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1. Introduction

The classical polylogarithms are defined by the following absolutely convergent
series in the unit disc |2| < 1

. = z*
Lin(z):= Z - : (1)
k=1
For example Li; (%) = —log(1 — z). The differential equation
d
dLin(2) = Lz‘n_l(z)f 2)

provides an inductive definition of polylogarithms as multivalued analytical
functions on CP1\{0, 1, 00}:

Lin(2) : = fo ’ Li,,_l(w)%u (3)

The classical polylogarithms were invented in correspondence of Leibniz with
J. Bernoulli ([Le]). On November 9, 1696 Leibniz wrote a letter to J. Bernoulli

with the formula S ,
z 2 T dt \ dz
Ya=-L([5)5 @
k=1 ¢ \Jo z

On December 1, 1696, Bernoulli informed Leibniz that he had found an analo-

gous formula
oo ta
Z_l‘ / / dt, od—tz—o--- dt, (5)
kn 1—-11 12 T

They were interested in the summation of series (5) but never succeeded. A
few decades later Euler computed numbers (5) for even n and studied the
dilogarithm function (4). In the 19th century L. Dirichlet and R. Dedekind
discovered a generalization of series (5) for any number field F : zeta function
¢r(s). I think that all of these mathematicians would have been pleased to
know that according to a conjecture of D. Zagier [Z1], for any number field F,
¢r(n) should be expressed by values of the n-logarithm at (complex embedding
of) elements of the same field F.
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In this article I will explain what this conjecture says and why it is true
for n = 2,3. I will also discuss the role of classical polylogarithins in algebraic
K-theory and hyperbolic geometry.

2. Functional Equations for Polylogarithms

The logarithm log z has a single-valued version log |z| that satisfies a functional
equation
log|zy| = log|z| + logly| .

Moreover, a continuous function f(z) satisfying the equation f(z1-22) = f(z1)+
f(z2) is proportional to log|z]|.
The aim of this paper is to demonstrate that

Explicit formulas for values of Dedekind
zeta-functions at s = n (Zagier’s conjecture)

“Computation” of Quillen’s K-groups
K (F) for an arbitrary field F

functional equations for
polylogarithms

" Good” understanding of} /

Very explicit formulas for cocycles
representing Hz,(GL(C))

™~

hyperbolic (2n-+1)-manifolds by

Calculation of volumes of complete
classical n-logarithms

3. The Dilogarithm

It was investigated widely by Spence (1807), Abel (1827), Kummer (1840),
Lobachevsky, Hill, Rogers, Ramanujan, .... The most important discovery of
this period was the functional equation (rediscovered many times). We will
present it in a form found by Abel.

Theorem 1 (The 5-term relation). Let 1 > z > y >0. Then

Liy(x) — Lig(y) + Lia(y/z) — Lia G‘_@:)
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1-z w2 . l-z '
A =2 " logz- . 6
+L22(1_y> 5 logz logl_ (6)

Note that arguments of all function in this formula lie between 0 and 1, so the
corresponding values are well-defined. Today it is not so easy to reconstruct
reasons for investigation of functional equations for the Dilogarithm in the 19th
century. I think that at least for Abel the reason was his famous

Abel’s Theorem. Let
C = {:v,ylf(:v, y) = 0}’ Dy = {:D, ylg(w’y)t) = 0}

are algebraic curves in CP2. Set {P;(t)} := {C N D:} Then

Pi(t)
> / 2(z,y)dz = R(t) +logS(t) )

i /P

P;(t)

- where z(z,y).is a polynomial, [ p,  isan integral along a path on a curve and

R(t), S(t) are some rational functions.

Note that each summand [ 11,) () z(z,y)dz is, of course, a transcendental function

on t. (An excellent modern account of Abel’s Theorem can be found in [G1].)
The functional equation (6) clearly looks like a generalization of Abel’s formula
(7): instead of an Abelian integral || :,:"(t) z(z, y)dz we have the simplest example

of an iterated integral
\

. z dr dz 200t dz \ dt
Lzz(z)-——/o l—mo;'_—/o (/0 l—a:)?

