log Il-z I -log Il-z I d log Iz I) .
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For another formula for d~(z) (without Bernoulli numbers on the right-hand

side) see [Z3].

Corollary 1.19. Let us define a homomorphisID ~ : ., [PtJ ---+ R setting

~({z}) := ~(z) . Then the restrietion of ~ to the subgroup ~(()., ( III [Pt] is

identically zero, so we have a correctly defined homomorphism

The proof follows by induction from the formulae (1.28). More precisely, there are

homomorphisIDs Äk :

that are defined as the following compositions

6 ~ ~d1 n * un-1
Äk : III [PF] I ~n-1 (F)lll S FIII • ...
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Let X be a cune over G: and a(z) = :E ni{fi(z)} E. ""'n(((X» . Consider

~(a(z» as a function on X. Then d ~(a(z» = 0 . Indeed, in this case every term of

the right-hand aide of (1.28) is zero becaUBe of äk(a(z» = 0 and the induction

assumption if k > 2 . So ~(a(z», = const and hence ~(a(zO) -.a(zl» = 0 . •

When F ia a number field Conjecture A should be refined by the assumption that

the composition

K
2n

_ 1(F)~ .!ß (F)~ fB S (()~ $ R(m -1) .
m Hom(F,() m Hom(F,()

ia just the Bore! regulator.

Then it implies, of course, Zagier's conjecture on values of Dedekind zeta-functions

at integer points. .

Corollary 1.19 means that .9En(() is juBt the subgroup of "functional equations ll

for the n-logarithm ~(z). In the definition of .9En(F) we have an infinite number of

I-variable functional eqnations. However I believe that there exists an universal

many-variable functional equation such that ..'jtn(F) is generated by its specialisations.

Let me state the precise conjecture in the cases n = 2, 3 . Recall that the subgroups

~(F) and ~(F) are generated respectively by Herrn. relations and relations

~(a,b,c) see s. 8 and 5. I claim Rn(F) ( .9ln(F) for n = 2,3 . The proof in the case

n = 3 ia as follows. We will see in § 4 - 5 that 5 ~(a,b,c) = 0 in

*B2(F(a,b,c» Q1D F(a,b,c) . In fact , tbis is not so hard to prove directly. Consider

Ra(a,b,c) as a function in the variable a, i.e. Ra(a,b,c) ( 7I [Pha)] , b, c fixed.

Then by our definition ~(a,b,c) - ~(I,b,c) E. ~(F) . Further, considering ~(l,b,c)
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as a function in the variable b we get R3(1 ,b,c) - ~(1,1,c) €. ~(F) . FinaIly,

~(1,1,C) - R3(l,1,CD) €. R3(F) , but R3(1,l,m) = 7{m} ( ~(F) . The case n = 2 is

similar and even simpler.

Conjecture 1.20. Rn(F) = .9\(F) for n = 2, 3 .

Let F0 be the subfield of all constants of F (Le. of the elements that are

algebraic aver the prime subfield of F) . There is the fallowing rigidity conjecture of

Merkurjev-8uslin for K;nd(F) (see conjecture 4.10 in [MS]).

. ind() ind()ConjeCture 1.21. K3 F0 = K3 F.

Proposition 1.22. If F0 is algebraically closed then Conjecture 1.20 for n = 2 is

equivalent to Conjecture 1.21.

Proof.

a) (Conjecture 1.21) ~ (Conjecture 1.20). Let X be a curve over F. By Suslin's

theorem [83] ~(F(X))/~(F(X))GiD ~ ~ K~nd(F(X))~ . So Conjecture 1.21

implies that for any a(z) = E ni{fi(z)} €. ~(F(X)) there is a ß E ~(F) such

that a(z) - ßE ~(F(X)) . Hence specialising we have a(zO) - a(zt) €. ~(F) .

b) The claim (Conjecture 1.20) =* (Conjecture 1.21) is a special case of the following
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Proposition 1.23. Let F0 be algebraically dosed. Then for n > I

m

Proof. Let 0 = 1: ni{xi} E. o.I6n(F) . Set Ia := {f E. F0 [tl' ... ,tm] I
i=l

f(x l , ... ,xm) = O} . If 0 ~ v4'n(FO) then dim Spec FO[t l , ... ,tn] /Ia ~ 1 . Let

m

(x~,· ... ,x~) be a point of tbis variety defined over FO ' Set 0 0 = 1: ni{x~}. Choose

i=1
m

a curve Y (over F) containing (x~, ... ,x~) and (xl' ... ,xn) . Then 1: ni{ii} gives

i=l

an element of An(F(Y)) (ti considered aB functions on Y). So we have

0-00 E. -\.(F) . •

Note that Proposition 1.23 and Conjecture A imply the following conjectnre.

Conjecture 1.24. Lei F0 be algebraically dosed, F0 = F , then for n ~ I

K!~l1(Fo) = K!:ll(F) .

This conjecture was stated. by A.A. Beilinson (for the Adams filtration), who also

has shown that it follows hom (his) standard conjectures about categories of motivic

sheaves and independently by D. Ramakrishnan in the case when F is algebraically

dosed (see [R2]).

Remark. Let \(F) (.9!p(F) be the subgroup generated by {O}, {m} and

a(1) - a(O) ,where 0 E. v4'p(F(t)) . (the difference in the definition of ~p(F) and
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,\(F) is that we use only P~ instead of all curves X/F). Undoubtedly

~p(F) = ,\(F) . However this is not known even for p = 2 , where it is equivalent to

the rigidity conjecture for K~nd(F). In any case we can set 39p(F):= lZ [P~] / ~p(F)

and define motivic complexes rF(n) . It seems that these complexes are much more

convenient for the constmction of a natural homomorphism from motivic cohomology to

algebraic K-theory (~q).

10. Thc mixed Tate Lie algebra L(Soec F). For the convenience of the reader we

repeat in tbis section some basic definitions given in [Be 2], [B-D] , see also [Dl-2],

[BMS] .

A mixed Tate category is a Tannakian category .At together with a fixed

invertible object ~(1) .At such that any simple object in .At is isomorphie to

~(m) .At:= ~(1) ~m for sorne m E. 7J. and

dim Hom(Q(O) .Jt' q(m) .At) = «SOJm (1.29)

Ext :"(~(O) vK' ~(m).At) = 0 for m ~ 0 . (1.30)

An object :Y of .At earries a canonical finite increasing filtration

... ( ~i ( ~i+l1 ( ... such that ~:= :Y~i / jI'~i-l is isomorphie to a direct sum of

~(- i) .J(Js . Let Vect· (~) be the category of finite dimensional vector spaces over ~.

Then there is a canonieal fiber funetor w.At: .At---+ Vect •(~), w.At: .!Y......-. ')

EB Hom(q(- i).At, ~) . Let UB denote by L( vK) the Lie algebra of derivations of w: an

element cp E. L(.At) is a natural endomorphisID of w such that cp~ ~ 3! =
1 2
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f{J3'i 8 idw( 92) + idw( 5\) e f{J 32 . Then L( vi) is a graded pronilpotent Lie algebra

such that L( ""i = 0 for i 2: 0 . Such a Lie algebra is called a mixed Tate Lie algebra.

For any mixed Tate Lie algebra L the category L-mod of finite dimensional graded

L-modules is a mixed Tate category with ~(1):= a trivial one dimensional L-module

placed in degree - I . The fiber functor is just the forgetting of the L-module structnre

functor. So 'for any mixed Tate category vi the fiber functor wvi defines the

equivalence of mixed Tate categories w.At: ~--+ L( vi) . Any Tate functor

F : Al --+ ~ (that is, by definition, an exact 8 functor such that

F(~(I)~) = fl(I)~) defines a morphism F.: L( vii) --+ L( vtl) . For ~E. Ob~

set H:"( jF") := Ext :"(~(O).At' ~) = He(L( ~)J W~(sr)) .

A.A. Beilinson conjectured that for any scheme S there exists a certain mixed

Tate category ~(S) of (mixed) motivic Tate (perverse) ~heaves over S - see

[BI]. He also conjectured that in the case S = Spec F ,where F is a field,

~(F) := ~(Spec F) , the following holds:

11. Conjecture A M Conjecture B in the Beilinson World.

Conjecture A'. The complex r F(n)~ represents R Hom(~(O) ~(F)' ~(n) ~(F))

in the derived category of ~(F).

Let L(F) be the mixed Tate Lie algebra corresponding to the category ~(F).

Then (1.31) can be rewritten as
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In particular we have an isomorphism of Q-vector apaces

v 1 *L(F)_l = H (L(F),~(I)) = FQ .

(1.32)

(1.33)

-00

Set L(F)<_2:=. EB L(F)i' Sometimes we will write L, L<_2 and so on, omitting F.
- 1=-1 -

It is well-known that for a nilpotent Lie algebra g the space H1(g) = g/ [g,g] can be

interpreted as the spa.ce of generators of g. So the space of degree - n generators of

L~_2 is isomorphie to L-n/ [L~_2JL~_2]-n where
n-2

[L~_2JL~_2J_n:= 2 [L_k,L-{n_k)J . The Lie algebra L acta on
k=2

L~_2/ [L~_2,L~_2] through its abelian quotient L/L$_2' The action ia described by

amap

Let

(1.34)

be the dual map.
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Coniecture B.

a)

b)

c)

For an arbitrary fie1d F L(F)~_2 is a iree graded pro-Lie algebra.

*The map fn (see 1.34) coincides with the

*5: ~n(F)~ --+ ~n--i(F)q GD F~ in the complex r(n)." (n ~ 2) .

differential

Proposition 1.25. Conjecture B implies Conjecture A.

*Proof. Let us compute H (L(F),~(n)) using the graded version of the Hochschild-Serre

spectral sequence re1ated to the ideal L(F)~_2 ( L(F) . Then

We have: Hq(L(F)~_2,~(n)) = 0 for q ~ 2 because the Lie algebra L(F)~_2 is

free, Hl(L(F)~_2,~(m)) = ~m(F)~ (m ~ 2), HO(L(F)~_2,~(m» = lQ if m = 0 and

o in other cases. So

EP,q­
1 -

o if q=O

P *A F~ 8 ~n_p(F)~ if q = l, 0 ~ P ~ n-2

if q=O, p=n

ifq=O,pfn

dl,l : Ei,l --+ Ei+1,l coincides with the differential in (1.26)
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and d~-2,O: E~-2,l --+ E~'O with the one in (1.27)

n-2 * n-3 * n *6: A F~ e ~(F)~/6(A Fq 8 ~(F)~) --+ A F~.

Other differentials in the spectral sequence are zero, so we get just the complex

Now let UB prove that under some natural assumptions Conjecture A implies

Conjecture B.

Let (A·(L~)Ja) be the cochain complex of the Lie algebra L• . It has a natural

• m. v
grading: A (L.) = '9 A (L.) . Suppose that there are homomorphisms

n=l n

fP:k: ~(F)~ ----t L(F) v-k' k ~ 1 , such that the following diagrams are commutative

6 *
~(F)Q I ~-l (F)Q 8 FQ

<Pk 1 1<Pk-I A tpl ' k~3

L(F)~k
·0

(A2L(F) v )-k

~(F)
6

I A2F*

<P2 1 1<PI A <PI

L(F)~2
a A2L( F)~l

(1.35a)

(1.35b)

Then we have a homomorphism of complexes
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(1.36)

Now let (A·(L~_2),8') be the cochain complex of the Lie algebra L:$;_2' Then it

Iollowa from (1.35) that 8' 0 <t\( ~(F)~) = 0 . So fPJt gives tbe map

(1.37)

where Hl(L(F)~_2,~(k)) ia the subspace of L(F)~k consisting oI functionals with zero

restrietion to [L(F)5_2,L(F):$;_2] nL(F)_k . It is isomorphie to the dual to the space

oI degree - k generators of the Lie algebra L(F):S_2'

Proposition 1.26. Suppose thai tf.k (see 1.36) is a quasiisomorphism of complexea. Then

L(F)5_2 is a free graded Lie algebra and ~ ia an isomorphism.

* N V
Proof. .,pI: ~(F)~ = FQ~ L(F)_1 and an easy induction shows that ker ~ = 0

for al.l k.

Let us prove using induction on the degree that Hi(L:$;_2) = 0 for i;::: 2 . There is

• v
a filtration :7* on the eomplex A (L.):

k. v kv • ,
gr [?A (L.) = A L_1 S (A (L~_2),a ).
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Let a E. Ai(L~_2)_k J i ~ 2 and 8' a = 0 . Then Da E. ~IA·(L~) ; let b1 be the

image of Da in gr1A-(L:) . Denote by 8(k) the coboundary in the complex

gr~A-(L:) . Then 8(1)Da = 0 . By the induction assumption there is an

v i-l( v ) 2 • va1 E. L_1 e A L~_2 such that 8(I)a1 = b1 . Therefore 8(a - a1) €.:Y A (L.) .

Let b2 be the image of , 8(a - a1) in gr2A·(L;) . Then 8(2)b2 = 0 and we can find

2( v) i-2 v .an a2 E. A L_1 ~ A (L~_2) such that 8(2)~ = b2 j conslder a - a1 - ~ and so

on. Finally we get an element bi E Ai(L~) ~ L~k-i) such that Obi = 0 . The

quotient A·(L~ )k/"'k(rF(k)«I) is an acyclic complex because ker ~ = 0 and tIit is a

quasiisomorphism. So there is an ai E. A·(L~)k such that

Dai = bi mod Ai(L~1) ~ ~-i( $-{k-i)) . Let a - a1 - ... - ai = x + Xl where
, 1. v • ,

x €. gr A (L.) and x E. A (L~_2) . Then lJ x = a . So we have proved that

Hi(L~_2) = 0 for i ~ 2 .

Now let us prove by induction that the homomorphism ~ (see 1.37) ia an

isomorphism. We have by definition that

1 1 lJ v *
H (L.,~(k)) = ker (H (L~_2JQ(k))--+ L-(k-l) e F«I)

and it is easy to see that the image of 8 lies in H1(L~_2,~(k - 1)) ~ F* which is just

*
~-1 (F)Q ~ F«I by the induction assumption (k ~ 3) . Therefore there ia a

quasiisomorphism of complexes

8 * 5
l ~_1(F)~ e FQ---+ ...
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So CJ\ is an isomorphism. Q.E.D.

We see that if we assume homomorphisms 'P][: ~(F)~ ---t (L(F)_k) providing

quasiisomorphisms tI\ :r F(k)q ---t (A·(L(F)~),8) , and assume also Beilinson's

conjecture (1.31) (together with the rank conjecture (1.17)), then Conjecture A ~

Conjecture B .

12. Same evidence for Conjectures A and B.

The motivic category ~(Spec F) and the Lie algebra L(F). are rather

mysterious objects, whose existence is not proved yet. However Beilinson's conjecture

relating Ext's in the category ~(Spec F) with algebraic K-theory together with a

symbolie deseription of the first pieces of K-groups gives a key for an understanding of
y

the structure of L(F)•. For example, we have already seen before that L(F)_1 should

be isomorphie as a profinite IQ-vector spare to F;' . Further, assume that there is a

homomorphism 'P2: B2(F)~L(F)~2 making the following diagram commutative

B2(F)~
6 A2F*

~

I
id jJ'P2 I (1.39)

!
L(F)~2 ~ A2F*

~

(On the right-hand side of the bottom line stands A2L(F)~1 but it should be

isomorphie to A2F;) The eohomology of the Bloch-Suslin eomplex (upper line in

(1.39)) is isomorphie to K~nd(F)Q and K2(F)~. Beilinson's conjeeture (see (1.31))
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predicts that the bottom line should have the same cohomology. So it is natural to

assume that the vertical arrows induce an isomorphism on cohomologies. Then

CP2 : B2(F)q ----t L(F)~2 must be an isomorphism!

In fact the last &Ssumption (that the morphism of complexes (1.39) is a

quasiisomorphism) can be deduced from the Borel theorem and standard conjectures:

rigidity and existence of the Badge realisation. Indeed, if F is a number field, then the

following diagram should be commutative

r
B }JSpec F,R(2)) = R 2

rJl

where rB is the Borel regulator and r eN is the regulator from the motivie eohomology

of Spec F to the Deligne cohomology provided by the expeeted functor of the Badge

realisation of our motivic category. Hy the Borel theorem rB is injeetive, so ~2 is also

inejective. Hy Suslin's theorem both q-vector spaces have the same dimension:

dim K~nd(F)~ = r2 . So ~2 is an isomorphism. Now the rigidity eonjecture tells us

that ~2 should be an isomorphism for an arbitrary field F. Therefore CP2 is injective.

