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i. Definitions. By a double bundle we mean a diagram of manifolds (cf. [17]) 

/ ~,~. (1) 

F 

for which ~I x ~2: A c B x F is an imbedding. For x e B and ~ e F we set B E = ~l ° ~2-I$; 
rE = ~2 o ~l-iX. 

In order to define a double bundle (i) it suffices to give a family of submanifolds 
B E of B parametrized by the manifold r or a family of submanifolds F x of F (x e B). The latter 
family is called dual to the original. 

On the submanifolds B E we give densities DE and we define the operation of integration 

I: f(x) + ~ f(x)D$. Then I is an operator from C0~(B) to c=(r) whose Schwartz kernel has 

the form ~(x, E)6(Z)db, where 6(A) is the 6-function of the submanifold A, db is the volume 
element on B, and ~(x, E) is a function on A. 

By a local inversion formula is meant an inverse operator J: C=(F) + C~(B) whose 
Schwartz kernel has the form L'6(A)d~, where L is a differential operator on B × F and d7 
is the volume form on r. 

In other words, one can reconstruct the value of the function f on B at any point x, 
knowing the integrals of f over submanifolds of the family passing through an infinitesimal 
neighborhood of the point x. Clearly, in this case, dimB ~ dimF. 

Definition 0.I. Let dimB = dim F. The double bundle (i) is called admissible if 
there exists a collection of densities ~$ such that the integral transformation I has a 
local inversion formula. 

Although Definition 0.i also makes sense for dimB < dim r, it is necessary to define 
admissibility of a double bundle differently in this case. We do this a little later (cf. 
Definition 2.1). 

In what follows, all manifolds will be complex algebraic although we will integrate 
smooth functions as before. The fact is that the study of the integral transformation I 
in the complex case is considerably simpler than in the real one. For example, one can 
show that if dimB$ is odd, then there do not exist local inversion formulas. Although the 
majority of results on complex admissible double bundles generalize to the case of families 
of even-dimensional real manifolds, their formulations and proofs are more complicated. 

Let dimB = dimF. A double bundle in the category of complex manifolds is called ad- 
missible if there exist (0, n)rf0rms ~ on BE, such that for the integral transformation 

B% 

t h e r e  e x i s t s  a n  i n v e r s e  o p e r a t o r  J whose  S c h w a r t z  k e r n e l  h a s  t h e  f o r m  LE6(A)dTd~ ,  w h e r e  L 
i s  a d i f f e r e n t i a l  o p e r a t o r  on B × r .  
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2. Basic Results. With each double bundle there is associated a diagram 

T~B T*Y 

(2) 

where Ty* X c T*X is the conormal bundle to Y in X and PB and PF are the restrictions to 
TA*(B × F) of the projections T*(B × F) = T*B × T*F onto the factors. 

The construction of this diagram goes back to Sophus Lie, who used contact geometry 
systematically in problems about complex curves in R s (rectilinear-spherical correspond- 
ence, etc., cf., [9]). 

When dimB = dim F, all three manifolds in the diagram (2) have the same dimension. 
We denote by d(F) the degree of the map PF" 

BASIC THEOREM. If the double bundle (i) is admissible, then d(F) = i. 

We prove it in Sec. 3. In Sec. 4, we show that the rationality of the manifolds Bg 
and the existence of a canonical rational structure on the projectivization PTBg*B follow 

from the condition d(F) = i. Conjectures about when the necessary condition d(F) = 1 is 
also sufficient (dimB = dim F) are formulated in Sec. 2. Results corroborating these con- 
jectures will be published in [26]. 

The basic results of this paper were announced in [21]. 

I sincerely thank I. M. Gel'fand, S. G. Gindikin, and M. I. Graev for many helpful dis- 
cussions and interest in the paper. 

Section I. Admissible Families of Curves [1-7] 

They were written up in two stages. Firstly, in [1-3], Gel'fand, Gindikin, Graev, 
and Shapiro found a necessary and sufficient condition for admissibility of a family of 
curves when dimB = dimF. We note that in this case, for a generic point x e B, F x is alsc 
a curve. 