while the right-hand side of (6) is a product of logarithms. During the 20th
century up to the middle 70’s the only enthusiast of polylogarithms was Leonard
Lewin (L). Then surprisingly the Dilogarithm appears in works of

a) A.M. Gabrielov, LM. Gelfand and M.V. Losik [GGL] on the combinatorial
formula for the first Pontryagin class
b) D. Wigner on continuous cohomology of GL2(C)
c) S. Bloch [Bl1 — 2] on algebraic K-theory and values of zeta-functions at
s=2.
The function ¢2(z) considered by Gabrielov, Gelfand and Losik is a version of

the Dilogarithm. It can be characterized by the following properties: ¢2(z) is
a function of one real variable, smooth an RP!\{0, 1, oo}

]
o

dbale) = 28 _ LBl )~ /) = a2
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It turns out that ¢,(z) is discontinuous at z = 0,1, 00:

2
. . -— . p— 7r_
Lim ¢4(z) =lim¢s(z) = lim 4a(z) = + 5

2

Ui dale) = limdale) = lim_a(a) = -

If 0 <z <1 then

62(2) = Lig(z) — Sloga - log(1 —z) — ™
592(z) = Lig(z 5logz - log z) = 13-

It turns out that

1
$2(z) = ~¢2(1-1z) = ~¢ (;) :
Now let xy,...,z3 be 4 distinct points on RP! and let

(zo — 32) (21 — 3)
(B0 — z3)(1 — 3)

r(zo,...,z3) =

be the cross-ratio. Then for 5 distinct points zy,...,z4 on RP!, one has

2

4
Z(_l)i¢2(r(m0; v ,’-’f:i, e ,1124)) =g. %
=0

(8

(9)

where € = 1. The precise value of ¢ is computed as follows: choose an
orientation in R? and a 5-tuple of vectors (lo,...,l4) that are projected to

(%0,--.,%4). Then € = %1 if the number of bases (laslp) in R?*(a < B) with
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éitivé orientation is even and —1 in the opposite case. (This definition does
ot depend on the choice of vectors (ly,...,0)). If 1 > z > y > 0 then the
functional equation coincides essentially with the one (7).

' Another version of the Dilogarithm was considered by D. Wigner and S.
-.“Bloch. They invented the function

'Dz(z) = ImLis(z) + arg(1 — 2) - log|z] (10)

, * (the Bloch-Wigner function), that is continuous (and in particular single-
+ 'valued) on CP. The 5-term functional equation for Dy(2) is

Voo

4
> (—1)'Da(r(z0,.. 4 2y .., 22)) = 0; z # zj € CPL. (11)

i=0

Let € CP. D. Wigner discovered that (11) just means that

f:gz)(goa v ag3) = Dz(T(gofB, o 1933':))1 gi.G GL2(C) (12)

is a (measurable) 3-cocycle for the group GLy(C). Another point ' € CP!
gives a cocycle that is canonically cohomologous to the previous one.
Let G be a Lie group, G™ := G % ... X G, M(G™): the space of measurable
: S—————

ntimes
functions on G™. There is a differential

d: M(G™) — M(G™)
n+1l

()91, -1 nt1) = Z(—l)"f(gl,---,ﬁi,---,gnﬂ)-

t=1

" Then .
Hip)(G, ) 1= H(= MG 401(GM) S00(GM0 Sa(GmH1)0 . )
is the measurable cohomology of the Lie group G. It is known that

m

dim H )(GLz(C),R) =1.

The cocycle (12) represents a nontrivial cohomology class.

Theorem 2 (S. Bloch, Bl 2]). Let f(z) be a measurable function on CP! such

that Z;O(—l)if(r(zo, vonrZiy.000,24)) =0. Then f(2) = X- Do(2).

Moreover, it turns out that any functional equation for Da(2) is a formal con-
sequence of the 5-term equation (11). (see Section 11 below)

Now let us give a geometrical interpretation of the Bloch-Wigner function,
Let H3 be the Lobachevsky space. Then 8H3 = CPL. Denote by I(zo, ..., 23)
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the ideal tetrahedron with vertices at points 2y, ..., z3 of the absolute 8H3. It

is clear that s

Z(“l)if(zo,---,fi,- --,24) = ¢ A (13)

i=0

It is easy to check that T (20...,23) has a finite volume vol (I(zo,...,23)). So
according to Theorem 2 and (13)

vol (I(z0,...,23)) = A+ Dy(r(20,...,23)), A€ER*,
Any complete hyperbolic 3-manifold can be cut on a finite number of ideal

tetrahedrons I, := I(c0,0,1,%). Therefore its volume is equal to YDy (2;).
Note that Dz(2;) = —Da(%). So we can write this sum as 25(Da(2;) — Da(2:)).