Further, we have

v
The left hand side is isomorphie to K2(F)~. So 8(L(F)_2) = (J 0 CP2(B2(F)q) and

therefore CP2 is an isomorphism.
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Now let us consider weight 3 motivic complexes. Assume a homomorphism

v
'P3 : ~(F) ---+ L(F)-3 making diagram (1.35a) commutative. There ia a

homomorphism B3(F) ----t ~(F) (see s. 9), 80 we get a morphisID of complexes
. v v.

(assunung L(F)_2 ~ B2(F)~, L(F)_l ~ F~)

5 * 5 J A3F*B3(F) I B 2(F) ~F

~3 1 f 1~2fi!J~1 f 1A3~1

L(F)~
{}

'L(F)~2~L(F)~1 ~ A3L(F)~1

The bottom complex is just (Ae(L(F).)3,8) - the part of grading 3 of the cochain

complex of the Lie algebra L(F)•.

The main results of this paper give considerable evidence for the expected

isomorphisms

(1.40)

More precisely, the same arguments as above show that in order to be convinced of

(1.40) it suffices to prove Conjecture 1.15. It ia easy to see that (1.40) implies that

tt'3 : B3(F)~ ---+ L(F)~ is an isomorphism.

•In any case the complexes (A (L(F).)n'O) for n = 2,3 look like the complexes

r F(n) . Hut already the weight 4 part of the cochain complex of L(F). ' that is

v v
v 8 L(F)-3 ~ L(F)_1 8

L(F)-4 --+ EB 2 v
A L(F)_2

(1.41)
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(1.41)

looks quite different !rom r F(4) , because we have an extra term

A2L(F)~2 (4 = 2 + 2) that has no analog in r F(4) . So assuming a homomorphism

'.04 : ~4(F)~ ----+ L(F)~ making (1.35a) commutative we get a homomorphism ~4 of

r F(4) to the complex (1.41), hut it can't be an isomorphism. However, the following

important lemma shows that ~4 : H3(rF(4) (D~) ----+ H3(A-(L{F).)4) is an

isomorphism (assuming L(F)~n ~ ~n(F)~ ~ Bn(F)~ for n = 1,2,3) .

Lemma 1.27.

= {Y}2 (D (I-x) Ax - {x}2 (D (1- y) A y .

Proof. Direct calculation. •

More precisely, tbis lemma proves that lJ(A2L(F)~2) ( 8(L(F)~ (D L(F)~l) if

we assume only L{F)~2 ~ B2(F)~ and <P3: B3(F) ----+ L(F)~ making (1.35a)

commutative (we need not assume that <P3 is an i8Omorphism).

Corollary 1.28. Assume that for n = 1,2,3 there exist isomorphisms

<Pn : Bn(F)Q~L(F)~ making diagram (1.35) commutative. Then
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Proof. The left hand side is just ihe cohomology of the following complex

It remains io apply Lemma 1.27. •

Note thai the right-hand aide of (1.42) maps to Hn- 1(rF(n) S tU and this map

should be an isomorphism because of the rigidity conjecture: B2(F)~ = ~2(F)~ .

Consider ihe following element (~{a}:= ~{alk) :

~3(- {I-x} - {l-y} + {~} - {~=;=~}-U}] at~ +

that lies in L~ ~ L~l fB A2L~2 . By Lemma 1.27 its coboundary is zero, so there

should be an element tP4(xJy) (L~ whose coboundary is (1.43). Let us assume that

such an element tP4(x,y) exists.
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Now look at the weight 5 pan of the cochain complex of L(F). :

We would like to prove that the component 832 : L~ ----+ L~ GD L~2 of the,
coboundary 8 is an epimorphism. Unfortunately it ia not quite clear how to construct

an element in L~ because L~ itself is a quite mysterioUB object. However, &8suming

the existence of cP4(x,y) we can find an element in L~ ~ L~l mL~ ~ L~2 with zero

coboundary, whose component in L~ GD L~2 is ""3{x} ~ ""2{Y} . We expect that such
v

a cycle should be in 8(L-5) .

V
Let's do this. We assume a ""4: .24(F) ---+ L(F)-4 making (1.35a) commutative.

Consider the following element

Lemma 1.29. 8t/J5(x,y) = 0 .

Proof. Direct calculation using formula (1.43) for lJfP4(x,Y). •

The Lv ~ LV
-3 -2

""3{ x} 8 ""2{Y} becanse

B3(F)~ .

component of - 1/2 (t/JS(x,y) + cPS(x,y-1)) is equal to

{Y}2 + {y-1}2 = 0 in B2(F)~ and {Y}3 = {y-1}3 in
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We can pursue this idea further and "constructn by induction elements

rpn(x,y) E. L(F)~n (using the same assumptions as above) such that

*(fPl{a}:=l-ae.F)

for n oddj for n even we have the same formula, but the last term will be

(_1)n/2-1 • CPn/2{x} ACPn/2{Y} .

Proposition 1.30. Suppose that DcPn_l (x,y). ia given by formula (1.44)n_l . Then the

coboundary of the right hand aide of (l.44)n ia equal to O.

Proof. Dired calculation using the formnla

[~J
1: (-l)k-l(fPn_l_k{x} ~ 'PJc{x} + (-1)n-l-kfPn_1_k{y} ~ 'PJc{x})

k=O

n-l
2- 1 .

(for n odd the last term in this sum should be (-1) fPn-l {x} AfPn-l {y} .
2 2
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13. A topological conseguence of Conjecture B. This section grew up in discUBsions with

A.A. Beilin80n in May 1990. In the Beilinson World any morphism of schemes

*f: X ----+ Y defines an exact Itinverse image" function f : MT(Y) ----+ MT(X) and so

a morphism of corresponding Lie algebraB L(Y). ---J L(X)•. In particular, if X is a

variety over a field F we have a canonical epimorphism L(X). ----+ L(Spec F)•. Us

kernel is called the geometrical fundamental Lie algebra of X: Lgeom(X).

For a generic point of X we have

o---J Lgeom(F(X)). ---J L(F(X)). -----+ L(F). -----+ 0 .

The commutant of Lgeom(F(X)). lies in L(F(X))~_2 and 80 it should be a free

graded pro-Lie algebra. Now suppose that F = (: . Let ß X be the category of "good"

unipotent variations of mixed Hodge-Tate structures over a complex manifold X (see

[H-Z]). There is a canonical fiber functor wH : HX ---J Vect~ ,

CI} eH : H I-----i ~ Hom(~(-i)R' gr7H) ,where ~(-i)RE ß X is a constant variation
1

of the Tate structure of weight i. There should be a canonical Bodge realization functor

r eH: .AtT(X) ---t eHX commuting with these fiber functors:
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So we get a morphism of the corresponding mixed Tate Lie algebras

L~eom(X). ---i Lgeom(X). that should be an isomorphism in the Beilinson World.

More precisely, A.A. Beilinson proved that tbis follows !rom standard conjectures

including the Hodge eonjeeture - see a future version of [B-D].

On the other hand, L~eom(X). ia isomorphie to the Lie algebra of the maximal

Tate quotient of the pronilpotent completion of the classical fundamental group

J'"1(X ,x), x EX.

More precisely, Hain and Zucker introduced the notion of "good" variation of a

mixed Bodge structure on an open manifold X (that ia some special eonditions at

infinity - see conditions 1.5 i), 1.5 ii) in [H-Z]) and proved the following

Theorem 1.31 ([H-Z]). Fix any x EX. Then the monodromy representation funetor

defines an equivalence of categories

[

lIg00dll uni potent variations} [miXed Hodge theoretie representations }

of mixed Hodge structures --+ of 1im ~ 7:1(X,x)/.r defined over ~

def i ned 0 ver ~ +--r-

( J ia the kernel of the usual augmentation of the group ring)

On the other hand, let L0\' (*). := mixed Tate Lie algebra corresponding to the

category of mixed Tate (l-Hodge structures (over a point *). Then we have
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A point x E X defines a splittin~ Lß(*). ---+ L eN(X). of this exact sequence.

So a representation of L eN(X) is just a mixed Hodge theoretie representation of

L ~eom(X) . Therefore the Hain-Zucker theorem implies that the universal enveloping

algebra of L~eom(X). is isomorphie to the maximal Tate quotient of

lim ~ [rl (X,x)] / .r .
r

Summarizing we see that Lgeom(4:(X)). should be isomorphie to the maximal

Tate quotient of the pronilpotent eompletion of the classica1 fundamental group of the

generie point of X(4:). (In fact to give a precise definition of the last object we should

work with the mixed Tate category of good unipotent variations of mixed Tate Hadge

structures over the generie point of X(4:) and use Beilinson's arithmetieal fiber funetor,

because we eannot ehoose a point x of the generie point of X(4:)). Combining all this

we see that in the Beilinson World Conjecture B implies

Conjecture 1.32. The eommutant of the maximal Tate quotient of the pronilpotent

completion of the classical fundamental group of the generie point of an arbitrary

algebraie variety over 4: is free.

This conjecture can be considered as a geometrie analog of the following

Bogomolov conjecture

Conjecture 1.33 (Bogomolov, 1986). The commutant of the maximal pro-p-quotient of

the Galois group of the geometrie type field K containing a closed subfield is free as a

pro-p-group.
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The condition on the field K means that it has a realisation as a field of functians

on an algebraic variety aver an algebraically closed field k J ar ia obtained as a

completian of such a field with respect to some valuation.

Conjedure 1.32 suggests that Conjecture B can be considered as a motivic version

of the following Schafarevich conjecture.

Conjecture 1.34 (Schafarevieh) The commutant of Gal(ll/q) ia a free profinite group.
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14. The residue homOIDorphism for the complexes r F(!!). Suppose that the field F
-- -

has a discrete valuation v with residue class field Fv(= F) . The group of units will be
-*

denoted by U , and the natural homomorphism U ----+ F by u .......... 11 . An element 11'"

*of F is prime if ordv1l'" = 1 . Milnor constructed a canonical homomorphism (see

[M2] , § 2)

M M-
IJ : K (F) ---+ K l(F) .v n n- v

It is defined uniquely by the following propenies

where up ... ,un are (arbitrary) units and 11'" is a prime element.

In this section we will construct a canonical homomorphism of complexes

{j : rF(n) ----+ r - (n -1) [-1]
v F

v

such that the induced homomorphism

coincides with (1.45).

(1.45)

(1.46)
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Let us adjoin to the ring Aer* a new symbol e of degree 1 which anticommutes

-*
with the elements of F and satisfies the identity { A e= eA (- 1) . We denote the

* - e -*
enlarged ring by A (F) ce] . It ia CL iree A (F ) - module with basis {1,e}.

The correspondence ';U~ ie + 11 extends uniquely to a ring homoIDorphism

• * e -*8'K : A (F ) ---+ A (F ) [{] . Setting 8.,j..a.) = tJ.(a) + { · Dv(a) with 1/-(a),

IJ (a) e. Ae(F*) , we get the required homomorphisID IJ • It obviously satisfiesv v

conditions i), ii)J and so does not depend on the choice of the prime element ?r.

Now let us define a homomorphism sv: II [Pj] --I II [ P~Jas follows:

{
{i} i f X is a unit

s {x} =
v {o} in other cases .

Then it induces a homomorphisID

(see s. 9).

Consider the homomorphism

(1.47)
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LemmaoJefinition. The homomorphisms D commute with the coboundary IJ andv

hence define a homomorphism of the complexes (1.46).

Proof. Let x = ;. · u ,where u is a u-unit. We have the following special cases:

1) k = 2, i = 0, U= 1 . Then u = 1 +?rv and

lJv5({u}2 ~ Y1 A... AYn-2) = 8V((-1IV) A(l+?rV) AY1 A... AYn-2) = 0 .

On the other hand, 58v({u}2 ~ ... }) = 5({I}2 ~ ... ) = 0 .

2) k = 2 , i = 0, Uf 1 or k > 2, i = 0 : is an immediate consequence oI

3) k = 2 J i > 0 . Then 8v({x}2 ~ ... ) = 0 and

8v5({x}2 ~ ... ) = IJv(';u A (1- -Iu) A ••• ) = O.

4) k>2, ifO.Then 8v({X}k e ... )=0 and

Dv5({x}k ~ ... ) = 8v({x}k-l ex A ••• ) = 0 .

5) i < 0 . In this case we may use the relation 2({x}k + (-1)k{x-1}k) = 0 in

~(F) . If we don't want to neglect 2-torsion, it is sufficient to check that

(( -a) (-a)) -a ( ) 1-1("aU-1IJv 1 - 11'" U A 11'" U = 0, a > 0 . We have 1 - 'K U = - 1· a -1 ,80
7r U
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= a2 · eA (-1) + a • eA 11 + a · eA (- U-1) + (-1) = (- 1) .
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15. The motivic complexes r(X;n). a) Set r(spec F ,n) := r F(n) .

b) Now let X be a smooth curve over F and Xl the set of all points of X. A point

x E XI defines a discrete valuation vx of the field F(X). Denote by F(x) the residue

dass field of v . Let us define the motivic complex r(X,n) as the simple complexx

associated with the following bicomplex

---+ ...---+ M1An-1F(X)*
MI

.2n- 1 (F(x))

fBa I $Ov x Iv x

0 * 0 o ,AnF(X)*~ (F(X)) • .2n- 1(F ( X) ) ~F (X) l ...n

Conjecture 1.36. Hi(r(X,n) ~ ~) = gr~ K2n--i(X)~. Of course, tbis conjecture has a

motivic reformulatian. Namely, if ~(X) ia the category of mixed Tate sheaves aver

X then the complex r(X,n) S ~ shauld represent HomD (Q(O)X' ~(n)X) , where
~(x)

D...Itf(X) is the derived categary.

c) Now let X be an arbitrary regular scheme, Xi the set of all points af X of

codimension i, F(x) the field af functions corresponding to a point x E Xi . We define

complexes r(X;n) far n ~ 3 as folIows:

r(x;o) : 71 placed in degree 0

r(Xjl) : *F(X) o
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r(Xj2) : A2F(X) * a

16

B2 (F( X))

8

o '~7I

where Bi(F(X)) is placed in degree 1, coboundariea have degree +1, and r(X;3) is the

total complex associated with the bicomplex defined above.

The coboundary 8 is defined aB folIows. Let x EXk and v1(y), ... ,vm(y) be all

discrete valuations of F(x) over a point y E Xk+1, YEx. Then the homomorphism of

complexes

is defined setting 8 = MI 0x . The definition of other coboundaries 8 is a little bit

more complicated. Let x E Xk and v1(y), ... ,vm(y) be all discrete valuations of the

field F(x) over a point y E Xk+1
, Y Ei. Then F{iJ.:= F{iJ ( )) F(y) . (Note

1 Vi Y

that if i is nonsingular at the point y, then F(iJi = F(y) and m = 1 .) Let us define

a homomorphism of complexes
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as the following composition (j ~ 2) :

Apriori the highly nontrivial feature here is the transfer homomorphism in the

second arrow. However in our situation we need only the classical transfer

* *NK / k : K ---+ k for finite extensions K) k . Now we define

as IJ:= U IJ . Note that for the upper line in the bicomplex r(Xj3) a2 coincidesx,y
yEX

with I? in the Gersten resolution and so is equal to O.

Proposition 1.37. Hi(r(Xjn) ~ ~) = gr'" K2 ,(X).n for n ~ 2 .n n; 11(

Proof. This is trivial for n = 0 , well-known for n=1 and follows easily from

Suslin's theorem and properties of the Gersten resolution for n=2.

Another construction of weight 2 motivic complexes was given by S. Lichtenbaum.

In fact he defines an integral version of motivic complexes (that is quite importantI), but

bis definition uses essentially algebraic K-theory and is more complicated.
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d) Now it is dear that the motivic complexes r(X;n) for an arbitrary regular

scheme X should be defined as the simple complex associated with the following

bicomplex

r F(X)(n)
IJ IJ

I ... ---+l '8 r F( )(0) [-n]
xEXn x

where IJ:= '8 a and a ia defined aB the composition (1.48) where the
yEi x,y x,y

B-eomplexes are replaced by the r-complexes. The only difficulty that remains is to

show the existence of the transfer. Note that in order to define the motivic complex

r(Xjn) aB an object in the derived category it is sufficient to define the transfer as a

morphism in the derived category. This can be done assuming the homotopy invariance

of r(A~jn) (see below) in complete analogy with the Bass-Tate definition of the

transfer for K~(F).

More precisely, let F = k(t) j v (f) = -deg f, fE k(t). The other discrete
CD

valuations v of F, trivial on k J are in 1-1 correspondenee with the monie irreducible

polynomials 1f E k [t]. We have k(v) = k [t] / (%" ). There is the canonicalv v

homomorphism of complexes r k(n) ----i r F(n) .

Coniecture 1.39. (The homotopy invarianee.)

(Dv)
rF(n)/rk(n) ----+t I _I r k(v)(n-l)[-l]

VfV(J)

ia a quasi-isomorphism.
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Assuming this conjecture we can define the following morphism in the derived

category

It seems that it is possible to prove using ideas of [B-T] and [Ka] that the so

defined transfer depends only on the extension L J k .