THEOREM i.i [1-3]. Let us assume that dimB = dimF and dimBg = I. Let ~i, "'', gn be 
a coordinate system on F. Then the double bundle (i) is admissible if and only if the 
curves F x are graphs of solutions of a system of differential equations 

/ d~i d~2 
= Ui ( ~ ) - - ~  + Vi (~), i = 3, 4 , . . . ,  n, (3A)  

d~ Po (~) + Pz (~) -~-f~ + P~ (~) \ dh ] +P~(~)\~/ (3B) 

and ~l(A) is dense in B. 

The system (3A) means that at a generic point g e F there exists a 2-dimensional sub- 
space H$ c TgF such that at a generic point x e Bg the tangent line TgF x lies in ~$. 

The form of these equations is independent of the choice of coordinate system, d2gi / 
dgl 2 are 3rd degree polynomials in the first derivatives for i ~ 2. 

The fact that the right side of (3B) is a single-valued function of d$2/d~ l is equiva- 
lent to the fact that for a generic direction in the plane Hg there exists exactly one 
curve of the dual family which is tangent to it. Hence the map x e B$ + TgF x identifies 
B$ with a domain in PEg = CP I. Thus, the curves B$ are rational. 

By tradition we will call the family of submanifolds Bg in the case when dimB = dimF 
a complex. 

The geometric structure of admissible families of curves was determined by Bernshtein 
and Gindikin [3-7]. We formulate only part of their results: the description of admissi- 
ble complexes in general position. 

THEOREM 1.2 [3-7]. Let F' be a complete family of smooth compact rational curves 
B~ on the manifold B g,~i.e~, dimr' = dimH°(Bg, NBgB). Then an admissible complex in gen- 
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eral position consists of curves tangent to r I hypersurfaces and intersecting r 2 subman- 
ifolds of codimension 2 in B, where r I + r 2 = dimF' - dimB. 

For admissible complexes of lines Theorem 1.3 was already proved by Gel'fand and 
Grae~ in 1968 [8]. 

Section 2. Conjectures 

i. In point 2 of Sec. 4 we show that the degree d(r) has the following geometric in- 
terpretation. Let ~ be a generic point in r and H be a hyperplane (containing 0) in gen- 
eral position in TgF. Then d(r) is equal to the number of points x ~ B~, such that TxB g 
lies in H (cf. with the definition of the Crofton number in [14]). Hence when dimB = dimr 
and dimB$ = 1 the projectivization of the cone ~ T~F x is a curve of degree d(r) in x~B~ 
PTsF. Consequently, if d(r) = i, then this curve is a line and the map x ~ B~ + PTsF x is 
an imbedding. It follows from this that the curves F x are graphs of solutions of a system 
of differential equations 

d~ i d~ d=~ __ ~ (~; d~= 
~ !  - u~ (D ~ + v~ (~); ~ d~ ] '  (4) 

where 0 is a single-valued analytic function of d~2/d~ I. However, according to Theorem 
i.i, ¢ is a polynomial of degree 3. Hence the condition d(F) = 1 is afortiori insuffici- 
ent for the admissibility of the double bundle. 

2. Conjecture A. A complex r of k-dimensional planes in E pn is admissible if and 
only if d(r) = I. 

When k = 1 the validity of this conjecture follows from the results of Gel'land and 
Graev [8]. For complexes of (n - 2)-dimensional planes in E pn and 2-planes in E p5 it is 
proved in [26]. For linear complexes of k-planes Conjecture A is examined in [21] with the 
help of the results of [16]. 

I have no doubt of its validity. In order to formulate a much more courageous conject- 
ure (and at the same time to explain how one proves the admissibility of certain complexes 
or others), I need the concept of universal local inversion formula [17; i]. 

Let us assume that dimB < dim F. Then dimB~ < dim F~. Let Xx: C~(F) + ~k(Fx) be 
a differential operator of order k = dimB$, such that dXx(If) = 0 for any function f from 

C0~(B). 
If X is a k-dimensional cycle in Fx, then 

I ~ (I/)  - .  c (v) / (~), 
( 5 ) 

¥ 

where c(7) is independent of f. Indeed, since the form Xx(If) is closed, the integral (5) 
is unchanged by deformation of the cycle X in r x (we recall that dimFx > dimx). Hence if 
x' ~ x, then one can find a cycle X ~omplog ous to x, such that x 0 # X- Hence the integral 
(5) defines a generalized function on B with support at the point x. With the help of 
homogeneity considerations it is easy to show that this generalized function is proportion- 
al to 6(x) (here one uses only the fact that the order of the differential operator Xx coin- 
cides with the dimension of Bg). 