It follows imemdiately from results of Dupont-Sah [DS] and Neumann~Zagier

[NZ] that numbers z; have to satisfy the relation

Z(a —Z)Az—(1—Z)AZ) =0 in (A%C*)~.

Here A2C* is the wedge square of the abelian group C* and (A*C*)~ is the
subgroup of anti-invariants of the action of complex conjugation.

The relation just means that the sum of the Dehn invariants of the tetra-
hedrons I, is equal to 0. Recall that the Dehn invariant of a finite geodesic
tetrahedron is defined as '

> l(A)®as € R®R/az
A

where A runs through all edges of length [(A) with dihedral angle a4. To define
the Dehn invariant in the case when the tetrahedron has vertices at absolute,
following Thurston, let us delete a horoball around each infinite vertex and for
each A an edge ending this vertex the length I(A) is measured only up to the
horosphere. The indeterminacy in this definition vanishes because the sum of
the angles at the edge ending a vertex at infinity is 7.

Example. The Dehn invariant of the ideal tetrahedron I, is equal to

log|l — 2| @ arg z — log|z| ® arg (1 — ).

4. The Trilogarithm and {r(3)

Set

La(2) := Re(Lia(z) — Lia(z) - loglz| + %Lil(z) Jogle).  (14)

Then £L3(z) is continous on CP.

Here {z}2

Theorem !
ry + 2r2,aif; f
Tt = g
Y1y )yr1+‘
q-¢r(3)i§
where q € Q‘:
b) for any i"f”’

Ezample 4 6 o
the cyclotomic
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Let Z[PL] be a free abelian group generated by symbols {2z}, where z runs
through all F-points of P'. In the case F' ='C, any real-valued function on
CP!, and in particular £3(z), defines a homomorphism )

L3:Z[CPY - R

| {z} = La(2) (14a)
V"‘ ‘Now let Ro(F) C Z[P}] be a subgroup generatéd by {0}, {oo} and
x . |
Z(—l)'{T(Eo,...,:ﬁi,...,174)}, T; € Ple, T; 7417:,'.
i=0
Set 2[Pl]
By(F):= £ 15

Let us define a homomorphism
83 : Z[PY] — B2(F) ® F*
83:{z} — {z}2®2
{0}, {0} — 0
Here {z}, is the image of {z} in By(F).
Theorem 3 (Zagier’s conjecture [Zl]) a) Let F be a number field, [F : Q| =
r1+ 2rg,05 : F < C are all possible imbeddings of F' in C numbered so that

Omti = Orytroti> AF 15 the discriminant of F. Then there ezist elements
Yire ooy Yri4ry € Ker 63 C Z|PL] such that

g Cr(3) = 772 |dp|~% - det|fa(oj(yi))] (1<, j<mi+m)  (16)

where ¢ € Q*
b) for any elements y1,...,Yr,+r, € Ker 83 formula (16) holds with q € Q.

Ezample 4 63{1} = {1}2®1 = 0. (g(3) = £(1). But Q and, more generally,
the cyclotomic fields are the only ones for which (16) is easy to check.

5. Zagier’s Conjecture

D. Zagier conjectured [Z1] that for any number field F' there exist elements
Y1,...,Yd, € Z[P}] such that (n > 1)

g-Cr(n) = 7™ ¥rmd) |dp| 7 det|Calos ()l (17)

where g € Q*,

1<4,j<d,

d. = ri+ry forn:odd,
O I for n : even,
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and forn > 1

' Ren: odd Z" By 2k " :
= —_— —_ . l 1

£(z) Imn: even (k:l k! Lin-i(2) -logl2] (18)
is a single-valued version of Li,(2).

Elements y,...,yq, should satisfy an algebraic condition analogous to
63(y:) = 0 in By(F) ® F* for n = 3.

Ezample 5. {o(n) = L,(1), just by definition.

For n = 2, formula (17) was proved by Zagier [Z2] and also follows immediately
from results of S. Bloch, A. Borel [Bo 1-2] and A. Suslin [S2]. The only general
result about {r(n), n > 3 in this direction is the Klingen-Siegel theorem: for
totally real fields F (i.e., o = 0)

7r27‘1 n

Vvar '’

¢r(2n) = q- ge Q*

that generalizes the Euler formula for (g(2n).