Note that to construct a homomorphism from Hir(X;n) 8 Q to gr~ K2n-i(X) 8 ~

it is sufficient to construct a map airF(n) ~ ~ --+ gr~ K2n-i(F)~ that commutes

with the residue homomorphism and to use the Gersten resolution.
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16. The groups ~n(F) and the sassors congruence groups oI pairs oI orienied

oolyhedra in Pr' In ibis section we define groups B~(F) thai hypoiheiically should be

isomorphie io the group8 ~n(F) . More precisely J we define a map

t : 7l[PF
1] --+ A (F)n n

where An(F) is the scis80rs congruence group of pairs of oriented polyhedra in P;
( [BGSV], see also [BMSch]) and set BI (F) := the image of t (ll [PF

l ]) in the
n n

quotient An(F)/Pn(F) , where Pn(F) is the subgroup oI "prisma" (see below). We

state a conjecture describing the structure of the groups A (F).n

First of all let us recall the definition of groups An(F) (see [BGSV], § 2). Call an

n-simplex a family of n+l hyperplanes L = (LO,... ,Ln) in P~. Say that an

n---simplex ia non-degenerate if the hyperplanes are in general position. Call a face of an

n-simplex any non-empty intersection of hyperplanes from L. Call a pair of

n---simplices (L,M) admissible, if L and M have no common faces.

Define the group An(F) as the group with generators (L;M), where (L,M) runs

through all admissible pairs of simplices, and the following relations

(Al) If one 01 the simplices L or M is degenerate, then (L;M) = 0

(A2) Skew symmetry. For every permutation

u : {O,l,... ,n} ---+ {O,l, ... ,n}

(uLjM) = (LjuM) = (-1) Iu I(L;M)
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where uL = (Lu(O), ... ,Lu(n))' Iu I is the parity of u .

(A3) Additiyity in L. For every family of hyperplanes (LO,... ,Ln+1) and any

n-fiimplex M such that all pairs (i),M) are admissible

n+l

l (-l~(i)jM) = 0
j=O

Additivity in M. For every fa.mily (MO,... ,Mn+1) and any simplex L such

that all (L,Mj) are admissible

n+l

l (-l)j(LiMj) = 0 .

j=O

(A4) Proiective invariance. For every g E PGLn+1(F)

(gL;gM) = (LjM) .

In the case F = 4: there is a canonical holomorphic differential form tuL with

logarithmic singularities on the hyperplanes Li. H xi = 0 is a homogeneous equation of

Li then tuL = d log{xl /xO) A••• A d log{xn/xO) . Let äM be an n-cycle representing a

generator of the group Hn{P(,U Mj) . Then
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is a multivalued analytic function - Aomoto's polylogarithm ([Al). This integral

depends on the choice of ~M but does not change under continuoUB deformation.

*There is a ca.nonical isomorphism r: Al(F) • F ,

r : (LO,LI;MO,MI) I I r(LO,Ll'MO,M1) .

,
Now let us define the subgroup of "prisma" Pn(F) . Let (L' ;M') ( pn and

n
(L" ,MII) ( pn be two admissible pairs of non-degenerate simplices, (LO,... ,Ln) a

non-degenerate simplex in. pn, n = n' + n" . Identify the affine space pn\LO with
, n

the product of the affine Sp&ee8 (pn \LO) )( (pn \LÖ) . Then the simplices M', Mn

define the prism M')( Mn in pn\LO and hence in pn (see fig. 1.13 for the case

n ' = nn = 1) . A cutting of M' x M" into simplices, M' )( M" = 'U~j I defines the

element ~L,~j) E An . (It does not depend on the choice of cutting.) Let U8 denote by

pn(F) the subgroup of An(F) generated by all prisma for all n' ~ 1, n" ~ 1,

n' +n"=n.
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Let Xl',."Xn be coordinates in the affine spare

hyperplane xi = 0 . Denote the hyperplanes

*~ = x3;·,·;xn_ I = xn i xn = t{t E F ) by

(L;M(t)) = (LO,... ,LniMO,... ,Mn(t)) . Then (see fig. 1.14)

pn\LO such that Li ia the

o= I-xl; I-Xl = ~ i

MO,Ml'... ,Mn_l'Mn{t). Set

Conjecture 1.40 The groups B~(F) and ~n(F) are canonically isomorphie.

More precisely, we conjecture that R (F) = Ker( t : ~ [PF
1] ---+n n

Note that I *BI(F) = ~1(F) = BI(F) = F . It was proved in [BVGS] that

(D

It was eonjectured in [BSGV], see also [BMSch] that A(F).,..:= ED An(F).,..,
'( n=O ~

(AO = ll) , can be equipped with the structure of a commutative graded algebra such

that An(F)~ = U(L(F).}~_n (the dual to the 8ubspace of degree -n elements in the

universal enveloping algebra of the Lie algebra L(F).) This conjecture and Conjectures

B and 1.40 imply the following striking pure geometrical conjecture describing the

structure of the scissors congruence group of pairs of oriented polyhedra in P;.
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Conjeeture 1.41 There is an isomorphism of ~vector spaces

k *, ,A (F)1ft = m S F1ft 0 B. (F)... 0 ... 0 B . (F)Ift.
n '-e 0< k <n i >2 '-e 1 1 ~ 1 m '-e- -, s-

i 1+ ... +im=n-k

Indeed, it is well-known that the universal enveloping algebra of the free Lie

algebra generated by a veetor space Y is isomorphie to the tensor algebra

T(Y) = ; y@n
n=O

The multiplication Jj: A , )( A tI --+ A '+ " should be defined by the formulan n n n

Jl«L' jM' ),(L";M")) = ~LJ&j) - see the definition of "prisms" above. So by definition

m Jl(An , x An") = P . Therefore A (F)/P (F) ~ ~ should be isomorphie to
n' +n"=n n n n

?v .
L(F)_n' In partieular A3(F)/P3(F) = B3(F) J

?

A4(F)/P4(F) 0 ~ . B4(F)~ mA2B2(F)~. Note that by definition B4(F)~ is a

subgroup in A4(F)/P4(F) 0 ~ and the quotient should be canonieally isomorphie to

A2B2(F)~ . The existence of the eanonieal embedding

A2B2(F)Q c • A4(F)/P4(F) 0 Q ia a very intriguing problem.

Note that An(F)/P (F)+B' (F) 0 ~ t 0 for n ~ 4. Geometrically this means
n n

that we cannot eut a generic pair of simplices in P; J n ~ 4 J to a sum of prisms and

polylogarithmic simpliees (LJM(t)). The reason is quite typical: 4=2+2. More

(D

precisely, set t(F)_n:= An(F)/p (F) 0 ~ . Then t(F).:= ED t(F)_n is equipped
n n=l

with the structure of a graded Lie eoalgebra. The coboundary 6: t(F). --+ A2[(F).
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ia induced by the comultiplication !: A. ---+ A•• A•. For example for n=4 we

•
t(F)-38Ffl

have 6: t(F)-4 --+ fit 2~ and 80 on. Let r: An ---+ t~ be the canonical
A L(F)_2

projection. Then

I I * Y *o( 'K Bn(F)) ( r Bn- 1(F) e F (L(F)-{n_l) e Ffl .

In parlicular, all t(F)~l A t(F)~ - components of 6(r B~(F») are zero if

k1 > 1, ~ > 1. But it ia easy to construct an element a E An(F) such that the

An- 2 e A2 - component of 4(a) has a non-zero projection onto

r;(F)~n_2) A r;(F)~2' (For example, for n=4 the last group ia isomorphie to

A2B2(F)~ ) .

fig. 1.15, 1.16

Let me state another conjectUIe describing the Q-vector spaces L(F)~

underlying the Lie coalgebra L(F)~ . Let f n(F) be the quotient of the free abelian

group C2n (p;-l) generated by all possible configurations of 2n points (f..O,... ,l2n_l)
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in p;-l by the following relations

RO) (The skew-symmetry.) (f-O,oo.,f-2n_1) = (-1) Iu I(f-u(O),oo.,f-u(2n-l)) .

Rl) (lO,... ,l2n-l) is zero if there are 2k+2 points in a k-dimensional plane

among these points.

R2) (The 2n+l-term relation.) For any 2n+l points (f.O,... ,l2n) in p;-l

2n

l (-1)i(f.o,···,t.i'···,l2n) = 0 .
i=O

Conjecture 1.42 L(F)~ 9 ~ is a quotient of f n(F)~ .

Remark. Relation Rl) means that all semistable configurations are zero.

Note that in the case n=3 we have a mysterious relation R3) and its higher

analogies is the main problem that remains.

We believe that there should be a canonical homomorphism

tt'n : 1Z[p~] --+ L(F)~ . Let us describe the canonical homomorphism

tPn : 1Z[p~] --+ f n(F) that should make the following diagram commutative (p is

the canonical projection predicted by Conjecture 1.42.)

Let xO, ... ,xn_ 1 be points in generic position in p;-l and Yi E xixi+1 (the line
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generaied by xi and xi+1 , indices modula n; see fig. 1.15, 1.16 for the cases

n = 4,3 ). Now let z = r(y2Y3...yn-l 1xO,xl'YO'Y1) (the cross-ratio of the configuraiion

cf 4 points on P~ obiained by the projection with center at the (n-3}-plane

Y2'''Yn-l) . Set

Lemma 1.43

Proof. Projection of. the configuration (xO,I"'.'Yn_l) with center ai the point

Yn-l gives a similar configuration in p;-2. So we can assume n=3. In this case

project the picture onto the line xl~ - see fig. 1.16. •

This lemma shows the correctness of the definition.

The last conjecture teils us that there should be a canonical homomorphism

such that

where z = r(Y2Y3'.'Yn-llxO,xl'YO'Yl) .

Let me emphasize that elements of f:.(F) are represented by configurations of 2n
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points in p;-I, while elements of An(F) are pairs of simplices in P;, and hence

produee configurations of 2n+2 points in P;. It is interesting that the best

construetion that 1 know of the element (L,M(z)) E An(F) uses the configuration

(xO'YO""~n'Yn) :

Remark 1.44 The configuration (xo'Yo,... ,xn-l'Yn-l) was independently

considered by J. Dupont and S.M. Sah in their study of the homology of GLn (I know

this thanks to the beautiful lecture of J. Dupont given at the "Polylogarithmie

conferenee" at the M.I.T., 1990) and by I.M. Gelfand and M.L Graev in their theory of

generie hypergeometrie functions. (Note that hypergeometrie funetions also live on

configurations of points in (p
n ; however it 800ms that they still live rather separately

from polylogarithms: the only connection thai I know is the observation of I.M. Gelfand

that Aomoto polylogarithms are very special examples of hypergeometrie funetions.)

Conjecture 1.42 implies also thai there should be an absolutely eanonical R-valued

funetion on configurations of 2n points in p(-l (expected to be rea1-ana1ytic on

stable configurations and eontinuous on semistable ones.) The reason is that there should

be a canonie&1 realisation funetor from the category of mixed motivie Tate sheaves over

Spec C to the category of mixed Tate R-Hodge struetures eNR' Therefore there

should be a canonical homomorphism of the corresponding mixed Tate Lie coalgebras

L(()v --t L(RR)v . A.A. Beilinson and P. Deligne construeted a canonical

homomorphism t : L( Jl
R

)v --t R . So the composition
n -n

rfn(() --t L(()~--t L(JlR)~-i R

gives a canonical funetion on configuratioDB of 2n points in p(-l .
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Recall the definition of in: L( eNR)~n --+ R (see, for example, [D], § 2). By

definition JrR is the tannakian category over R of mixed R-Hadge structures such

that hP,q f 0 only for p=q. An object H ( tNR ia a graded (-vector apace

H( = mHp together with areal structure Ha on fB Hp such that the weight filtration

W := mH
-2p l~p p

is defined over R,. i.e. (HR n w-2p) 8 ( = W-2p' The Badge filtration

F-P:= E9 H is opposite to the weight filtration. The real atructure HR induces a
f.5p p

real structure on grW2pH( = Hp' We have 2 different real structures on

H( = SHp : the structure HR and the atructure grWHR . Let X (GL(H() be the

subgroup of all transformations that preserve the weight filtration and induce the

identity on graded quotients. Then there is a uniquely defined n E X/X(R) such that

Set

--1 1
b = n n ,N = ~ log b

Then b 0 = 1, N = -N, N =~k where Nk has degree k. We have

1 2 1 2
Nk 1c_ (H 8H ) = Nk (H ) 8 1 2 + 1 1 8 Nk (H ) .

1-:l 1 H H 2

y
Now let UB recall the following construction of L( Jr(R)-n (see § 2 of [BGSV] or
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eh. 2 of [BMS]). Let H E J{R' W_2H = ;, W2nH = H. Say that H is framed if

the i80morphisms i-n : R(-n)~ gr;nH, iO: gr~H --+ R(0) are fixed. Consider

the set of all such framed mixed R-Hodge structures. Introduce on this set the coarsest

equivalence relation for which Hi is equivalent to H2 if there is a morphism of mixed

Badge struetures Hi --+ H2 compatible with frames. Denote by Rn the set of

equivalence classes. One may introduce on eNn a structure of an abelian group in

complete analogy with the Baer sum on Ext groups. The multiplication

is induced by the tensor product of Hadge structures. H ia commutative. Then we have

the canonical isomorphism

Lemma-Definition. Let H E eNn . Then the "matrix coefficient"

is a multiplication on t( eN) . It is equal to zero on m p.( eNk S eNt) and hence
k+f.=n

defines the homomorphism

Note that according to a theorem of A.A. Beilinson L( eNR) is a~ graded Lie

algebra over R. Ha space of degree -n generators is isomorphie to (/(2n)nR . The
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homomorphisID t n gives an element of L( RR) . These elements generate the Lie

algebra L( eNR) . It is interesting that the canonical polylogarithmic function (*) on

configurations of 2n points in p(-l, which coincides with the Bloch-Wigner function

for n=2, can be expressed by the classical trilogarithm. $3(Z) for n=3 (this ia one of

the main results of tbis paper) and cannot be expressed by the classical n-logarithmic

~n(z) for n~4 (because of the reasons that we discussed above). However, I suppose

that the following conjecture is valid.

Conjecture 1.45. Let 1l[C2n(P;-1)] be the free abelian group generated by stable

configurations (tO'''''i.2n- 1) of 2n points in p;-l. Then there exists a canonical

hOIDomorphism

(the generalised cross-ratio of 2n points in pn-1) such that

a) for a generic configuration (f.O" •• 'f.2n) of 2n+1 points in p;-l

2n

p n( l (-1)i(f.O,..·,ti ,..·,i.2n)) ( .9t n(F)
i=O

b) for a generic configuration (mO'."'~n) of 2n+1 points in P~

2n

Pn( l (-l)i(IDi ImO'''''~i'''''~n) C .9l n(F)
i=O
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Now let F = G:, x E p(-l and ~ E GLn(G:) . Then part a) of Conjecture 1.45 just

means that the function

is a measurable (2n-1)-eocycle of GLn(G:) . So it defines a dass in H~~;l(GLn(())'

It can be proved that part c) of Conjecture 1.45 guarantees that tbis dass coincides with

the Borel dass. Moreover, it can be shown that part b) of the conjecture provides us

with an explicit construction of the cocyde representing the Borel dass in

H~~;l(GLN(()) for an N > n (see the forthcoming paper). So Conjecture 1.45 implies

Zagier's conjecture, and in fact it is a way how to prove it.

Finally, I am sure that the mysterious subgroup .9t n(F) coincides with the image of the

(2n+1}-term relations a) and b) in Conjecture 1.45 under the homomorphism Pn .

Zagier'8 conjecture about 'F(n) follows immediately from Conjecture 1.45. In fact tbis

conjecture is stronger than Zagier's.



-90-

§ 2 The value 01 the Dedekind zeta-IunctiQn at thc point s = 2 .

1. The Iormulation 01 the theorem. Let F be an arbitrary algebraic number field, dF

the discriminant 01 F, II and r2 the numbers 01 real and complex pIaces

(lI + 2r2 = [F : ~]) , O"j the set of all possible embeddings F c.......+ (: numbered in

such a way that q - qrl+k.- rl +r2+k'

Recall that the Bloch-Suslin complex is defined as Iollows:

(x] ~(I-x)l\x

Theorem 2.1. Let 'F(s) be the Dedekind zeta-function oI F. Then there exist

such that

where I ~ i,j :S r2 and q ia some rational number.

We give a proof using only one hard result - the Borel theorem. The prooIoI the

analogons result about (F(3) follows the same scheme, but it is more complicated.
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Recall that Theorem 2.1 was proved by D. Zagier [Z] using different methods;

another proof follows immediately from results of A. Borel [BI 1-2], S. Bloch [Bl1]

and A. SUBlin [S 3] .