It can happen that c(x) is identically equal to zero. For example, if Xx(If) = dxx × 
(If), where ~x:C~(r) ~ ~k-1(Fx), then c(X) ~ 0. 

If for any point x there exists an operator Xx and a cycle X in F x such that c(x) # 0, 
then one says that the integral transformation I has a universal local inversion formul a. 
Different inversion formulas are obtained from one another by suitable choice of cycles X 
homologous to X- 

As usual, in the complex case, we assume that the integral (5) has the form I Xx A 
~x(if)" v 

Universal local inversion formulas for the family of all planes in C n were discovered 
by Gel'fand, Graev, and Shapiro more than 20 years ago [17]. Cf. [18] for another example. 
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Definition 2.1. When dimB < dimr, the double bundle (i) is called admissible if 
there exist measures of the form ~, p~ on B~, such that the corresponding integral trans- 
formation has a universal local inversion formula. 

The following question arises: how can we define the functional c(~) on H2k(Fx) geom- 
etrically? Let h be a hyperpiane in general position in TsB. By C x we denote the homology 
class of codimension 2k in F x which is defined by the cycle consisting of all those points 

e F x such that TxB ~ c h [cf. the geometric interpretation of the number d(F) at the begin- 
ning of Sec. 2!]. 

PROPOSITION 2.2. c(x) is equal to the intersection index of ~x and Y- 

CONJECTURE B. Let dimB < dim F I and let the double bundle (I) be admissible. Then 
the complex F c F' is admissible if and only if its degree d(F) is equal to i. 

The validity of this conjecture for curves (dimB$ = i) follows from the results of 
Bernshtein and Gindikin [4-7]. 

Since the manifold of all k-planes in C pn is admissible [17], Conjecture A is a very 
special case of Conjecture B. 

Conjecture B is proved for "typical" complexes of hypersurfaces in CP n (cf. [26]). 
The case of quadrics in C pn is examined in [ii]. 

The scheme of the proof of the majority of the results on the classification of admis- 
sible complexes F c r' is the following: first one finds all complexes for which d(r) = i; 
afterwards one proves that the restriction of a suitably chosen form Xx~ to F x can be cal- 
culated from ~ Ir. A priori for this one must know the restriction of ~ to the k-th infin- 
itesimal neighborhood of F in F'. Hence it is quite astonishing that at least in some 
cases the condition d(F) = i, a first-order condition, is sufficient= 

3. Guillemin proved (cf. [ii, 13] that if in the category of C = manifolds the map 

(B × r) \ 0 \ 0 

i s  an i n j e c t i v e  i m m e r s i o n ,  ~ :  A * B i s  p r o p e r ,  and I t i s  t h e  o p e r a t o r  o f  i n t e g r a t i o n  w i t ~  
respect to some measure on F x, then I t o I is an elliptic pseudodifferential operator. Ac- 
cording to point c) of Theorem 4.2, which we prove in point 2 of Sec. 4, in the complex 
case under the condition codimB$ > 1 there are no such examples. 

4. One can verify that the function ~ i (4) is a polynomial of degree 3 if and only 
if it has no singularities in any coordinate system on F (cf. point 2 of Sec. 4). In this 
case, there exists a family of curves on F containing all curves F x such that for any point 

in each direction which lies in the plane ~$ precisely one curve of this family issues. 

It would be very interesting to find the analog of this condition at least for complex 
hypersurfaces in C ~ for n e 3. The following theorem obtained by Gel'fand and the author 
shows that the answer will be different from that in the case n = 2. 

THEOREM 2.3 [20]. Let a family of holomorphic hypersurfaces in the domain ~, dim~e 
3 satisfy the following condition: at any point x e~ each hyperplane in Tx~ is tangent 
to exactly one hypersurface of the family. 

Then this family is locally isomorphic to the family of all hyperplanes in C pn. 

This theorem is false in the category of C=-manifolds: a counterexample is given at 
the end of point 2 in [20]. 