The analog of formula (17) for n = 1 is the classical Dedekind formula

I LEG eI k

Res(p(s) = - \/(E 'Rl

(19)

where & is the class number of the field F, w is the number of roots of 1 in F
and R, is the regulator that is defined as follows. Take a basis of fundamental
units €1,...,€r 4r,—1 in the free part of the abelian group O}. Then

Ry = |det(log|oi(y;)|™)

where 1 <4, j <7147 —1 and a; = 1 for real ¢ and 2 for complex one.

In a remarkable paper [BD] A.A. Beilinson and P, Deligne proved an analog
of statement b) of Theorem 3 for any n. However, the main problem: whether
there exist elements y; € Z[P}] such that the corresponding constant q in the

left hand side of (17) is non-zero (and so there is a formula for ¢r(n)) remains
unsolved.

- Now let me present the main ingredients of the proof of Theorem 3.

A. Borel d
definition.

Km(F)

Now let F

This is the B

Theorem 4 (B2

The functionalis
to a nonzero a"
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6. The Borel Regulator

A. Borel defined a homomorphism 7, : Kzn-1(C) — A. Let us recall this
definition. One has

Ku(F):= m(BGL(F)*) T8 Ho(BGL(F)") = Hn(GL(F))  (20)
Now let F = C. There is the canonical pairing
H?*Y(GL(C), R) X Hza-1(GL(C),R) >R
There is a subspace '
HZNGL(C,R) C H?*~(GL(C),R)
It is known that
H("m)(G’L(C),R) = Ak(e1, ¢35, )

where con—1 € H?;;I(GL(C),R) are the Borel classes. (The restriction of

¢an—1 to GLy,(C) is nontrivial for m > n). So can—1 defines a homomorphism

Hyy_1(GL(C), R) — R and hence by (20) regulator 7. Let R(n) := (2mi)" -
R C C. Then one has

Kna(F) = @D Kanna(©) 257V (HONEO @ R(n - 1))
Hom(F,C)

where the first arrow is provided by the functoriality of K-groups. It turns out
that the image of Kan_1(F) in ZHOM(FC) @ R(n — 1) is invariant under the
complex conjugation, so we get a homomorphism ‘

ra : Kanoa(F) - [Z7OF90 Rin — 1)]* (21)
This is the Borel regulator.

Theorem 4 ([Bo 1-2]). Suppose thatn > 1. Then:

a. Ker ry, is torsion
b. Im v, is a lattice
¢. Covolume (Immry,)=q- limg_s1—n(s—1+ n)~% (r(s) where g € Q.

The functional equation for (r(s) shows the right-hand side of (22) is equal up
to a nonzero rational factor to

IdFI . 7r—n(r1+2r2—d,.) . CF(n)
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Ezample 5. If n = 1 then

det
H\(GL(F),zZ) : = GL(F)/[GL(F),GL(F)] = F* = K, (F),

¢ € H(lm) (GL(C)) is represented by a cocycle

f1(g90,91) : = log|det(g591)]

and so 71 : C* — R is given by formula z - log|z|.

The analog of Theorem 4 in the case n — 1 is the Dedekind theorem (19).

Theorem 4 explains the importance of explicit formulas for cocycles rep-

resenting the Borel class in H. (GL(C))

a. A cocycle for the class ¢, is given by the formula (22).

b. A cocycle for the class ¢; € H: ?m) (GLy(C)) is given by D. Wigner’s formula

(12).

7. An Explicit Formula for a Measurable Cocycle
Representing the Borel Class cs € H(5m) (GL3(C))

Choose a non-zero element w3 € A3(C3)*, Let (y,.

.+, Iy) be a 6-tuple of vectors
. in generic position in C3..Set

_ A(li,lj,lk) F=<wsg,l; A lj Al > ‘
i le) : = Al lo)la) - A(ly, 13, 15) - Al ls)
S te) Al b, Is) - ALz, I3, Is) - Als, Iy, Iy)

It is clear that r3(l, ..., ) does not depend on the length of vectors l; and
'GLs-invariant. It depends only on the corresponding configurations (l1,...,1s)
of 6 point in CP2. Let us define the generalized cross-ratio

(23)

T3(Z-la ey Z-'6) = Z (_l)lal{ré(l—a(l)) ey 1_0(6))} € Z[Pé] :

(24)
oESs
Then _
55(7‘3(1_1’ ey Z—G)) (25)

is a function on configurations of 6 points in CP?,

Theorem 5 ([G4]). For any 7 points in generic position (Iy,...,I;) in CP?