2. Thc Borel theorems. Set R(n) = (21ri)nR C ( and X
F

:= llHom(F,() . Let us

define the Borel regulator

The Hurewicz map gives a canonical homomorphism

(2.2)

For every embed~ng u: F e:......,. ( we have a homomorphism

~m-l(GL(F),71) --+ H2m- 1(GL(()J71) . (2.4)

There is a canonical pairing

H2m- 1(GL«(),R(m -1)) )( H2m_ 1(GL«(),ll)~ R(m -1) . (2.5)

Let us define a canonical element

b2m- 1 E Hct;m-l(GL«()JR(m - 1)) C H2m- l (GL«(),R(m - 1)) .

Recall that (cf. [Bo 1] )
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*where Htop(U,R) is the cohomology oe the infinite unitary group, considered as a

topological space. Further,

* * 1 3 5 *Htop(U,ll) = H (S )( S )( S )( ... ,ll) = Azful'u3, ... )

where ui denotes the dass oe the sphere Si.

Combining the above i80morphisms we get an isomorphism

So combining ibis with (2.3) - (2.5) we get

It is known that if ~ E. H~ont(GL«(),R) and c* denotes the involution defined

by complex conjugation c, then in (2.6)

* d *c <P(A) = (-1) <p(c ~) ,
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where c acts also on S2m-1 ( (m . Note, that

* m
c ~-1 = (-1) ~m-1·

So we see that

where

{

r1 + r2' if m ia odd
d =

m r2 ' if m is even

and on the right-hand side stands the subspace of invariants of the action of c .

In fact, we construct a homomorphisID

For any lattice A of (XF ~ R(m -1))+ define its (co)volume val A by

det(A) = vol(A) • det [XF 8 R(m -1)] + .

Theorem 2.2 (Borel [Bo 1], [Ba 2] ). For every m ~ 2 and sufficiently large n

a) Im r~n) ia a lattice in (XF ~ R(m -1))+
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( n) * -dmR := vol(Im r ) IV ~ • 1im (s -1 + m) 'F(s) .
m m s.....1---m

* *Here a N CI b means that a = Id> for some "t:. ~ .

According to (§ 1) we can assume n = 2m -1 . However, we will not use this

result.

Remark 2.3. The functional equation for 'F(s) shows that

3. The Grassmfttlnian complex and the Bloch-Suslin complex. Let us say that n

vectors in an m-dimensional vector space are in generic position, if every k ~ m of

them generate a k-dimensional subspace. The notion of n points in pm in generic

position is defined in a similar way.

Definition 2.4. Cm(n) (resp. Cm(P;)) ia the free abelian group, generated by

configurations (to' ... ,tm- 1) of m vectors in an n-dimensional vector space Vn

over a field F (resp. m points in P;) in generic position.

Let U8 define the Grassmannian complex CF(2) as follows (see [S 1], [BMS]

and [GGL])
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m
, • A

d : (to' ... ,tm)~ l (-l)l(lO' ... ,ti' ... ,tm) .
i=O

Let U8 define a diagram

*Let W E. det V2 be a volume form in V2 . Set

Put

)2)
Lemma 2.5. LQ (lO,ll,l2) does not depend on w.

Proof. An easy direct calculation.

(2.7)
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Lemma 2.6. Modulo 2-toIsion

Proof. Direct calculation (a Aa = 0 modulo 2-torsion).

COlollary 2.7. 42) 0 d(to' ... ,t3) does not depend on the "length" of the vectors t i:

*where ;\ E. F and 0 ~ i ~ 3 .

The proof follows immediate1y from (2.8). So ~2) 0 d defines a homomorphism

Every Huple of distinct points 'lO' ... ,'l3 on pi ia PGL2(F~quivalent to

(O,(D,l,z) , where

~(tO,t3) · &( f..1'f..2)
z=-------

ä(to,t2) • ä(t1't3)

ia the cross-ratio of ('lo'''' ,'l3) and it does not depend on the lifting of the points li

to vectors f,..
1

Further, the identity
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shows that 62 : (O,m,l,z) t---+ (1 - z) Az .

Set

4 "-
62 : (rO' ... ,r4) ........... l (- l)i(rO' .•• ,rp ... ,r4) .

i=O

Proof. Consider the following commutative diagram

where 42) is the projedivisation and d2 = 0 .

So we have constructed a homomorphism of complexes

•
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CS(2) ~ C4 (2) d
t C 3 (2)

1 1rf2) 6 1r~2) (2.9)

0 --+ B2(F) 2 I A2F*

4. Thc Herm functional eauation for thc Bloch-Wigncr function.

Lemma 2.9. dD2(z) = -log 11- z I d arg z + log 1z1• d arg(l - z) .

Proof.

dD2(z) = Im [d(Li2(z) + 10g(1 - z) · log 1z 1)]

= Im [-log(1 - z) d log z + log(1 - z) d log Iz1+ log 1z1d log(1 - z)]

= -log 11 - zI d arg z + log Iz I d arg(1 - z) .

Proposition 2.10. Let F = ( , then

Proof. It follows from Lemmas 2.8 and 2.9 that
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where D2(6'2(Xo' ... ,x4)) is eonsidered as a funetion on the manifold of eonfigurations

of 5 points in P~. So D2(6'2(xO' ... ,x4)) = const. Recall that D2{z) is continuous on

p~ and D2(0) = D2(m) = D2(1) = 0 . So the specialisation to the eonfiguration

(x,x,y,y,z) shows that this constant is equal to zero. •

5. EDlicit formula for the regulator r~2): H3{GL2{(),R) --+ R. Let em{n) be the

Iree abelian gronp generated by the m-tuples of vectors in generie position in an

n-dimensional vector space. Let us define a differential d: em(n) --+ e m- 1(n)

setting

m-l

d : (lo' ... ,lm-I)~ 1: (-I)i(lo' ... ,ti' ... ,lm-l)
i =0

Lemma 2.11. The following complex e*(n)

(ei{n) plaeed in degree i-I) ia aeyelie in degree > 0 .

(2.10)

N
C) C)Proof ( [BI 1] ). Let 1: Di(tO

l
, .•. ,tk

1
)

i=I
a generic position with t~i) . Then

be a eyde in C*(n) . Choose a vector v in

•
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Note that Öl(n)/dÖ2(n) = 11 ,so Ö*(n) is aresolution of the trivial

GLn(F)-module . Hy definition Cm(n) = öm(n)/GLn(F) . So we have a ca.nonical

homomorphism

In particular

Combining with the homomorphism of complexes C*(2) --+ B(2) (see (2.9)) we get a

ca.nonical homomorphism

According to Proposition 2.10 in the case F = ( the function D2(z) defines a

homomorphism B2(() --+ IR . So we obtain a homomorphism

(2.11)

If x E. p~ then
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is a cocycle, representing the constructed cohomology class. (The cocyde condition is

juBt the Herrn functional equation for ihe Bloch-Wigner function D2(z».

Notice ihat tbis cocycle is not continuous near the identity. However, the

corresponding cohomology dass lies in

To see this we repeat an argument of J. Duponi [D 1]. Reca.ll that ~(go' ... ,g3) is

equal to 2/3 times ihe volume V(gox, ... ,g3x) of the "ideal" tetrahedron in the

Lobachevsky space :W with vertices ai ~x, ... ,g3x on the absolute 8H3 ~ (pI. H

h E. H3 , ihen the volume V(~h, ... ,g3h) of the regular tetrahedron is also a

continuous cocycle and it is cohomologous (aciually in a canonical way) io

3
V(gcr' ... ,g3x) , x E. aB .

On the other hand, it is not hard to see ([D 2] ) that the cocycle V(goh, ... ,g3h)

represents the class (21r)2. rp-1(u
3
) (see 2.6). So formula (2.11) defines the Borel

(2)regulator r2 : H3(GL2«(» ---+ R .

Note that there is an easier way to see that the cohornology dass of cocycle (2.12)

lies in (2.13). Indeed, the function D2(z) is continuous on p1«() and so is bounded.

Hence cocycle (2.12) is bounded and as a result its cohomology dass lies in (2.13) - see

[Gu]. So the only problem ia to check thai ihe constructed cohomology class coincides

up to a rational number with ihe one constructed by Borel.

In order to construct explicitly ihe BOlel regulator 12 : H3(GL«(),R) ----i R we

willstudy in the next section sorne bicomplex C~(n) which will also be useful in § 4.
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6. Th~ bicQmplex C~(n). let us define a differential / ): \(n - ~p-l (n) as

folIows:

Note, that d(O) == d - see 2.10.

Lemma 2.12. The following complex is acyclic (k > 0) :

The proof is in a complete analogy with the one of Lemma 2.11.

Let Symk : öp(n) ---+ Öp(n) be the symmetrisation of the first k vectors:

Define a homomorphism A(k) : Ö (n) ---+ Ö (n) as folIows:
p p
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Lemma 2.13. d(k+1) 0 A(k) = ",(k) 0 d(k) .

Proof. It is obvious for the homomorphism X(k) that is defined by the same formula as

).(k) , but without symmetrisation.

It remains to symmetrise the first k + 1 vectors.

Lemma 2.14. ).(k+1) 0 ",(k) = 0 .

Proof. Straightforward. (Note, that X(k+1) 0 X(k) f o. )

Therefore we get the following bicomplex ~ ~(n)

1
... --+ ~m-1(n)

•

•

Remark 2.15. The bicomplex C~(3) was considered by A.A. Suslin in § 3 of [S 3] .



-104-

Let (~(n),8) be a complex, associated with the bicomplex e~(n). It is

placed at degrees -1, 0, + 1 , ...

. {7I 1 i=O
Lemma 2.16. H1(Etm(n)) =

o, i f 0

The proof follows imm~ately from Lemmas 2.11 and 2.12.

The gronp GLn(F) acts naturally on the complex .!ttm(n). Let ns denote

camplex ~(n)GL (F) a.s ~m(n) . Lemma 2.16 implies that there is a canonical
n

homomorphism.

Gur next problem will be to construct a homomorphism rp of complexes

(2.15)

~ ~n-2)(n) ~

1\0

o ---+ B2(F)

~n-2)(n) ---+

1\0

A2F* ---+ 0

(2.16)

We will often use the following notations. Let (Ll'''' ,t.k, ... ,t.m) be a configuration of

m vectors in a vector space V. Denote by < t.l' ... Jt.k > the subspace generated by

the vectors tl' ... ,lk . Then let us denote by (t. l , ,tk It.k+1, ... ,t.m) the

confignration of m - k vectors in the vector space V/ < t 1J ,t.k > , obtained by the

projection of the vectors lk+l' ... ,t.m J anG by (t.l'." ,t.k Ilk+l' ... ,lm) the

corresponding configuration of points in the projective space P(V/ < t 1, ... ,ik » .
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Let us define the homomorphism p: Cm(n) ---t Cm- 1(n - 1) by the formula

m

Then we get the bicomplex

(2.18)

Let us define a homomorphism f from the associated complex to the Bloch-Suslin

complex BF(2) in the following way: it coincides with the above constructed

homomorphism (2.9) on the subcomplex C.(2) and is zero in other places:

The correctness of this definition is provided by the following lemmas:

J2)
Lemma 2.17. p 0 fQ = 0 .

(2.19)
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Proof. Let "'3 be a volume form in a 3-dimensional vector space V3 and

(tl' ... ,L4) E. C4(V3)· Then A"'3(ti' • , • ) ia a volume form in V3/< Li > . So

It is easy to check that the right hand side ia zero.

See also the proof of Lemma 3.1. •

The assertion that 42) 0 p = 0 is an immediate consequence of the following

useful fact.

Lemma 2.18. Let xl'''' ,xs be 5 points in generic position in pi. Then

5

l (- l)i [r(x1, ... ';i' ... ,x5)] = 0 in B2(F) (2.20)

i=l

Proof. There is a (exactly one) conic passing through the points xl"" ,xs . Choose an

isomorphism from this conic to P~. Let Yi be a point in P~ corresponding to xi by

this isomorphism, then

A A

(xi Ixl' ... ,xi' ... ,x5) = (yl' ... 'YP ... ,y5) .

So (2.20) corresponds just to the 5-term relation in B2(F). •
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Now in order to construct a homomorphism of the complexes (2.16) we define a

homomorphism ~ hom the bicomplex (2.14) to the following one

d.........................................................el (4) --+ "D..

1p 1-p 1p 1-p 1p 1-p

-+e5(3)~e4(3)~e3(3)~e2(3)~e1(3)~"D.. (2.21)

1P 1-p 1p 1-p 1p

-+ C4 (2)~ C3(2) --..!.. C2(2)~ Cl(2)~ 11.

Namely, if (tl' ... ,tm) e. Cm(n) is placed at the level k in the bicomplex (2.14)

(this mea.ns that we apply to (tl' ... ,tm) the horizontal differential d(k)) I then we

set

It is clear that cp is a homomorphism of bicomplexes.

Finally, we define a homomorphism hom the complex associated with the

bicomplex 2.21 to the Bloch-Suslin complex as a prolongation by zero of the

homomorphism f - see (2.19), Le. it is zero for all groups Cm(n) different from C4(2)

and C3(2). So we construct the desired homomorphism of the complexes (2.16) and, in

particular, a homomorphism
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Lemma 2.19. The restriction oI tbis homomorphism to the subgroup GL2(F) ( GLn(F)

coincides with the one

constructed in § 2.5.

Indeed, choose n-2 linear independent vectors VI' ... ,vn- 2 in an

n-dimensional vector space Vn and a 2--dimensional complementary subspace

V2 : Vn = < Vl' ... ,vn-2 > e V2 . Then there is a homomorphism oI complexes

where t/-(C*(V2» lies in the lowest line oI the bicomplex (2.14) and 1/1 is defined by

the formula

From the definitions it is clear that we get a commutative diagram (the left arrow was

constructed in § 2.3)

•

Finally,let us consider the composition
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(2.23)

3The same arguments a.s in § 2.5 show ihai it defines an element in Hcont{GLn{[),R).

By Lemma 2.19 its restriction to the subgroup GL2«() coincides with the Borel class.

But dimRH~ont{GLn«(),R)= 1 . So the map (2.23) ia just the Borel regulator

r~n) . Q.E.D.

Finally, let me note that if we are interested only in the proof of Theorem 2.1, then

section 6 can be cancelled if we are ready to use SuslinJs results aboui homology of

GL(F) ([SI]) and finiieness of KW(F) for number fields. Indeed,

H3(GL3(F)) = H3(GL(F)) and H3(GL3(F))/H3(GL2(F)) = KW(F) up to 2-torsion.

So in the case of number fields H3(GL2(F),~) ~ H3(GL(F),~) .

However, section 6 ia necessary for the construction of characterisiic clasae6 from

K-groups of an arbitrary field to the cohomology of the motivic complexes BF(2) and

BF(3) . (In fact the stabilisation trick that we used in s. 6 for the case BF(2) ia based

on the same idea as Suslin's trick in § 3 of [S3]). Our proof of Zagier)s conjecture about

'F(3) also used constructions from s. 6, but in a more complicated situation.
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§ 3. The trilogarithmic complex: generic con:fignrations

1. Qur plans. From now on we will work up to 6-torsion.

Let Ca(pi) be the free abelian group generated by all po8sible configurations

(t1' ... ,la) of apoints in pi·

Definition 3.1. 1i(F) is the quotient of the group C6(P~) by the following relations

R1) (l1' ... ,ta) = 0 , if 2 of the points coincide or 4 lie on a line

R2) (The 7-term relation) For any 7 points (tl' ... ,t7) in P~

7

l (- l)i(l1' ... ,li' ... ,t7) = 0 .

i=l

Note that the configurations from the relation R1) are just the unstable ones in the

sense of D. Mumford [Mu].

Lemma 3.2. (The skew-symmetry relation). In the group 1i(F)

where Iu I is the sign af the permutation u E. S6 .

Proof. Let us apply the 7-term relation far a 7-tuple (t.1'·" ,(7) such that

t i = li+2 (i:5 5) . Then R1) implies that we get just the skew-symmetry relation far

the transposition (i,i + 1) . •
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Let ;;0 (F) be a subgroup of ;;(F) , generated by the configurations in generic

position. In tbis section we will define the following commutative diagram

C6 (3) d CS(3) d
• C4 (3)I

143
) 1f~3) 1f~3) (3.1)

05* 5 • A3F*1; (F) - - - -+ B2 (F)8F

and prove that 43) 0 d(tl' ... ,tB) does not depend on the f1length" of the vectors t j

(see proposition 3.9). Bence we define 5 on the generators of the group . Further,

Bence we get a correctly defined homomorphism

* 3 *Recall that the homomorphism 5: B2(F) 8 F ---+ A F is defined by the

formula 5: [xJ ~y .......... (l-x)AxAy.