Section 3. Proof of the BasicTheorem 

i. THEOREM 3.1. If a double bundle in the category of complex manifolds is admissi- 
ble (dimB = dimF) and ~l: A + B is a proper map, then d(F) = i. 

Remark. Let ~ and~F be holomorphic line bundles on B and F. The proof of Theorem 
3.1 given below carries over word, for word to the case when the integration operator i acts 
from Co ~ (B, ~BO~B) to C=(F, ~rQ~r) . We note that Theorem 3.1 is usually applied pre- 
cisely in this situation (cf. [26]). 

The proof makes essential use of the technique of Fourier integral operators. We re ~ 
call some definitions [13, Chapter 6]. Let X and Y be n-dimensional manifolds, A c X x y, 
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L = TA*(X x y), x e Im(L ) be a generalized semiform on X × Y associated with L of order m. 
If (a~ ..... a~n-~, zz ..... z k) are coordinates in X x y in which A is defined by the equa, 
tions zz = ... = z k = 0, then modulo distributions of lower order 

T = l' b (a, ~) e ~(',~)d~. ]/d-adz, (6 )  

where ( a, $) are coordinates in L, while the coordinates $ and z are adjoint and b( a, $) 
is homogeneous of degree m - (n/2) in $. 

We denote by a(x) the symbol of the generalized semiform x. By definition a(x) is a 
homogeneous semiform of degree m + (n/2) on L. For example, if x has the form (6), then 
o(x) = bq(a, i)]fdad~ In particular, 

0 s 
T= Z ls(a)~zs 6(z)]/dadz~ 

'H<_~ 

t h e n ,  x e Im+n/2(L  ) and o ( x )  = i m ~, ls~a)~S}fd--'~. 
Isl=~ 

We denote  by I x t he  i n t e g r a l  o p e r a t o r  d e f i n e d  by the  k e r n e l  x:  

&: C~ (A~ ~) ~ C = (A~2), 
@ 

I~: ~ ~+ ~ y * ~ x ~ ,  

where  AX z/2 i s  t h e  b u n d l e  o f  s emi fo rms  on X; ~X, ~Y a r e  t h e  p r o j e c t i o n s  o f  X × Y t o  t h e  
f a c t o r s  and ~ y ,  i s  i n t e g r a t i o n  a l o n g  X o f  s e c t i o n s  o f  ~X*hX ® ~y*h¥ 1 /2 .  

I f  x e I m _ + n / ~ ( L ) ,  t h e n  I x i s  a F o u r i e r  i n t e g r a l  o p e r a t o r  o f  o r d e r  m z. The s e t  o f  
a l l  such  o p e r a ~ o r s  i s  d e n o t e d  by ( Y . I . ) m x ( L ) .  

L e t  L '  c T*Y x T*Z be a homogeneous  L a g r a n g i a n  s u b m a n i f o l d  and dim Z = n ,  
diagram 

T*X T*Y T*Z 

Here PX is the projection of L c T*X x T*Y onto the first factor, etc. Let us assume 
that all maps in the diagram (6) have finite degree. We choose open domains [. and [,' in 
L and L' on which these maps are unbranched. 

Let ~y be the canonical 2-form defining the symplectic structure in T*Y. 
o(x)J[~ in the form ~<x)'py*]/ oy. 

Let J ~ (F.I.)m2(L'), 

J: c~  (A~') ~ c~  (A~'). 

We denote by [. o [.' the composition of the correspondences [. and [.' By definition 

o ~ '  = {(ix, fz) ] 3~y ~ T'Y:  (Ix, ~Y) ~ ~, (iY, Iz) ~ 17,'}. 

If x is the Schwartz kernel of the operator Ix, then we will write o(I), instead of ~(x). 

We define a function o(J) o ~(I) on [ o [.' by 

(]) o ~ (/) (~x, ~ )  = ~ ~ (]) (!xIY) ~ (]) (t~, ~) ,  
~y 

where  t h e  summat ion i s  o v e r  a l l  ~y e T~y, such  t h a t  (~X, ~Y) e l, and (~y ,  ~Z) e [~' 

Le t  P[. be t h e  p r o j e c t i v i z a t i o n  o f  [.. We s ay  t h a t  I • ( F . I . ) m ! ( [ . )  i s  p r o p e r l y  c o n c e n -  
t r a t e d  i f  t h e  p r o j e c t i o n s  o f  PL t o  PT*X and PT*Y a r e  p r o p e r  maps. 