7
D1 Llrs(E .. iy I) = 0. (26)
i=1

(22)

Now let
First of

represented tHck
For exam},

a; = l,‘li+3
(a1,a2,as,

Lemma 7.

Proof. See 'j‘

It turns out h:
equation. '(e*“
us denote by ( ,"‘

by projection _e“'"
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7 ,intemretation:r choose a point £ € CP2. Then

fs(z) (901 ey 95) = £3(r3(gom) o 1952)) (27)

is a 5-cocycle of GL3(C).

Theorem 6 ([G4]. The cohomology of the cocycle coincides with the Borel

class.

2) _
Proof. See proof of Theorem 5.12 in [G4].
Now let me give a geometrical interpretation of the generalized cross-ratio (3.
First of all let me note that there is an isomorphism
p-
la — = > p'\{0,%}
S F
/PGL3 (F)
provided by the formula _
s f1(b2) - f2(b3) f3(b1)
s: (ai,az,as, by, ba,b3) — c F*. 28
( 1, a2,43,V1, U2 3) fl(ba)f2(b1)f3(b2) ( )
Here (a3, a2, as, by, b2, b3) is a 6-tuple of distinct points in PIZ;. such that ai,asz,
) a3 do not lie on a line and b; € @;a;31 (indices modulo 3 ). In (28) f; € Vy' are
L some linear functionals such that f;(a;) = fi(ai4+1). Formula (28) is well-defined
} because it does not depend on the choice of these functionals and vectors in V3
d represented the points b;.
) : For example, 1 € F* is represented by a configuration where b1, ba, b3 lie

on the same line (see Fig. 1) and —1 € F* is represented by a configuration
where the lines a1bz, azbs and agb; intersects in a point. (See Fig. 2)

) Now let (l1,...,ls) be a generic configuration of 6 points in P2, Put
a; = liliys N li_ylipe (1 < 4 £ 3, indices modulo 6; see Fig. 3). Then
(a1, a2,as, l1,12,13) is a configuration of the above type.

Lemma 7. s(a1,as,03,l1,l2,13) = (I, b2y I3, Lay Us, U6)-

Proof. See proof of Lemma 3.8 in [G4].

It turns out that the function L3(rs(ls,...,ls)) satisfies another functional
[ equation. Let (l1,...,l7) be a generic configuration of 7 points in P3. Let
us denote by (4;]l,... 0, ... ,l7) the configuration of 6 points in P? obtained
by projection of points l;, j # ¢ with the center at the point /;. More precisely,
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N § ]
“3 for g
| I ” 1 defini
i "
i l § B
I :
H | i E
fii :
1 3 K as fol
i
| :é Here
4 obtai
:;; precis
4 ®)
. ,j (and
Fig. 3 plane.
. F
_‘[_ also F
the set of all lines in P3 through the point I; can be identified with P2 and i
,‘ each point l;, j # i defines a point in this P2,
I |
Pl Theorem 8 [G4] (The dual 7-term relation). Let (Iy,...,l;) be a generic .
} i ! configuration of 7-points in CP3. Then : ]
7 .
o Z(—1)1£3(7‘3(1i|11, ol l7)> = (. (29) :
i=1 . , E
' <‘ 1
R ;i Proof. See proof of Theorem 3.12 in (G3].

The functional equation (29) can be deduced from the one (28) (see [G4]). : @
However it plays an important role in the proof of Theorem 9 below. ]

8. A Formula for a Cocycle Representing the Borel
Class c; € H imy(GLn(C)) for any n > 3

Recall that a p-flag in P¥ is a sequence

" Lei= (LoyLn,..., L)

where L; is an i-dimensional plane in P* and L; C L;y,.
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Let us denote by H; * Hy the joining of planes Hy, H, C P*. Note that
for generic planes Hy, H, we have dim(H; x Hy) = dimH; + dimH; — 1. By
definition ¢ * H = H x ¢p = H. Let us define the generalized cross-ratio of 6
generic (n — 3)-flags in Pp~1:

r(LSY,..., 1®) € Z|P}) (30)
as follows; '
M@, L9) = Do kLD I 1®), (3
j1+..‘:i-,:-§o=n—2

- Here (L;?_l * Lk L_s.f)_1|L§-:),...,LJ(-S)) is a configuration of 6 points in P2
obtained by the projection of Lﬁ) with the center at ng_l *., .k L:(ig)— ;- More

precisely, the set of all planes of dimension j; +. ..+ Je containing Lg)_l ...