The property 5 0 5 = 0 follows immediately from the commutativity of (3.1).

In § 4 we define 5 on degenerate configurations and hence get adefinition of the

homomorphism
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Then we do the second crucial siep: compute 6 for a configuration (mO' ... ,mS)

aB in fig. 1.8 and prove that, in a rather miraculoUB way, 6(mo' ... ,ms) is a linear

combination of the expressions [x] GD x . More precisely

where the homomorphism Li :7I. [P~ \O,l,m] ---+ C6(pi) was defined on p. 20 of § 1.

So, if we define ~(F) as the faetor of the group ~(F) by the following

relations

R3)

then we get a complex

In § 5 we prove that there is a canonical isomorphism

commuting with a (where R3 is the snbgroup generated by the functional equations

for the trilogarithm which were defined in (1.3).



-113 -

Fin&l1y we obtain the following commutative diagram

----i C7(3) d • C
6

(3) d
I CS(3) d C4(3)• .---+

1 43) 1 f~ 3)1 f~3)1

6 * 6 (A3F\~0 "3(F) I (B2( F) 8 F )Q

1f 11 11
6 * 6 (A3F\1B3(F) • (B2(F) 8 F )Q

Let us denote by BF(3) the complex in the lowest line of this diagramj the group

B3(F) ia placed in degree 1.

Therefore we construct the homomorphisms

A stabilisation trick with the bicomplex C~-3(n) permits to construct the

homomorphisms

which restricted to GL3(F) coincide with the homomorphisms (3.2). So we get the

canonical map8
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In the case F = ( the function ~3 (z) is identically zero on the subgroup ~ so it

defines a homomorpbism ~3: B3(() ---+ R . We prove that the composition

is just the Borel dass in H~ts(GL(()JR).Tbis fact together with the Borel theorem

[Bo 2] implies Theorem 1.

Now let us begin to realise tbis plan.

. Jm) m *2. The homomorobism fQ : Cm+1(m) ---+ A F . Let Vm be a vector spa.ce

*of dimension m and w E.. det Vm . Set

orten we will write simply A( f.1' ... ,tm) . Set



-115 -

For example ~2) is given by formula (2.7) and

Proof. It is not hard to prove it direcdy. However we give another proof that might

clarify the situation.

Let So,m(lO' ... ,tm) be a simplex with vertices 5(0), ,S(m) that (formally)

correspond to the vectors lO' ... lm . We will denote by S(iO' ,ik) Hs k-dimensional

rare with vertices S(iO)' ... ,S(ik) . Centers of codimension 1 faces are vertices of the

dual simplex S= Sm,o(lo' ... ,tm) . For example, S(i) is the center of the face
'"

S(O, ... ,i, .,. ,m) .

'" ~

Let S(iO' ... ,i~) be an l-dimensional face of 5(0, ... ,m) with vertices at

S(io)' ... ,S(il) . Denote by Cl(Sm,O(to' ... ,lm),ll) the group of l-ehains of ibis'

simplex.

Let us consider a homomorphism
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'"that takes S(io' ... ,i t ) to

'" '" '" t •ä(to'.'. ,t. ,.. .,1.. ) Aä( 1..0"'. ,f.. ,... ,1. )A ... AA(LO"" ,I.. ,.. .,1.. ) E. A F .
10 m 11 m 1f. m

Then by definition

'"where 8 is the differential in the chain complex C.(S).

1 •Now let w = ~w, ~ E. F . Then

'" '"
(<p~w - <pJ(S(io' ... ,if.)) = A A <pw(8S(io' ... ,i t )) .

(3.3)

(3.4)

Now the property tr = 0 and formulae (3.3) and (3.4) prove Lemma 3.3. •

Remark 3.4. The symmetrie group Sm+l acts natnrally on Cm+ 1(m). For

q E. Sm+l and e E. Cm+ 1(m) we have ~m){uc) = (-1) Iu If{c) .

m

Example 3.5 (Compare [SI]). H t o= l aiti and 4{f.1'''' ,f.m) = 1 , then

i=1



-117-

Lemma 3.6. The composition

is equal to zero.

Proof. Let 8(O, ... ,m + 1) be a simplex with vertices corresponding (formally) to the

vectors f.O'''' ,lm+l . Then

Am) _ A _

1) 0 p - CPw8(OS(O, ... ,m + 1)) - O. •

J3) *3. The homomomhism q : C5(3) --+ B2(F) 8 F .

configuration of 5 vectors in generic position in a ~mensional space V3 . Set

(3.5)

A A *
Recall that A(f...,f...) is defined using a volume form w E. det V3 .

1 J

Proposition 3.7. 43)(lOJ ... ,l4) does not depend on w.
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Proof. The difference of the elements 43)(t.O'." ,f.4) defined using the volume forms

*;\ • w and w(;\ E. F ) is equal to

It remains to UBe Lemma 2.18 . •

Proposition 3.8. The following diagram (defined modulo 6-torsion)

__d_---tt C4(3)

1e~3)
. 3 *

-----+t A F

CS (3)

1ep)
*B2 (F)fDF

is commutative module 6-torsion.

We prove the proposition by direct calculation. Here we indicate the main steps.

First of all, using (2.8) we get

Then we compute 50 43)(f..0' ... ,f..4) using tbis formula. The skew-symmetry relation

in the group B2(F) implies that
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Any summand in 6 0 43)( 1.0' ... ,L4) cau. be transformed by same permutation of

the vectors Li to one of the following expressions:

a) ä(to,f.2,t3) A&(t O,tl'f.3) Aä(to,f.l't2)

b) ä(f.O,t2,t3) A~(tO,t1 ,f.3) Aä(t O,t1,t4)

c) ä( f..O,f.2,(3) A~(tO,tl,t3) AA( t 1,t2,t4)

A simple computation shows that the first expression appears In

60 43)(to' ... ,t4) with coefficient 1, and the second and third with coefficient O.

The computation of ~3) 0 d(tO' ... ,f.4) gives the same result.

Proposition 3.9. The composition

does not depend on the length of the vectors t., i.e.
I

•

Proof. It is sufficient to consider the case when Al = ... = "'5 = 1, "'0 = ,\ . Recall

that
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5 . "
d(to' ... ,l5) = 1: (- l)J(f.O' ... ,f.j , ... ,f.5) .

j=O

The first summand (ll"" ,tS) does not give a contribution to the difference

(3.6)

Applying Lemma 2.18 to the 5-tuple (lO,l2"" ,lS) of points in p~ we see that

(3.7) is equal to [r(lO Il2,l3,l4,l5)] ~;\ . Analogously the contribution of the
. "

summand (- l~(lo' ... ,tj' ... ,tS) in (3.6) is

Summarising we see that (3.6) is equal to

But the left factor ia just a 5-term relation in B2(F) J 80 (3.8) is O. •
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Let 43) be the plojectivisation map:

Now the commutative diagram (3.1) is constmcted.
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§ 4. The trilogarithmic complex: degenerate confiSUIations.

N *1. The homomorohism 6: ~(F) ---+ B2(F) GD F . Let C~(3). (m ~ 5) • be the free

abelian group generated by the configurations of m vettors in the spate V3 such that

no 4 lie in a plane.

First of all let U8 define a 8kew~ymmetric (with respect to permutations)

homomorphism 43) : Cs(3) --+ (B2(F) GD F*) GDllm . On the subgroup CS(3) of

generic configurations it was already defined in § 3.

Up to permutations there are exactly two types of degenerate configurations in

CS(3) - see fig. 4.1 where ·the corresponding configurations of the points in p2 are

presented.

•

•

• •

fig.4.1

By definition 43) takes the configuratioDB of the second type in fig. 4.1 to zero.

Now let (tO,tl'1.2,i.3,t4) be the configuraüon of the first type such that

t O,t1,f..2 are in the same plane.
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Denote by l3 and l4 the projections of the vectors f..3 and l4 onto the

*
!-dimensionalspace V3/< lO,ll'l2 > . Let us define v(l4/l3) e. F as follows:

Put

It is clear that

(4.2)

Remark that (t41 lO,ll't2,(3) =(t31 tot! l2l4) , and (4.2) can be considered as a

"regularisation" of the formu1a (3.5) for the homomorphism 43). Namely, we removed

from (3.5) all factors ä( iO,l! ,l2) which are zero in our case.

Proposition 4.1. Let (lO"" ,l6) E. C6(3) . Then

The proof is in complete analogy with the one for Proposition 3.9, and even

simpler.
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Now let us define the homomorphism 6 on generators of the group ~(F) as

follows: 6 is zero for the configurations s3tisfying the condition Rl) and 6 = 43) 0 d

in the opposite C&Se.

2. Computation of the homomorohism 6 for degenerate configurations. We begin with

the remembrance of some notations.

If t o' ... ,f.3 are vectors in V2 and 10, ... ,13 - corresponding points in

*P (V2) , then

Sometimes we will omit bars and write r( t O'f.1'f.2,f.3) instead of r(lO,ll ''[2,13) . We

use the symbol [.] only for denoting elements of the group B2(F) .

All possible combinatorial types of the configurations of 6 points in p 2 , where no

4lie on a line, are presented in fig. 4.2.
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jig.4.2

Theorem 4.2. For a configuration ('[0"" ,l'S) as in fig. 4.3
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fig.4.3

Proof. Lei (to'''' ,t4) be a configuration of vectors in generic position in V3 . Denote

by W the plane generated by t o and tt .

Let (mO' ... ,m4) be a configuration of covectors in W defined as follow8 (the

dual configuration - see § 7).

Let ~,m3,m4 be functionals dual to the basis t 2,t3,t4 in V3 ' and let mi be

the restriction of mi to the plane W (i = 2,3,4) . Further, let mO ' fit be the basis

*in W ,dual to t o' tt.
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Projecüvisation of the kernel of the fonctional mj ia a point on the line P(W).

We denote it by IDj - see fig. 4.4.

'-·rn,

eL
~--...-...--...-~.....-

m5

fig·4.4

P(w)

*Let U8 fix the volume elements in V3 and W . Then &(t..,f..,tk) and &(m.,m.)
1 J 1 J

are defined. We will denote them (f..l..tk) and (rn.m.) for short.
1 J 1 J

Prooosition 4.3.

f.!QQf. By definition
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Lemma 4.4.

(4.6)

1t can also be proved looking at fig. 4.4. For exampleJ projecting the points l1' ... Jl4

with center at the ~int lO onto the line l2l3 and then projecting the obtained

points with center at l4 onto the line IDOIDl J we obtain the configuration

(ID4JID3,m2,ml) == (mlJID2,m3,m4) and so on . •

Lemma 4.5.

*where A E. F .

Using (4.6) and Lemma 4.5 we can rewrite (4.5) as

4 A

-i 1: (_l)i [r(iiio' ... ,mp ... ,m4)] ~TI (miIDj) -

i=O j=O

j=l=i

(4.7)
4 A

- j (1: (_l)i [rerno' ... Jmp ... Jm4)]) Q!O A4 .

i=O
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The second term is o.

Finally, substracting 4.4 from 4.7 we get

•

Now let us compute t~e homomorphism 5 for a conIiguration (to' ... ,tS) as in

fig. 4.3.

Let (mO,ml'm3,m4,mS) be a configuration of covectors in the plane

W = < to,t1 > , dual to a configuration of vectors (tO,tl't3,t4,tS) in V3 . Note

that l2 = mS (see fig. 4.4.).

Using (4.4), Lemma 4.5 and looking at fig. 4.4 we obtain:

(4.8)

Similady

(4.9)
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(4.10)

(4.11)

Using the 5-term relation in the group B2 we can rewrite the sum of (4.8) ­

(4.11) as folIows:

(-[r(mO,IDI ,m3,m4)] + [r«mOm3 m4 mS)] - [r«mi m3 m4 mS)]) ~ (m3m4)

(4.12)

+ [r(mO,m3,m4,mS)] 8 (mOmS) - [r(ml'm3,m4,mS)] ~ (m1mS)

Note that for a configuration (xO,x1'~Jx3) of 4 vectors in V2

(4.13)

6'(to' ... ,tS) is equal to the sum of the right-hand aide (4.14) and (4.15). Using

(4.16), after same arithmetical calculations we obtain:
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It remains to note that (see fig. 4.4) the configuraüon (iiil'mO,m5,m4,m3) which

seems rather awkward in this notation, coincides with the configuration

•

Remark 4.6. Looking at (4.15) and (4.4) we see that every term of these formulae

depends on only 4 JX)ints mi . So it "is not too snrprising that after some computations

we get that 6(lO' ... ,lS) lies in the subgroup 6(11 [P~\0,1,00]) of B2 GD F* .

Lemma 4.7. For a configuration (lO'''. ,lS) represented in fig. 4.5.

fig·4.5
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Proof. Let (to' ... ,iS) be same configuration of the vectors corresponding to the

configuration of points e[O' ... ;[s) . Hy definition

J3) A •q (to' ... ,i3+i' ... ,iS) = 0, I!: 0,1,2 .

According to 4.1

Similarly

Adding, we get

•
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We will see below that the configuratioDB of type 5 in fig. 4.2 correspond to the

classical trilogarithm.

Note that there are two natural numeratioDB of points of tbis confignrations

corresponding to different orientations of the triangle (lOll l2) - see fig. 4.5 and 4.6.

fig.4.6

Let U8 denote by ~3 the intersection point of the lines tot l and t 4t 5 . For

similarly defined points ~4 and ! 5 - see fig. 4.7.
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A
4.

/\

5

fig·4.7

Lemma 4.8.

Proof. Looking at fig. 4.7 we see that

Hut r(tsl t2,tl'~4,t4)= r(tsl tl't2,t4,l4) , 80 we get the first equality. Analogously

projecting from l3 we get the second one. _

Inversely, for every x E. P~\ {O,l,m} we can cODBtruci a configuration C3(x) as

on fig. 4.S with r(f..sIlO,ll't.3,l4) = x . In f&ct, we can do this canonically, na.mely,

choose 4 points lO,ll'f.3'!3 on a line L2 in p2 such that r(lo,ll'f,3,l3) = x , and



-135-

add the fifth point t 2 not on the line L2 . Then the configuration in fig. 4.8 is

constructed uniquely.

The configuration C3(x) defines an element of the group 1;(F) that we have

denoted L3(x) . So we construct the canonical homomorphism

L3 : 11. [P~ \0,1,00] --+ 1;(F) .

Remark that although the configurations C3(x) and C3(x-1) are different, the second

one can be obtained from the first by permutation of the vertices u: (1,2,3,4,5,6) --+

(2,1,3,4,6,5) . H tbis permutation ia even, then

(4.14)

Recall that a configuration of type 6 in fig. 4.2 ia denoted by fJ3'

Lemma 4.9. For every x E. P~ \ {O,l,m}

(4.15)

Proof. Let U8 write down' the 7-term relation for a configuration (to"" ,f.6) on fig.

4.8:
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fig.4.8

(The other 3 summands are zero according to the relation Rl). Using the

skew--fiymmetry relation in the group ~(F)) we have
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Therefore

Set

It is easy to check that 6((3(x)) = 0 .

Proof. Using Lemmas 4.9 and 4.7 we have

Note that according to Lemma 4.9

So we get the following commntative diagram

•

•
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3. The grouD 93(F).

1id

------tl (B2(F) 8 F*) 8 ll[~]

(4.17)

Definition 4.11. ~(F) is the quotient of the group }J(F) by the following relations

R3) If (to' ... ,lS) is a configuration as in fig. 4.3 then

Of course, this relation is motivated by Theorem 2.

Let us explain the reason for the summand ~ 113 in formula (4.18).

Consider the skew-symmetry relation

(4.18)

(4.19)

Let us express each term of (4.19) using a slightly modified formula (4.18), where 113 is

taken with an undetermined coefficient A. Then using (4.14) we get
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2 1
Applying (4.16), we get -! 113 + 2A'73 = 0 and A =! . It ia clear, that the

permutation of the points t 3 and t 4 gives the same resnlt.

Other permutations lead us to new configurations (that do not satisfy the condition

t 2 = l"Qll nW . In fact, we need the skew-symmetry relation in order to express

them as linear combinations of elements L3{x} .

Proposition 4.12. For a configUIation (to"" ,tS) as in fig. 4.9 we have in the group

1;(F)

(4.20)
A 1

{r(t2+j It o' ... ,ti' ... ,t2,t3, ... ,t2+jl ... ,tS)} + 3" 113

where, by definition

(4.21)
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e~ •

• • •

fig.4.9

~. Apply the 7--term relation to a configuration as in fig. 4.10 and use the relations

Rl) and R3). •

Proposition 4.13. A configuration of type 3 as in fig. 4.2 defines the zero element in

1;(F) .

fig·4.10
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fmgf. Consider the 74erm relaüon for a configuraüon aB in fig. 4.11 and use the

relation R1).