The f o l l o w i n g  lemma g e n e r a l i z e s  P r o p o s i t i o n  6 .2  o f  C h a p t e r  VI o f  [13] and i s  p r o v e d  
a n a l o g o u s  l y .  

LEMMA 3 . 2 .  I f  I • ( F . I . ) m z ( [ , )  and J e ( F . I . ) m : ( [ , ' )  a r e  p r o p e r l y  c o n c e n t r a t e d ,  t h e n  
J o I e (F.l.)m~+m2([, o [,') and o(J o I) ffi o(I). 

We have the 

We represent 
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Now we start directly on the proof of the theorem. 

Ler VB and Vr be fixed semidensities on B and r which haue the form ,~(z) |/dz~z where 
V(z) > 0. We define operators I and J as follows: 

~oo ,oo ] /'~ 

Y: C°O(AY~) - ,  C°°(A~~); Y: ~ ¢ r ~  ](~)', , .  

In what follows, we will omit the tildes in the notation for the operators I and ä. 

We consider the diagram 

/ ,'~/ ) 
T*B T*F' T*B 

Let A be the diagonal in B x B. 

PROPOSITION 3.3. If the double bundle (i) is admissible, then PB and PF are maps of 
finite degree. 

Proof. First, we prove the following lemma. 

LEMMA 3.4. If (in the category of C=-manifolds) there exists an inverse operator J 
for the integral operator I, the wave front of whose Schwartz kernel is contained in TA* x 
(B x F), then the image of the map PB is dense in T'B. 

Proof of Lemma 3.4. Let K be the Schwartz kernel of the operator J o I. This is a 
generalized semiform on B x B. We denote by WF(K) its wave front. Since J o I is the iden- 
tity operator in C~(ABI/2), one has WF(K) = TA*(B x B). As is known, WF(K) is contained 
in the closure of TA*(B x F) o TAt*(F x B). Thus: 

Tl (8 x 8) c Tl (B x r) o TI~ (r x B). 

It follows from this that the image of the map PB is dense in T'BI. 

Since TA*(B x F) and T*B are manifolds of the same dimension, the differential of the 
map PB at a point in general position is an isomorphism. 

LEMMA 3.5 [12]. Let V and W be symplectic vector spaces, L c V • W be a Lagrangian 
subspace, ~i and ~2 be the projections of L to the first and second summands. Then ~2 × 

(Ker~l) = ~2( L)±'' 

Applying this lemma to the case when V ® W and L are the tangent spaces to T*B x T*F 

and TA*(B x F) at a generic point q, we ger that 

ä~pr: T~T~(B× F)-->Tor(,)T*F 

is an isomorphism. Hence in the category of complex algebraic manifolds the map PF has 
finite degree • i. 

Let TA*(B x F) be an open domain in TA*(B x F) on which the maDs PB and PF are un- 
branched. We denote by L the closure of the set TA*~F) o TAt~~(F x B). 

LEMMA 3.6. degpF = 1 if and only if L = T&*(B x B). 

Remark. If , is the operation of composition of Lagrangian cycles, then TA*(B x B) 

occurs in L with multiplicity deg PB" 

It is very important to keep the following familiar lemma in mind. 

LEMMA 3.7. Each homogeneous irreducible algebraic Lagrangian submanifold of T*X has 
the form Ty*X, where Y is a submanifold of X •. 

Let us assume that deg Pr > i. Then there exists an irreducible submanifold C c B × B 
different from A, such that Tc*(B x B) c L. To prove that J o I # idB, it suffices to 
prove that Tc*(B × B) c WF(K). A difficulty which must be overcome is that although WF x 
(K(J o I)) is contained in L, it does not necessarily coincide with L in general. We give 
a typical example of such a situation. 
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a) Let B = R 2 , F be the manifold of all nontrivial lines y = a x + b on the plane. 
We set 

_r_oo 

I~/(a, b) = i ] (x, ax ~- b) dx, 
- - o c  

-j-o= 

(Xo o) = ! (a, - -   Xo) da.  