L;.s)_ 1 forms a projective plane P2 because of the condition J+...+jg=n—-2

and the assumption of generic position). Each A%y defines a point on this
ik

plane.

For example, the cross-ratio of 6 2-flags in P3 is given by the formula (see
also Fig. 4)

6
@0, L) = S r@® P, . P, ).
k=1

(Z§V, £y

Fig.4
heorem 9 [G3]. Choose an (n — 3)-flag Ly in CP™~, Then

53(r§")(go . L., ey gs L.))
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is a (measumble) 5-cocycle of GLn(C) representmg the Borel class
Cs E m) (GLH(C))
Let me present the proof of the 31mplest case n = 4. We have to prove that

ZZ( 1)’r3(L(’)|L(1) 1,19, 1M ) = o. (32)

J#ii=1

/
(plym the 7-term relatlon for the following configuration of 7 points in P2
) ]L(1 ('7 ). L( ) (4 is fixed) one can rewrite (32) as

(> Wra(EPI, . L9, L)
\J=1
But this is just the dual 7-term relation (29).

9. The Trilogarithm is Determined ‘

by the 7-term Functional Equation .
where 6

Let us define a subgroup

Ry(F) := {Z( 1)trs(ly, .. 17)}

where (13,...,07) runs through all generic configurations of 7 points in CPZ.

Theorem 10. Let f(z) € C*>(C) be a function satisfying the functional equa-
tion f(Rs(C)) =0, i.e., :

Z( 1) f(r-'i ll) b, l7)) =0 -

for generic T-tuple points in CP2. Then : , §
f(2) = X Ls(2) + - Da(z) - logl|. are the Mily

10. Algebraic ’K-Theory of fields and
Classical Polylogarithms: results

Now let F be an arbitrary field. Let us define subgroups &(F) C Z[P}] According
(i = 1,2,3) as the ones generated by the following elements:

By(F): = ({z} + {y} - {zy}; =,y F*)

5.
By(F) : (Z(—l)"{r(zl,._..,azi,...;ms>}; @i # 0; € PR) .

R(F): (Z( Dirs(l,e e lr); L€ PR)

i=1
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' Z[P})
Bi(F) = ———E |

0 Ra(F), {0}, {oo}
en B;(F)¥ := Hom (B;(F),Z) is the group of “abstract é-logarithms,” i.e.,
set-theoretic functions on P} satisfying the functional equat;ion for ¢-logarithm.
- We have

Bi(F)SF
' {z} — 2.

et us consider the following complexes Bp(n):

Br(3) : B3(F) 5 By(F) ® F* 3 A°F*
Br(2): Ba(F) B AZF
BF(1): F*

“where 63 : {z} —» (1-z)Az; 63 : {z}3 = {2}2@2;83 : {z}2®y — (1—z)AzAY.
({z}x is the projection of {z} to B,(F), B;(F) placed in degree 1 and § has
degree +1. It is clear that 63 = 0. The homology of these compléxes are related
to algebraic K- -theory as follows:

HY(Bp(1)) = F* = Ky(F)
H?*(Bp(2)) = K3(F) by Matsumoto theorem [Ma]
HY(Br(2) ® Q) = ki (F) ® @ by [52-3], see also [Sa

H3(Bp(3)) = KM(F) by definition of Milnor’s K — theory [M]
Here

A"F*
(1 —=z) Az AAR-2F*)
are the Milnor K-groups ([M]). The multiplication in K, (F) induces a map

m: K1(F)x...x K1(F) — Kn(F) that factorizes through a map s : KM(F) —
Kn(F):

KM(F):=

Frx...xF*  —  Ku(F)
N\ - /s
CKM(F)

According to.[G2], [G4] there are canonical maps
K4(F) — H*(Br(3))
Ks(F) - H'(Bp(3)).
A.A. Suslin proved ([S1]) that s is injective modulo (r - 1)! By. definition

K3(F)

ind .
K = )
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To formulate a more precise result let me introduce the rank filtration on
K, (F). Recall that

Ko (F) : = m(BGL(F)*)
where' BGL(F)* is an H-space such that
Ho(BGI(F)¥) = Ha(GL(F).
So by.the Milnor-Moore theorem
. Kn(F)®Q = Prim H,(GL(F),Q)
A.A._ Suslin proved that the natural map
Ho(GL,(F)) — Hn(GL(F))
is ar; isomorphism. Therefore there is a filtration on K, (F)q 1= Kn(F)®Q

Kn(F)q = K,&O)(F) D

K$(F) := Ho(GLo—i(F),Q) N Prim Ho(GL(F), Q).
Set | |
K$(F)

Kli(F)y:= T2 E)
(F) K,(:_H)(F)

n

Theorem 11 ([G2], [G4]). There are canonical maps

KM(F) > H}(Br(3)® Q)
KP(F) - H'(Br(3)®Q). Proof. See

_ _ So we get
Conjecture 12. These maps are isomorphisms.