/

/
/

/ ,

@-r----_---"'l......._"'-1•..-_-...,......--.._

e{,

fig·4.11

Theorem 4.14. The homomorphism

L3 : 1l[P~\O,1,(I)] --+ ~(F)

is surjective.

Proof. According to the definition of the homomorphism L3 , Lemma 4.9, Relation R3)

and Propositions 4.12, 4.14, elements of the group 1i(F) corresponding to all
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degenerate configurations (presented in fig. 4.2) lie in Im L3(1l [P~ \0)1,(1)]) .

The 7-term relation for a configuration as in fig. 4.12 shows that the same is valid

for the generic configurations. _

e~ 4
~ .

·1
/

1

eZ. ,I .26
/

/
1

@- - - - .- - - -.
eb Ci eD

ftg.4.12

4. It follows from Theorem 4.2, Lemma 4.7 and Lemma 4.10 that the Relation R3lies in

~ * 1a kernel of the above defined homomorphism 6: Y3(F) ---+ (B2(F) GD F ) GD1/. [~J . So

we get the homomorphism

Moreover, there is the following commutative diagram
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1l [P~\ 0,1 , my{x} = {x-I} 5 * 5
I (A

3
F\;jI (B2{F) Q) F )~

(3(x) = '3{Y)

1L3
11 11

* 3 *
'13 (F) J (B2(F) GD F )Q 5

J (A F )~ .

Corollary 4.15. Im 5 (93(F)) lies in a subgroup generated by the expressions

[xJ 4Dx. •



-144-

§ 5. Functional eauatioDB for the trilogarithm

1. Computations. Let (t.O' ... ,t,S,z) be a configuration of 7 points in p2 represented

in fig. 5.1.

fig, 5.1

In tbis § we will denote for brevity the element {r(xOIxl~,x3,x4)} as

{~ Ixl'~,x3,x4} , omitting r, Consider the following element R3(t o' ,...,ts'z) of the

group 1l. [pI\O,I,m] :

'+' A A

~(f.O' ,.. ,tSrZ):= 1: (_1)1 JXO {zlto' .,. ,ti' ... ,tj , ... ,t5}-

O~i~~5

5

- l {z I ti'ti+l'ti+2,li+3} + {t 5 1t o,l2,lI'f.3} +
i=O

(S.I)

+ {lI I l3,lS,lO'z} + {l3 1lS,ll'l 2'z} + {lsl tl't3,l4'z} -

- {tl I l3,ls,t4,z} - {t 31ts,tl'lO'z} - {tsl tl' l 3,t2,z}
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where by definition X 0 {xO,xl'~,x3} := {xO,~,xl,x3} . We consider all indices

modulo 6.

Theorem S.l.

a) L3(R.g(iO' ,ts'z)) + 3'13 = 0

b) 60 R(iO' ,ts'z) = 0

It is clear that b) follows immediately from a), Lemma 4.10 and the commutativity

of diagram 4.17.

Proof. a) We will demonstrate that using equality (4.16) we can identify

L3(R(tO' ... ,lS'z)) + 37]3 with the 7-term relation for the configuration (to' ... ,ts'z)

multiplied by (- 1) .

Taking into account the skew symmetry of the elements (xO' ... ,x6) E. ~(F) with

respect to the permutations of the points Xi t we can rewrite the 7-term relation in the

following form:

Note that the terms in the first line of (S.2) have type 3 and in the second one type

S in the list of all possible combinatorial types 01 configurations in fig. 4.2.
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AllIines in (5.2) are invariant under a cyclic transformation

T: t i .......... li+2 (1"3 = id ; T 0 Z = z) .

Roughly spea.king T is a"rotation" of the picture 5.1 on 27:/3 in a direction given

by an orientation of the triangle (tOt 2t 4).

Let us set

and so on. Then (5.2) can be written as

(1 + T + ~) 0 [( t O,tl't2,t3,t4,z) - (tO,tl't2,t3,t5,z)] +

(5.3)

Applyjng Proposition 4.12 and Relation R3) from the Definition 4.11 to this

formula we obtain:

[

4
1 2 i-I"
3(1 + T + T ) 0 (1 + 2X) 0 L3 i~O (-1) {z It o' ... ,ti' ... ,t4} + (5.4a)

(5.4b)
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- {t.5 1t.1't.2,f.3,z} + {f.5 1 t.O,f.2,t.3,z} - { t 5 1t O'f.1't.3,z}

(5.4c)

+ {t 3 1tl't2,tS,z} - { t 3 1t O,t2,tS'z} + {t 3 1t o,tl'ts'z} ]

Note that there is no term 113 in this formula. It is clear that

(5.4d)

and

Therefore (see the first and the last term in 5.4c):

Using the equalities
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we obtain that (5.5) is equal to

Analogously the contribution 01 the third and Iourth term in (5.4c) is equal to

So (5.7) is equal to

the sum of (5.6) and (5.8) coincides with the last two lines in (5.1).

Further note that (see pie. 5.1)

So the sum of the second term in (5.4c) and the fifth in (5.4a) is equal to
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(5.9)

Similar computations for the fifth term in (5.4c) give the following result:

(5.10)

Note that the sum of (5.9) and (5.10) is equal to

5

- (1 + X) 0 L3 1: {z Iti'ti+l'ti+2,ti+3} . (5.11)
i=O

Now let U8 consider the first and third term in (5.4b). Accounting that

(z It 1,t2,t3,t5) =: T 0 (z It 5,tO,t1,f.3) , we have:

(5.12)

{z It O,t1,t3,tS} + 2{z It O,t3,tl'tS}] = (1 + r + r2
) 0 L3{z It O,t3,t1,t2} + 773 .

Similar computations can be produced with the second term in (5.4b) and the third

in (5.4a), and also with the second and fourth term in (5.4a).

We obtain the following results:
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and

Finally,

Adding (5.6), (5.8), (5.11) - (5.15), we obtain the right-hand side of (5.1).

Many alternative forms of (5.1) can be obtained using the relation (4.16). I give an

expression with the minimal DOssible number of terms.

Let (xl~,~,yl'Y2,13'z) be a configuration of 7 points as in fig. 5.2. Put
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ftg. 5.2

Lemma 5.2. If the configurations (x1"~'Yl'Y2'Y3'z) and (tO,t.2,t4,t.l't3,t5rZ)

coincide then

Proof. Transform the third and fifth terms in (5.16) using (4.16). •

Therefore in the group ~(F)

The remarkable feature of the formulae 5.1 and (5.16) is that all their terms have

coefficients * 1 .

Every term in (5.16) ia obtained by the projection of 4 points from (xj'Yj'z) with

the center in a fifth. Consider all possible configurations of 4 different points of pI



-152-

obtained in tbis way. Let us say that the two configurations are equivalent, if they differ

only by a permutation of points. It turns out that every such equivalence class is

representoo by .b!ll~ term in (5.16).

Let us emphasize that some configurations can be written in different forms, for

on.

2. The main theorem. Let UB recall that '3(x):= {x} + {I - x} + {I - x-1} . Set

B3(F) := II [p1\O,l,oo] {x} = {x-1}

'3(x) = '3(y) (5.17)

It.J(ti;z) + 3'3(x) = 0

where (to' ... ,f.5,z) is any confignration of 7 distinct points in p2 such that (see fig.

5.1): a) the point l2i+1 lies on the side L2i of the nondegenerate triangle (lot2f.4),

o~ i ~ 2 (l2i ~ L2i); b) z is in generic position with respect to lO' ... ,t5 , c) f.1 ,

t 3 and t 5 do not lie on the same line.

Note that the main relation in (5.17) can be rewri tten in such a way that the

relations {x} = {x-1} and '3(x) = '3(y) cau be deduced from it. But we do not need

tbis reault.

Let us denote by '3 the image of the element '3(x) in B3(F) .

Now we begin with the construction of the homomorpbism
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which is inverse to the epimorphism L3 .

Let us define the homomorphism M3 on the generators of the group ~(F).

a) Set M3('l3) = '3 .
b) Put

for a configuration (f.0' ... ,f.5) aB in fig. 5.3a).

c) Put

for a configuration (lO' ... ,lS) aB in fig. S.3b).

d) Put

M3(t01 ... ,1.5) := -i l (-l)i+j(l + 2X) 0

O:Si 1 j:S2
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for a configuration (t.O' '" ,LS) as in fig. 5.3c).

e.L e.i

fig. 5.3 a), b), c)

•

f..(
••

• •

The skew-5ymmetry property in the group ~(F) provided the definition of the

homomorphism M3 on the configurations thai differ from the ones considered above

ones by some permutation of points. Lemma 4.8 and the considerations after the

Definition 4.11 proved the correctness of this definition.

e) Now let (to' ... ,tS) be a configuration of the generic position. Denote by a the

intersection point of the lines l.Qll and l4l5. Set

5

M3(tO' ... ,tS):= l (-1)iM3(f.O' ... ,ti' ... ,f.s,a) .
i=O

All terms on the right-hand side were defined above.
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Proposition 5.3. (M~x) - M3)(tO' ... ,tS) = 0 ..

s
M~Y)(to' ... ,(5):= L(-l)i(to' ... ,tj , ... ,t5,y) .

i=O

Proof.

s
L(-1)iM3 [(to' ... ,ti' ... ,t5x) - (to' ... ,ti' ... ,t5,x)] .

i=O

In order to investigate the right-hand side of this equality we need the following

lemma.

T.emma 5.S. Let (xO'''' ,x6) be 7 points in p2 such that there are 4 points on a line

among them. Then
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6

l (- 1)iM3(Xo' ... '~i' ... ~6) = 0 .
i=O

(5.18)

"'-

Note that all configurations (xo, ... ,xi"" ,xa) are non~eneric, so all terms in

(5.18) were defined above.

The proof of this important lemma will be given below.

"'-

If i t {i1)2} , then ii
1
,ii

2
'x,y are four points among iO'''' ,ti' ... ,l5'x,y ,

belonging to the same line. So applying Lemma 5.5 we get

M3 [(to' ... ,ti' ... .tS,x) - (to' ... ,ti' ... ,ts'y)] =

(5.19)

5

- L :!: M3(t O' ...•ti •...•tj •...•tS,x·y) .
j=O
jfi

The same result is true when i E. {i1,i2} Indeed, the configuration
"'-

(to' ... ,t.i' ... ,t5,x,y) has the same combinatorial type as a confignration from fig. 5.1

(see fig. 5.4). So the image of the corresponding 7-term relation by the homomorphism

M3 is a relation in the group B3(F).
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•

fig·5.4

It is easy to see that the SUDl of the right hand side of (5.19) from i ~ 0 to i ~ 5

is zero. Lemma 5.4 is proved. •

Similarly the homomorphism defined with the help of the pairs (i1,i3) &; (j1'~)

also coincides with M~X). Changing several times an index in one of this pairs, we can

transfer the pairs (il'i2) &; (jl'~) to (01) &; (45) , and as a result prove the proposition

5.3. •

Proof of Lemma 5.5. All combinatorial types of configurations of 7 distinct points in

p2 containing 4 points on the same line are shown in fig. 5.5.

The equality (5.18) for configurations of type 1 in fig. 5.4 follows from the

definition d) of the homomorphism M3 .
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For configuraüons of type 2 and 3 all tenns in (5.18) are zero according to Lemma

4.13.

Equality (5.18) for the configuraüons of type 4 and 6 is an easy consequence of the

defi;Ilitions (see Proposition 4.12).

Fina1ly, let (to' ... ,t6) be a configuration of type 5, aa shown in fig. 5.6.

• • • •

•
•

• • " .
®

o

fig·5.5

Then
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Let us add the right-hand sides of these formulae and group the i-th term of the

first one wÜh the (i + 3)-rd term of the second (indexes modulo 5). Furlher, remark

that (t61 t. ,t. J t . ,t4) == ( t 4 1t. J t . ,t. ,t6) if 0 ~ i t ;2,i3 ~ 3, (t 4 1 t s' ... ) ==
11 12 13 11 12 13

(t 4 1t 3, ... ) and (tal t s, ... ) == (tal t o' ... ) . Then an easy computation shows that

we obtain

According to the relation R1 in the group ~(F) J the other terms in (5.18) are

zero for the configuration from fig. 5.6. •

So we define the homomorphism M3 on generators of the group 1:3(F). It

follows immediately from the definitions that ~3 transfers the Relations Rl and R3 in

the group ~(F) to zero. We proved that the Relation R2 for 7 points· in p2 is also

mapped to zero, if among these points there are 2 coinciding or 41ying on the same line.

The other combinatorial types of the configurations of 7 points in p2 are shown in fig.
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5.7, where all lines containing more than 2 points of the configuration are also

distinguished.

eL
fig.5.6

Proposition 5.6. The homomorphism M3 aJ1nibilates the 7-term relations for all

configurations represented in fig. 5.7.
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• / .• • •• •
• ••• •

• • • • • • •

@ ® @ @

-.

®

®

@

®

@

fig·5.7
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We need the following very simple lemma.

Lemma 5.7. Let t o' ... ,t.7 be 8 points in p2 and let it be known that the

homomorphism M3 annihilates Relation R2 for the 7 points, obtained by removing the

point t., where i = 0, ... ,6 . Then the same is true for i = 7 . •
1

Proof of Proposition 5.6. We -will refer to the points of our configuration as

"distinguished points". There are two distinguished lines in the eonfigurations 3, 7, 12

and 13 in fig. 5.7 such that Hs intersection point ia not distinguished. Let us add this

point. Then after removing any other distinguished point there are 4 distinguished points

lying on the same line. It remains to apply Lemmas 5.5. and 5.7.

Proposition 5.6 for the eonfigurations of type 4 in fig. 5.7 follows from the definition of

the homomorphism M3 for the configuration of 6 points in generie position, obtained

by removing the intersection point of two distinguished lines.

We will write (§) ~ 0 if the validity of Proposition 5.6 for the configurations

of type m in fig. 5.7 implies the one for a configuration of type n.

Applying Lemmas 5.7 and 5.5 to the configurations in fig. 5.8 a) and 5.8 b) we

obtain that 0 =t 0 and 0 & 0 =t 0 .
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c)

"
•
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J)

•
•

•

e)

fig. 5.8
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Theorem 5.1 claims that the 7-term relations for a configuration of type 5 in fig.

5.7 transfer to & (basic) relation in the group B3(F) .

Applying the Lemmas 5.7 and 5.5 to a eonfiguration of 8 points in fig. 5.8 e) we get

that CD & 0 ~ 0 ' because after removing the points i O and f.3 we obtain a

configuration of type 4, and after removing the point f.2 one of type 5.

Similar considerations for configurations in fig. 5.8 d) show that

o& 0 ~ 0 (after removing the points t1 and t 2 we get a configuration of

type 8, and after removing i O one of type 2) .

Removing points i 1 or t 5 from a configuration in fig. 5.8 c) we obtain a

configuration of type 12, and removing t o one of type 8 . Hence ® &; 0 '* ®.

Finally, let us add a generie point to a configuration of type 10 or 11. Then

rem.oving any other point of the obtained configuration we ean get neither a

configuration of type 10, nor 11, because every point of these eonfigurations lies on some

distinguished line.

So all po8sible cases were considered and henee we have proved Proposition 5.6. •

Theorem A. For an arbitrary field F containing sufficiently many elements:

a) The groups ~(F) and B3(F) are eanonically isomorphie.
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b) There is a canonical isomorphism of the complexes

JlJ(F)Q ~(B2(F) GD F\~ L (A
3
F\1

J1M3 11 11 (5.20)

B3(F) ~ L (B2 (F) GD F\~ L (A3F*)Q

Remark. Diagram (5.20) exists and is commutative even if we consider al1 groups only

modulo 6-toraion instead of S Q.

3. The homomornhism M3 and the specialisation.. Let 113(F) be the quotient of

11 [P~] by the subgroup generated by the following elements

where (to' ... ,f.5,z) is a configuration as in fig. 5.1.

There ia a canonical i80morphism

f: {O} , {m} .......... 0; f: {x}....-. {x} , X E pi\{O,l,m} .

Note that if just 2 among 4 points t o' ... ,t.3 on a line coincide, then



-166-

r(to_... ,(3) = {~
if LO= L3 or LI = f.2
if LO= t 1 or f.2 = t 3 (5.21)

if LO= t 2 or f.1 = t 3 .

Let U8 define the homomorphism :&13 : ~(F) ---+ tl3(F) as follows.

First of &11, it is zero on semistable and unstable configurations (Le. configurations

satisfying condition R1).

Now let (to' ... ,ls) be a stable configuration such that lO J t 1 , t 2 are on a

line. Set

(5.22)
A A 1

{r(L2+ i IlO' ... ,li' ... ,t2,f,3' ... ,l2+j' ... ,Ls)} + ~ {I} .

Let UB emphasize that we can compute all degenerate terms in this formula using

5.21 because lj =1= Lj and there are no 4 points on a line among (to' ... ,t5) .

The definition of the homomorphism :&1:3 for generic configurations coincides with

the definition of M3 .

Et3 ~ N
Lemma 5.8. The composition ~(F) t J::J3(F) ----+ B3(F) coincides with M3 .

Proof. It is sufficient to check the lemma for the configurations in fig. 5.3 b), 5.3 a) and

113
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a) Applying formula 5.22 to a oonfiguration 5.3 b) we get

(5.23)

Note that

b) For a configuration in fig. 5.3 a) formula (5.22) gives

Taking into account (t51 t 4, ... ) == (t41 t 5, ... ) , we can rewrite this formula as
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c) For the configuration '13 (tl'f.3 and f.,5 in fig. 5.3 a) lie on a line) formu1a 5.22

gives {r(f.,5 1f.,O,t2,tl'f.,3)} = {I} according to 5.21.

So in order to compute in the group ll[P~]/({x} - {x-I}, {O}, {m},

{I} - '3(x)) the image of the 7-term relation corresponding to the degeneratioDB of a

configuration in fig. 5.2 under the homomorphism M3 it is sufficient to specialize

formu1a (5.16) using (5.21).

In panicular the Spenee-Kummer functional equation for the trilogarithm is just

the image of the 7-term relation for a configuration in fig. 1.3 under the homomorpbism

Et3 - see formulae (1.12) and (1.13).

On the other hand we have proved in s. 2 of tbis § that the Spenee-Kummer

relation is a linear combination of 3 generic relations R3(tO' ... ,ts'z) .
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Reca.ll (see s. 6 of § 2) that ~m(n) is a complex associated with the bicomplex

C~(n) . It is placed in degrees - 1,0, 1, .... There is a canonical homomorphism

H.(GL (F),ll) --+ H.(.!4ID(n),ll) .n (6.1)

In this § using the results of § 3-5 we will construct a homomorphism of complexes

(modulo 6-torsion)

---+ ~n-3)(n)~ ~n-3) (n)~ ~n-3)(n)--+

1~3 1~3 1~3 (6.2)

• A3F·0--+ B 3(F) -+ B2(F)~F ~ --+0

Let UB consider the following bicomplex

1-p 1P

C7(4) L C6(4) L C5(4) (6.3)

Ip I-p Ip
C7(3)~ C6(3) L C5(3) L C4(3)

Then there is a homomorphism f of the complex, associated with this bicomplex

to the complex BF(3) that is defined (modulo 6-torsion) in the following way



-170-

C7(5) ~ C6(5)
/,

-pI // Ip
C7(4)~C6(4) ~ CS(4) (6.4)

/ /' /

Ip / -;1 / Ip
CpL'-hp ( < 4 CS(3) ;- C4(3)

If~~Y// IfF/ If~O)
lJ.J.. ö fI, * ö 3 *o --+ B3(F)~B2(F)~F --+ A F ---+ 0

where all dotted arrOW8 are zero.

Theorem 6.1. f ia a well-defined homomorphism of complexes.

(0)Proof. By Lemma 3.6 f3 0 p = 0 .

Lemma 6.2. The composition 41) 0 p : C6(4) ---+ B2(F) e F* is zero (modulo

&-torsion).

Proof. Let us prove that

4

Indeed, according to Lemma 2.18 1: (_1)i [r(li I f-O' ... ,ti' ... ,l4)] = 0 . So

i=O

(6.5)
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But the sum of (6.6) and (3.S) is just the formula (6.S). •

Theorem 6.3. The composition 42) 0 p is equal to zero.

This theorem follows immediately from Corollary 7.6 and Theorem S.l that will be

proved in § 7 - 8.

Theorem 6.1 follows from the Lemmas 3.6,6.2 and Theorem 6.3. •

Now in order to construct a homomorphism of the complexes (6.2) we define a

homomorphism ~ of the bicomplex Cin-3)(n) to the following one

(a.7)

-+ CS(S) -+ C7(5) -+ Ca(5) ---f CS(5) -+ C4(5) -+ C3(5) -+ C2(5) ---f C1(5) --t 11

! ! ! ! ! ! 1
-+ C7(4) -+ Ca(4) -+ CS(4) ---f C4(4) -+ C3(4) --+ C2(4) ---f Cl (4) --+ 1l.

! ! ! 1 1 1 !
-+ Ca(3) -+ CS(3) -+ C4(3) -+ C3(3) -+ C2(3) -+ Cl (3) --+ 1l.

N!YDely, if (tl' ... ,tm) E. Cm(n) is placed at the level k in the bicomplex

C2-3(n) , Le. we apply to (tl' ... ,tm) the horiwntal differential d(k) , (see 2.14
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where the bicomplex Ö~(n) is presented) then we set

~ : (t.1, ... ,t. )~ (tl' ... ,t.k It.k+1 f..) E C -k(n - k) .m , ... , m m

The composition of tbis homomorphism and the homomorpbism f gives the

desired homomorpbism of complexes (6.2). Therefore we get the ca.nonical

homomorphisms

(Recall that BF(3) is placed in degrees 1, 2, 3) .

In parlicular

In § 3 - 5 we have constructed the homomorphism of complexes

(6.8)

(6.9 a)

(6.9 b)

1f~2) 1fp) 1f~O)

* 3 *o ---+ B3(F) ----+ B2(F)~F ---+ A F

So using Lemma 2.11 we get the canonical homomorphisms

(6.10)
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(6.11 a)

(6.11 b)

Lemma 6.4. The restriction of the homomorphism (6.9 a) (respectively (6.9 b)) to the

subgroup GL3(F) C GLn(F) coincides with the one of (6.11 a) (respectively (6.11 b)).

The prcof is in complete analogy with the one of Lemma 2.19. •

Finally, the restrietion of the homomorphism (6.11) to the subgroup

GL2(F) (GL3(F) ia equal to zero, because the resolution ~.(3) of the trivial

GL3(F) - module 71 has a GL2(F) - invariant section

71

1
... ----+ ~2(3) --+ ~1(3) .

(Namely, if V3 = V2 m< v >, dim Vi = i , then the map n .......... n • (v) E. Ö1(V3)

defines a GL(V2) - invariant section 71 ---+ Ö.(V3)) .

So we have constructed canonical homomorphisms (see § 1)
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§ 7. The duality of the eonfigurations

1. Generie part of a Grassmannian and the configurations. Let W be a vector spare

over a field F with basis el'''' ,en . Let UB denote by fl, ... ,fl the dual basis in W*
and by hj the hyperplane ti = 0 in W (~(ei) = 6ij) .

A

Let Gm(n) be the manifold of all m-dimensional subspaces in W transversal to

the coordinate hyperplanes.

A

R. Ma.cPherson defined a canonical isomorphism between Gm(n) and the generie

configurations of n vectors in Vm ([M], [GM]). One of the possible eonstruetions is
• A

as folIows: the restrietion of the functionals fl to a subspa.ce S E. G (n) defines an
m

*n-tuple of vectors in generic position in S .

Sometimes another definition is more eonvenient: Let sI' ... ,sm be a basis in S,

then

n

Sj = l a~.ei' j = 1, ... ,m .
i=l

The columns of the matrix (a~) form n-tuples of vectors in the eoordinate space

~ . Another basis in S leads us to a GLn(F)-equivalent n-tuple of vectors. So the

configuration is defined eorrectly.

Conversely, let (tl' ... ,tn) be a generic configuration of vectors in Vm . Then

n-m

t m+i = l ~tj
j= 1
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and ihe subspace in W , generaied by ihe vectors

n-m n-m

e1 + I bfem+ j ; ... ; em + I b~em+j' (7.1)
j=l j=l

1 n-m
1 0 0 b 1 b 1
o 1

1 n-m0 1 bm bm

(7.2)

Both constructions give ihe same configuration of VectOIS because the restriciion of

the functionals

m

m+j - l ~ t , j = 1, ... ,m

i=1

io ihe subspace S is O.

The correspondence

.... l. *
S E. Gm(n) ....... S := {f E. W such that fl S =0 }

A N A

defines the duality Gm(n) --+ Gn_m{n) .
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The projections ci of the vectors ei in W/8 form a configuration, corresponding

.1 .1*
to the 8ubspace 8 (because (8 ) = W/S) .

n

Note, that e. = - , J>J e +'. So the columns of the matrix
1 L 1 m J

j=1

bn-m n-m
- 1 - bm 0 0 1

give a configuration of vectors in ~-m, dual to the initial one in Fm (formed by the

columns of the matrix (7.2».

Later on we will be mainly interested in the case n = 2m . A generic configuration

of 2m vectors in ~ may be represented by the m x m matrix B with non-zero

minors. Namely, such a matrix represents a configuration, defined by the columns of an

m x 2m matrix (I,B). In this case the dual configuration ia given by the matrix

_ (B-1)t .

Let ~ ( GL(W) be the maximal torus preserving all l-dimensional coordinate
A A

subspaces {Aei }. It acts freely on Gm(n). The quotient Gm(n)/Tn can be

canonically identified with the configurations of n points in generic position in p;-1

So we get a duality
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configurations of n

JX>ints in generic

position in p;-m-l I
2. Geometrical definition of the duality of configurations. We start with the

-- -- -- ------- - - - -~- -- -- -- - ~ ----~_._-----------

configurations of points in P~ (projective configurations).

Note that a configuration of hyperplanes in p;-l gives a configuration of points

. p.......m-l Le eh (") . hi pID-l IV ......m-l hIn F . t us oase a projOCtlve lsomorp sm g: F. --+ P F . T en we

get a configuration of points in p~-1 . This configuration does not depend on the choice

of g, because every two such isoIDorphisms differ by an element of PGL(n) and hence

give the same configuration. So from now on we will identify configurations of points and

hyperplanes in p;-1 .

Let (tl' ... ,l2m) be a configuration of points in p;-l in generic position. Let

UB denote by r, (respectively LII) the (m - l)-&mplex with vertices f.1, ... ,lm

(respectively t m+1, ... ,t2m) . Then the codimension 1 faces of these simplices form. a

configuration of 2m hyperplanes in pm-l and hence a configuration of 2m points in

pm-I.

More precisely, let Li (respectively Lm+i) be the codimension 1 face of LI

(Ln) that does not contain li(f.m+i).

Proposition 7.1. The configuration of hyperplanes (Ll'''' ,L2m) is dual to the

configuration (l.I'·" ,f.2m) .
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Proof. Let (lI' ,l2m) be a eonfiguration of vectors in V that projecis to a

configuration (tl' ,t2m) in P(V) , dim V = m . Let us denote by fl' ... ,fm

*(respeetively fm+l' ,12m) the basis in V dual to the basis ll' ... ,lm

(respectively lm+I' ,l2m) in V .

Lemma 7.2. The eonfiguration of vectors (fl , ... ,fm' - fm+ l , ... ,- 12m) is dual to the

configuration (lI' ... ,l2m) .

m m

B = (bh . Indeed,
1

and

Proof. H lm+i = l ~ lj then fm+i = l ~ fj , where we have the relation
j=l j=l

between the matriees C = (~)
n

< fm+i,lm+i I > = 1: ~. ~ I = 6'ü I . But we have already proved above thai the
j=l

dual eonfiguration of veetors is described by the matrix _ (B-I)t. •

Proposition 7.1 follows from Lemma 7.2. •

There is a rather snrprising geometrical corollary of Proposition 7.1.

rn-ICorollary 7.3. Let tl' ... ,t2m be a (2m)-tuple of points in generie position in P F

and

{I, ... ,2m} = {il , ... ,im} U {jI' ... ,.im} .
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Let U8 denote by Mi (respectively M. ) the hyperplane generated by the points
k .1k

A A

t. J ... Jf... J •.. ,t. (respectively L. , ... ,f... , ... ,t. ).
11 Ik Im J1.1k.lm

Then there exists a projedive transformation g E. PGL(m) such that

g • M. = L.. 1 <i < 2m .
I I # --

In other words, the configurations (LI' ... JL2m) and (MI' ... ,M2m) coincideJ

(see fig. 7.1). •

es

ftg. 7.1
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Proposition 7.1 permits to define the duality geometrically for any n ~ m + 2 .

Namely, let (lI' ... ,Lm+k) be a (m + k) - tuple of points in generic posiüon in

pm-l and 2 ~ k :5 m . Let U8 denote by H the (k -1) - dimensional plane generated

by the poinia lm+l' ... ,lm+k . Set (see fig. 7.2)

Mi M; Mli

e4 eS

( Mi) ''') M,r) .* ( ei.J "'j es)

fig. 7.2

A

Li = < tl' ... ,ti' ... ,tm> ,

A

Mm+j = < t m+1, ... ,tm+j, ... ,tm+k > J

M. = L. nH (1 < i < m) .
1 1 - -

Proposition 7.4. The configuration (MI' ... ,Mm+k) of hyperplanes in H is dual to

the configuration (tl' ... ,f..m+k) of points in pm-I.
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In order to prove tbis proposition we need the following

Lemma 7.5. Let (tl' ... ,tn) be a configuration of points in generic position in

pm-I, (Yl' ... ,Yn) the dual confignration of hyperplanes in pn-m-l .

Then the configuration (tl' ... ,li' ... ,tn) in pm-I is dual to the configuration

(YI nVi' ... 'Yn nVi) in Yi .

A

Proof. Choose an s E. Gn_m(n) such that s· Tn corresponds to a configuration

(eI' ,en) in pm-I. Then by definition, the projections of the basis vectors

LI' ,tn onto P(W/s) form a configuration that coincides with (f,l"" ,tn) . The

configuration of hyperplanes P(Y. ns) in Ps is dual to it. Lemma 7.5 follows
I

immediately from these considerations. _

Corollary 7.6. Let us suppose that (yl' ... 'Yn) = *(xl' ... ,xn) (* is the operation of
A A

duality on configuratioIlB). Then (yl' ... 'Yi' ... 'Yn) = *(xi Ixl' ... ,xi' ... ,xn) . _

Proposition 7.4 follows from Lemma 7.5 and Proposition 7.1 by induction. Namely,

let (tl' ... ,t2m) be a configuration of points in generic position containing

(tl' ,tm+k) . The dual configuration can be represented by codimension I faces

LI' ,Lm and Lm+l' ... ,L2m of simplices (tl' ... ,tm) and (tm+l' ... ,f.2m) . The

configuration (tl' .. '- ,t2m- l ) is dual to the one (LI nL2m, ... ,L2m- 1 nL2m) . The

last (m -1) planes are just codimension I faces of the simplex (tm+1, ... ,t2m- 1) in

L2m and soon ihe geometrical description of the duality in the case n > 2m can be

obtained by inversion of ibis construction. Namely, let (Ll' ... ,Ln) be a configuration

of hyperplanes in pm-I. Let us realize it as a configuration of hyperplanes in an

) n-m-l ( )(m - I - plane H ( P n - m - I > m - 1 . Let MI' ... ,Mn_rn be hyper-

I . pn- m- 1 h ha M nH L Th d . . I . pn- m- 1
p anes In suc t t i = i' ey etermlne a slmp ex In
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with vertices ID· = n M., 1 ~ i ~ n - m . Let m +' = n L +' be the ver-
1 jfi J n-m 1 jfi n-m J

tices of the simplex (Ln-m+l' ... ,Ln) in H. Then the configuration (ml' ... , mn) is

dual to the one (Ll'''' ,Ln) .

The following description of the duality beiween the configurations of n + 3

points in pn and p I may be useful.

Recall that an irreducible curve in p; that does not lie in a hyperplane has degree

2: n . Such curves of minimal possible degree n are called rational normal curves. If a

rational normal curve haB a point over the field F, then it is projectively equivalent to

the following one

For example in the case n = 2 such a eurve ia aconie.

It ia known that through every n + 3 points in generic position in pn passes

exactly one rational normal curve.

Let t p ... ,tn+3 be n + 3points in generie position in P; and

rational normal curve passing throngh these points. Let UB identify C with

1
we get a configuration (Yl"" 'Yn+3) of n + 3 points in PF .

Lemma 7.7. It is dual to the initial one.

C be the

1PF . Then
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Proof. Let (yl' ... ,yn+3) be a configuration of n + 3 points in P~ dual to the one

(tl' ... ,tn+3) . Then according to Corollary 7.5

......
N N N ......

(y l' ... ,Yi' ... ,Yn+3) = *(xi Ixl' ... ,xi' ... ,xn+ 3) .

Hy induction we get

......
N N N A

(Yl' ... 'Yi' ... 'Yn+3) = (Yl' ... 'Yi' ... 'Yn+3)

So we have
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§ 8. Projective duality and the group 'P 3(F) .

Let (to' ... ,1..5) be a configuration 01 6 points such that there are no 4 points

lying on a line. Let us denote by *(t o' ... ,1..5) the dual configuration.