Note that A.A. Suslin proved that (see [S1])

KI(F)q = KXY (F)o
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11. Algebraic K-theory of Fields and

Classical Polylogarithms: conjectures
Let us define by induction subgroups Rn(F) C Z[P}], n > 1. Set

Bo(F) := Z[P)/Ra(F )

Ra(F) = ({z} + {v} — {=v}, (z,y € F*);{0}i{o0}).
Consider homomorphisms

Bn_l(F)®F* tn>3

b .
Z[P‘%‘]—_'{/\zF“ tn=2

iteb o { g ne s @

bn : {oo}, {0}, {1} —0
The {z}, is the projection of {z} in By (F). Set
An(F) := Keréy, .

Any element
a(t) = Sr{fi(t)} € Z[Ppy)

has a specialization
a(to) = E’ni{f,;(to)} € Z[P};-],to € Pl%ﬂ.
(It is correctly defined even if o is a pole of f; (t), in this case f;(to) =00 € PL).

Definition 13. R, (F) is generated by elements o(0) — (1) where a(t) runs
over all elements of A, (F(t)), and also {oo}, {0}.

Lemma 14. 6,(Rn(F)) = 0.

Proof. See proof of Lemma 1.16 in [G2].

t

So we get
B 1i(F)®F* :n23
NZF* ‘n

Let me give some examples of elements of Ru(F).

6:B(F)—»{

i

Exathle 15. {z}+{z~1} and {z}+{1—x} € Ry(F). Indeed, by({z}+{z"}) =
l-z)Az+(Q-z")Az =0in A2F(t)* modulo 2-torsion. On the other
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hand, {z} + {z7}|z=c0 € R2(F) by definition. The same arguments work for

{z} +{1 -2}

Ezample 16. {z} + (—1)*{z~!} € Ra(F). Indeed, by induction &,({z} + the other:ham
(-D™z"'}) = ({z} + (-1)""{z}) ® z € Ra_s(F()) ® F(t)* and {z} +
(-1)™{z7'};200 € R (F) by definition. In particular, 2- {1} € Rom(F). (Put
z = 1,n = 2m). We will prove below that {1} & Rom41(C).

Any real-valued function, and in particular £,(2) (see (18)), defines a homo-
morphism ;
L,:Z[CP) - R

{z} — Ln(2)
Theorem 17 ([G4]). L.(B(C)) = 0.

Theorem 18. Suppose that for some fi(t) € (C(t)* one has Bin; - L(f;(t)) =0
Then for any z € C

Conjecture.

>_rl{fi(2)} = {£:(0)} € Ra(C).
: K-groups of alf

So R,(C) is the subgroup of all functional equations for n-logarithms. The
canonical inclusion Ry(F) < Ro(F) is an isomorphism. Indeed, the rigidity

According to,
sional hyperb
Euler characterky

KPd(p) = kiMd(r(x))

(X is any irreducible curve over F) inplies that

Conjecture
manifold of fins

H'(Br(2)) = H'(Bp(x)(2)).

Therefore any functional equation for the dilogarithm D,(z) is a formal conse-
quence of the 5-term functional equation.

Ezample 19. {1} & Ran+1(C) because Lon41(1) = Co(2n + 1) # 0. There is satisfying the
the following complex I'p(n):

B, 5B, 1oF % ... 5B, NF* S A F*

where B, = B, (F) is satisfied in degree 1 and ' (respectively 3, i

5: (a}y® [\ - 5@l A N\ w
i=1

has degree +1. In the case n =
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Conjecture 20. H'(Tr(n) ® Q) = K TI(F).

7‘:Eza:mple 91 Let F = Q. We showed in Example 19 that {1} € Ran+1(Q). On
*the other hand 6{1} = 0 by definition. So {1}2n+1 should represent a nontrivial

clement in Kﬁil (Q). Note that

1 form=4n+1
0 otherwise.

dim K (Q) = {

Complexes I'(n) should satisfy Beilinson-Lichtenbaum axioms, [B], [L]. In the
case when F' is a number field, Conjecture 20 essentially coincides with Zagier’s

" conjecture about Kan41(F). In this case (see [Y])

[m] — K2n+1(F) ifmm=n
Kont1(F) { 0 otherwise.