Theorem 8.1. In the group '3(F)

Proof. Recall that if &1' ... '&4 are 4 distinct points on a line, then (see s. 2 of § 4)

and

We will abbreviate L3' {r(t·1 t. , ... ,t. )} by writing (j PI ... i4) .J 11 14

(8.1)

Set 1..6 := lJl2 nl3l4 (see fig. 8.1 a)). Using the 7-term relation for a

configuration (1..0' ... ,.f.6) , Relation R3 and Proposition 4.12 we have
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I

l
I,,
,eD

yV\.~,
t VV'be6 I e5,
\
I

a) b)

fig. 8.1

(to' ... ,i5) = (51 2634) - (51 1634) + (51 1234) - (51 1264) + (51 1263)

- (012534) + (012536) - (01 2546) + (210534) - (21 0536) + (21 0546)

- (510234) + (510236) - (510246) + (011563) - (011564) + (01 1534)

- (11 0563) + (11 0564) - (110534) + (51 0163) - (51 0164) + (51 0134)

(8.2)

- (014512) + (014516) - (014526) + 41 0512) - (41 0516) + (41 0526)



-186 -

- (510412) + (510416) - (510426) + (013512) - (013516) + (01 3526) - (31 0512)

+ (310516) - (310526) + (510312) - (510316) + (510326) - (012634) + (01 1634)

- (011234) + (011264) - (01 1263) .

Now let us denote by mO ' m1 , m2 , m3 , m4 , mS the lines l'll2, lQl2,
lQll, l4l5, "l"3l5, l3l4, - see fig. 8.1 b). We will consider them as points in P~.

Then according to Corollary 7.6 (mO' ... ,mS) = *(lO' ... ,tS) .

Let m6 := ml~ nm3m4 . The corresponding line in P; is lQl5.

We can express (mO' ... ,mS) as a sum of 2· S + 4 · 9 = 46 terms of type

L3' {r(m·1 m. , ... ,m. )} just in the same way as (to' ... ,ts) - see fonnula (8.2). LetJ 11 14

UB prove that the sum of tbis formulae is equal to zero.

For every term of type L3' {r(tsl t. , ... ,t. )} occurring in formula (8.2) there
11 14

exists a unique term of type L3' {r(mO1m. , .. , ,mo )} such that either
J1 J4

and the corresponding terms have opposite sign in our sum (to' ... ,tS) + (mO' ... ,mS)

and so cance! out, or
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and in this case the corresponding terms have the same sign, so according to (8.1) their

sum is again zero.

For example, we have

because (see fig. 8.2)

fig.8.2
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Indeed, by definition the right configuration of 4 points coincides with the one

(mO n~ t MO nIDl ' mOnID4 t IDOnm3) on a line IDO (in fonnula (8.3) the lines

m. are considered as points cf the dual projective plane), and (8.3) is clear frOID fig. 8.2.
1

Another example:

because (see fig. 8.3)

fig.8.3
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Similarly (by duality) the same assertion is true for L3' {r( t oIt. , ... ,t. )} and
Jl J4

L3' {r(msl m. , ... ,mo )} .
11 14

Lemma 8.2.

Proof. a) Let x = lQl2 nl3l4 (see fig. 8.4).
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fig·8.4

Projection onto the line mS shows that

Projection onto the line m1 gives
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So we get a).

b) Projection onto the line m4 gives (see fig. 8.5)

e·4

fig.8.5

It remains to use (8.1).

c) It is proved in complete analogy with b). •
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Similar lemmas are valid for the projections with center at the points t 1 , t 3 and

t 4 ' occurring in formula 8.2. Theorem (8.1) is proved.
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§ 9. Theorems 1.9 and 1.10

1. There is the following complex Meas(C.((pn» of measurable functions on

configurations of points in (p2 (see 1.18 all:

Proof. (Compare with proof of Theorem 7.4.5 in [BI 1J). There is a complex of

PGL3(()-modules (C·,D), where Ci := Meas (((p2)i+l,R) is the space measurable

functions on (G:p2)i+l. It is well-known ([BI 1]) that C· is aresolution of R by

topological PGL3(() - modules. Indeed, if fE. Ci is a cocycle, i ~ 1 , then

i+l

1: (-l)~(Xo' ... ;j' ... ,xi+l) = 0 (a.e.). Choose y E G:p 2 such that

j=O

i

f(Xo' ... ,xi) = 1: (-l~(Y,Xo' ... ';j' ... ,xi)
j=O

for almost all (xO' ..• ,xi) . Taking g(xO' ..• ,xi-I) = f(y,Xo' ... ,xi-I) we get lJg = f . If
o

f E. C , 8f. = 0 then f =const .

So we have

spectral sequence

EP,q = Bq (PGL (() CP) --t HP+q (PGL (() R)
1 cont 3' c ont 3'·
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Let Pi be the stabilisator of i generic points of (P2 . Then P5 = P4 = {e} ;

P3 = ((*)2 and P2 (respectively PI) is a semidirect product of ((*)2 (resp.

(* )( PGL2(()) and the abelian group (2. A measurable version of Shapiro's lemma

( [Gu] ) shows that

The standard trick (see [SI], § 1 for a discrete version) shows that

So (see fig. 9.1)

E4,1 - 0 E3,1 - E3,2 - O· E2,3 - E1,3 - 01 -, 1 - 1 -, 1 - 1-

• 0
....... d4 ,5

• .... 5 ....• 0 •........

• • 0 .............. 0
........

........

q

5 0

4IR ....... • 0...... .....,

~

3 • 0 ...... ......
N

2
• ---+

1 •
0 •0 1

•
2

•
3

/ig. 9.1

•
5 p
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Lemma 9.2. d~J2: E~,2 ---+ E~,2 is an isomorphism.

4° 4 * 4Note that Ei' = Hcts«( )( PGL2«(),R) = R . Hut Hcts(PGL3«(),R) = 0 . So we

have a nontrivial differential

d4,O . E4,O rv E4,O EO,S rv EO,S
S . S = 1 ---+ S = 1 .

Therefore

Theorem 9.1 is proved. •

Proof. Follows immediately from the proof of Theorem 9.1. •

Analoguous but more complicated arguments prove a continuous version of

Theorem 1.10 (see Theorem 1.9).

The complex involution z ---+ z acts on the 2-dimensional vector space

E~,5 = H6(Meas C.(t:p 2)) with eigenvalues + 1 and -1. The corresponding

eigenvectors are .Mj(to' ... ,tS) and d*43)( t o' ... ,ts ) - see s. 5 and s. 7 of § 1. Their

restriciion to a degeneraie configuration presented in fig. 1.12 is J3(z) and

~(z) • log Iz I , where z = r(tsl t O,t2,tl't2) (see fig. 1.12). This proves Theorem

1.9.
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Theorem 1.10 follows immediately from Theorem 1.9. Indeed, we have the

isomorphism M3 : ~(F)q~ B3(F)q , 80 any continuous function f satisfying the

functional equation f(~(a,b,c)) = 0 defines a continuous skew-fiymmetric function

M3 0 f on stable configurations of 6 points in (p2 satisfying d;(M3 0 f) = 0 .

Therefore we have

*J3)
(~ == ""*3(t o' ... ,iS) and d q (t.O'··· ,iS) are functions constructed in s. and s. 7

of § 1).

*Hut the restrietion of dscp to adegenerate configuration represented in fig. 1.12 ia

o (see proof of Proposition 1.11), and the restriction of the other terms ia

2. Let Cn(P2) be the abelian group generated by all n-tuples of points in p 2 and

C~t(p2)~ the subspace of skew-invariants in Cn(p2)Q with respect to the action of

the permutation group Sn. Then C:lt(p2)~ is a resolution of the trivial PGLa(F)­

module q and

So we have a spectral sequence associated with the stupid filtration on C:lt(P~)Q. It is

easy to prove that E~ S ia generated by classes of (degenerate) configurations in fig.,
1.12 (in fact, we already used the necessary arguments in 8. 6, 7 of § 1). (Unpleasant)

computation of higher differentials in this spectral sequence shows that

ker(~ [PjJ --+ B2(F)~ ~ F;) maps to H5(PGLa(F),~).In particular a configuration
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in fig. 1.7 (that corresponds to ~{1} e. Q [Pi]) gives a dass in HS(PGL3(F),eu for an

arbitrary fjeld F.

J. Dupont told me that he studied this spectral sequenee several years aga and got

similar results (unpublished, private communication). In fact his arguments are more

dear and elegant. I hope we will have the pleasure to read bis paper in the near future.

Recall that in s. S of § 1 we have constructed an honest, everywhere defined but

discontinuous 5-cocyde of PGL3«(). Its restrietion to a dass in HS(PGL3«(),Q)

represented by {1} is equal to ~(1) = 'Q(3) (because the restrietion of the funetion

~(to' ... ,f..S) to the configuration in fig. 1.7 is just ~(1) - see § 1). On the other

hand by the Borel theorem for F = Q the restriction of the Borel dass to a elass in

HS(PGL3(Q),~) is a rational multiple of '~(3) . So the dass construeted above is a

rational multiple of the Borel dass in H~ts(PGL3«(),R). Another proof of the

non-triviality of the constructed dass in H~ts(PGL3«(),R) follows from Theorem 1.9 ­

see s. 7 of § 1. The non-triviality of this class follows also from explicit formulae of the

next § combined with recent results of J. Yang [J2] about the relation cf the

Hain-MaePher80n trilogarithm and H~ts(GL3«(),R).
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§ 10. Explicit formula for the Grassmannian trilogarithm.

A

Recall that Gm(n) ia the manifold of all m-dimensional subspaces in the

n-dimensional coordinate vector spate W transversal to coordinate hyperplanes. R.

MacPherson considered the truncated simplicial Grassmannian a(3):

(10.1)

Here s. denotes the intersection with the i-th coordinate hyperplane. We have the
1

following homomorphism of abelian groups:

A

m : 11 [Gm(n)]~ Cn(n - m) (10.2)

where m(8) is the image of the coordinate vectors in W/8 . Applying it to (10.1) we

get a truncated simplicial abelian group

The corresponding complex of abelian groups is just the Grassmannian complex C.(3) .

In § 3 - 4 we have constructed a canonical homomorphism of complexes
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d
~ Ca(3) d

I CS(3) d
J C4 (3)

1f~3) 1f ~3) 1f~3)
6 * 6 A3F*B3(F) • B2 (F)~F

Now let F = (X) be the field of functions on an (open) manifold X/(. Let us

construct explicitly a homomorphism of complexes

6 * 6 I A3 (X)*B3 «((X» I B2«( (X» Q) (X)

1r~ 3) 1rp) 1rp)
0° 0 1 0 2

X X X

(OX,d) is the Cm-de Rham complex on x. Then the composition rf3) 0 4:l 0 m
A

defines an i-form wi on G3-i(6 - i) . The collection of these forms will represent a

cochain w in the complex computing the Deligne cohomology H6(G(3),R(3).!t1) of the

truncated simplicial Grassmannian such that Dw = Re(voI3) ,where D is the total

differential in this complex and vol3 is the canonical holomorphic 3-form with

logarithmic singnlarities on Gl (4) = «(*)3 [VOI3 = dxl
A ~ A ~]. More

xl x2 x3
precisely tbis means that we will construct a collection of forms w. such that

1

.*
dWi = l (- l~s jWi+l (i = 0,1) J dW2 = Re(voI3) .

j

Set
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r~3){f(z)}2e g(z) := - J2(f(z))darg g(z) +

j log Ig I(log 11 - f 1dlog 1f I - log 1f 1dlog 11 - f 1)

r~3)f1 (z) A~(z) Ai3(z):=

i l (-1) Iu 1u· (310g If11darg ~Adarg i3-log 1f11 dlog I~1Adlog If31)·

UE.S3

Lemma 10.1.

[
df df df]

a) dr~3)(f1" ~ " ~) = - Re ~ A~ Ar!
123

b) d 0 rf3) = rf!{ 0 d for i = 0,1 .

Proof. a) - dear;

b) d ~(z) = - ~(z) darg z +

+ ~ log 1z1(log 11 - z 1 dlog 1zI -log 1zI dlog 11 - zI),
d(- J2(z) darg w + ~ log 1w I(log 11 - zI dlog IzI -log 1zI dlog 11 - zI)) =

= (log 11 - z I darg z-log IzI darg (1 - z)) A darg w -

- ~ (log 11 - zI dlog IzI - log IzI dlog 11 - zI) A dlog 1wI· •
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In the following paper we will see how these fonnnlae enable one to compute

explicitly the (3-d)-th ehern class in the Deligne cohomology of an n-dimensional

vector bundle over X.
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Appendix

The duality of configurations of points in the plane pd a IIresolution" for K2{F) .

The Bloch-Suslin complex BF(2) can be considered as a "resolution" for K2{F).

More precisely, lZ [P~ \O,l,m] ia the free abelian group generated by all Steinberg

relations in A2F* and ~(F) ( 1l [P~ \0,1,00] ia a aubgroup of the kernel of the

homomorphism

5: [x] l-+{l-x)Ax

which ia defined universally for all fields F. So (by Suslin's theorem) K;nd{F)~ is the

quotient of Ker 5 by the "universal" kernel of 6 (modulo torsion).

Now let UB try to continue the process of constructing of the "resolution" for

K2{F) . For this let UB consider the homomorphism

(A 1)

lZ[P~\O,l,oo]/{[x] + [x-I]}

4

(Xo' ... ,x4) 1-+ 1: (-l)i(xO"" ';i' ... ,x4) .
i=O
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(We factorize by the skew-symmetry relations (x] + (x-1] only for convenience).

It is obvious that 6(C6(Pj)) (Cs(P~) lies in the kernel of the homomorphism

(A 1). Let UB construct elements in this kemel that do not lie in 6(C6(P~)) .

Let us define an involution s: Cs(P~) --+ Cs(Pj) as folIows. For a configuration

(~, ... ,x4) E. Cs(P~) consider the configuration cf 6 points in P~ as in fig. A 1.1 such

that

. ~

fig. A 1

Put n = lQl4 nl"lf3 .Set
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We will prove that s2 = id a little bit later.

LemmaAl

(tsl t O,n,t.3,t4) = (tsl t O,tp t 3,t2)

(tsl t p D,t3,t.4) = (tsl tl'tO,t.2,(4)

(t.si t o't pD,t.3) = (tsi t O,t.2,t4' f.3)

(t 5 1t.O,t.pD,t.4) = (t 5 1t 2,tl'f.3,f.4) .

Proof. Consider the projection onto the line DlOl 4 - see fig. A 1 - we have

•

It follows immediately from this lemma that 6((Xo' ... ,x4) - s • (xO' ... ,x4)) = 0 in

ll[P~\O,l,(JJ]/{ [xJ + [x-l]} . Now let S2(F) be the subgroup of Cs(P~) generated

1
by 6(C6(PF)) and the elements (xO' ... ,x4) - S(xO' ... ,x4) . Then we have the

following complex tt2(F)

(the left group is placed in degree 0.)
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It was A.A. Suslin who first considered the subgroup S2(F) (unpublished). In fact,

he defines in coordinates the elements (Xo'''' ,x4) - s(Xo' ... ,x4) . (Dur contribution is

an invariant geometrica1 definition.) A.A. Suslin proved that HO(i12(F)~) =

KFJ (F)41 . According to the rank conjecture 1.22 and the Beilinson-SouIe conjecture

for K4(F) the last group should be zero. So S2(F) should give all relations between

5-term relations for the dilogarithm.

It would be interesting to find all relations between the functional equations

ß.:l(a,b,c) for the trilogarithm.

Now set

Lemma A 2. H (t.O"" ,f.S) is as in fig. A I then the dual configuration is as in fig. A 2

and

(A 2)

Proof. Let us use the geometrical definition of the duality of configurations. Consider a

pair of triangles (tI't.2,t.3) and (tO,t4,tS)' Then we have 3 sides mO := 'l4l5 '
m l := l2l3, mS := lQl4 that contain t 4 , and 3 sides m3 := l'(j"l"l, m4 := 'l'Ql5 ,
IDS := lQl4 containing t.O ' So the dual configuration (rnu, ... ,mS) is as on fig. A 2.

Further, the inierseciion points of the lines IDO' roI' mS' m3, m4 with the line ID2 are

obtained by projection of the points t 4' t.3, n, t.1, t o with the center at f.S ' So we

have (A 2). •
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It follon from Lemma A 2 that s2 = id .

Note also. that Lemmas Aland A 2 prove Theorem 8.1 for configurations

(to' ... ,tS) as in fig. A 1.

Proposition A 3. For a generic configuration (to"" ,l.5) of 6 points in P~

5 . 5

.5( l (_l)i (ti It o' ... ,ti' ... ,tS) - l (-l)j (IDj lIDO' ... '~j' ... ,IDS)) = 0 .•

i=O j=O

-m 2-

fig. A 2
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