Note that by definition

).
H(Cr(n) = KM (F).
Conjecture 20 can be considered as a hypothetical “computation” of Quillen
K-groups of an arbitrary field in terms of the same field.
e 12. Volumes of hyperbolic manifolds

3 According to the Gauss-Bonnet theorem, the volume of a compact even-dimen-
i sional hyperbolic manifold is proportional (with a universal constant c,) to its

Euler characteristic.

Conjecture 22. Let X2n-1 be o (2n — 1)-dimensional complete hyperbolic
manifold of finite volume and curvature —1. Then there is an element

- | Zn,-{z,-}eQ[Pé]

satisfying the condition (see (33))
n (Zni{zi}) 1= Zni{zi}n_l ®z =10
’ i i

(respectively Y, ni(1 — z)ANzi =0in N2Q*) such that

ol (X2"1) = > niln(z) | (34)

' In the case 7 = 2 this follows immediately from results of [DS] or [NZ].

.
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Theorem 23.[Go5] Congjecture 22 is true for hyperbolic 5-manifolds.

oincides with
Let me sketch the proof for compact 5-manifolds, Note that
> = H%/r = BT,

(BT is the classifying space of the discrete group I'). The natural inclusion

i: BI' = BSO(5,1)
Here 30(5, 1) is considered a discrete group. Recall that for a group G there
is Milnor’s simplicial model for BG:

:vi:G'EGa:I

Let us denote by I(goz, ..., gsz) the geodesic simplex in the hyperbolic 5-space
HS5 with vertices at points goz,..., 952, where g; € SO(5,1) and z is a given
point in H®. Now let us decompose X on simplices
5 = JI(ez,...,98%2) (35)
i

s

Volumes of geodesices
([Bohm), [Mu]) Vo I

One can choose g(l) so that the boundary of the 5-chain

Z(g(t) ., 95 (36) in [G4] using arg '

in B SO(5,1) is 0 because of (35) and assumption X5 = ¢. On the other hand

[B1] Beilinson A.
Math., (1289)-B)
[B2] Beilinson A.AY
(1984), 181—238 (6
(1985), 2036-20
[B-D] Beilinson
Proceedings

vol (I(QOZ, ey g5Z))

is a continuous cocycle of SO(5,1) representing a nonzero cohomology class
of H{, ,(SO(5,1), R) and hence a class vs € H*(BSO(5,1), R). The value
of vs on the cycle (36) is equal to vol (X®) just by definition. Note that
H(Z:JI(GLN(C) R) for a certain imbedding SO(2n + 1,1) — GLy(C). To s

[BMSch] Beilins
complete the proof of Theorem 23 we need the following result proved in §3 of L5 b looy. D
[G4]: there is a canonical homomorphism 1 B GCSOV(]m];(;lliqgs,on A i

- Projective geomgds
f: Hs(GLn(C)) = H (Bc(3)) R p. 78-131 (in RUZ
[B11] Bloch S., H:g
elliptic cur'ues, -

of the dilogaritl "':
Proc. Int. SyII{ ‘

such that the composition

Hy(GLn(C)) S H (Be(3)) B R




‘coiricides with the Borel class in H(5m)(G’LN(C)). This proves formula with
. meC |
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7 o froposition 24 (Ridgity). Let

z:1= Zni{zi} € Z[P]

:V'Ls’girt;isﬁes the condition 6,(z) =0 in R,,—1(C) @ C*. Then there is an element

T = Zn,{m,} € Z[Pé]

such that 6,(z) =0 and L, (2) = Ln(z).
Proof. Follows from the definition of the subgroup R, (F) and Theorem 17.
It is interesting to compare Conjecture 22 with the following

Theorem 25. The volume of a generic geodesic simplex in the Lobachevsky
space H™ can not be expressed by the classical polylogarithms for n > 7.

Volumes of geodesic symplexes in H5 can be expressed by the trilogarithm
([B6hm), [Mu]). Volumes of geodesic simplexes in H?" are expressible in terms
of the lower dimensional spherical ones ([H]).

Conjecture 22 for compact manifolds can be deduced from conjecture 5.12
in [G4] using arguments analogous to the proof of Theorem 23.
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