Then Jl ° Ii ~ 0. We note that the complex analogs of these formulas lead to an inversion 
f o r m u l a  f o r  t h e  Radon t r a n s f o r m  in  C 2. In  t h e  f o l l o w i n g  example t h e  m a n i f o l d  F x w i l l  be 
c o m p a c t .  

b )  I2/(~1,  ~2; P) = l / (Zl '  ,~'2) ~ (Xl~l -I- x2~2 - -  P) d2x, 

K 

The integral is taken over the closed curve K in the ($I, $2) plane going around zero. 
Since the integrand changes sign under the substitution $ + -$, this integral is equal to 
zero. 

Below we show that in the complex case there are no such reductions. 

LEMMA 3.8. I and J are Fourier integral operators while o(i) and o(J).(-l) dimFx have 
the same sign on TA*(B × F). 

Proof. Let ( a~ ; z.) be a holomorphic coordinate system in a neighborhood of the 
point a e A, in which AJis defined by the equations z I = ... = z k = 0. The kernel defin- 
ing the operator I in this neighborhood has the form 

/ (a) / (a) 5 (a) ]/ dadzdadz, 

where f( a ) is a holomorphic function. 

Hence o(I)= If (a) [2 ]f dad~dad~ where (a, 6) are coordinates in TA*( B × F), where the 
coordinates $ are dual to the coordinates z. 

Let ~X be the canonical holomorphic 2-form defining the symplectic structure on T*X. 
We set ~X n,n = ~X n A ~X n. Let p: Z ~ T*X be an unbranched holomorphic covering. Then if 
~' e ~Z, then ~' A ~' = [hl2p*~n, n. Hence o(I) > 0. 

The Schwartz kernel of the operator J has the form 

g (a) g (a) LL6 (a) l'fda dz da dz. 

where L is a holomorphic differential operator: 

0k 0 s 
L = l~,. ~ ( a )  ~ , - - 7 .  

' 0z '~ 0a 

Applying a partition of unity and integrating by parts, one can assume that ~k,s(a ) = 0 
for Isl > 0. 

We show that degL = dimr x. 

f ~ ( F .  I.) 

Hence according to Lemma 3.2 

Indeed, we know that 

- -  l deg L-}- (T* (BX r)), 7 ~ ( F . . )  - (T*t(r :<B)). 

JoI  ~ (F.I.) deg L+(~-~) (L). 

Since J o I = idB, one has degL = n - k = dim F x. 

The symbol of the Schwartz kernel defining the operator J has the form 

o ( ] ) =  ~ [g(a)12]l,(a)]2(--i)dimr~]fdad~dad~. 
Jkl=dimr x 
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Hence, (-l)dimFxo(J) > 0. 

Thus, (-l)dimFxo(J o I) is strictly greater than zero on Tc*(B x B), where C is a sub- 
manifold of B x B, different from the diagonal. Hence J o I # id B, when deg 9F > i. Theor- 
em 3.1 is completely proved. 

2. In this point we show how to integrate a section of line bundles on B. 

Let ~B be a line bundle on B such that 

H ° (B~, ~* 

We denote by Gr the bundle over F whose fibre at each point ~ e F is 

HOmB~ (~B IB~, QB~)*. (8) 

We construct the integral transformation 

I: cõ  (B, ~~  ® ~~)  ~ C ~ (r, ~6r ® ~r).  

Let s ® s • C0~(B, ~B ~ ~ B  ) and 

i~ ~ H0m~ ~ (~B I~~, ~]B). 

We define l(s ® s) as the linear functional on C~(F, ~Sr (Ê)~r )* whose value on the 
vector i$ ® i S is equal to 

B~ 

If ~2: A + F is a submersion, then the fibre of the normal bundle to A, NA(B x F) at 
the point (x, S)eAis canonically identified with the fibre of NBsB at the point x (cf. 

Proposition 4.2 below). Moreover, gBs is canonically isomorphic to ~BIBs $ det NB~B. Hence 

~r ---- n2, HOmA (det NA(B X F) Q n*QB, ~~~B)- 

Example. Ler F = Grk(G ph) be the Grassmanian of k-dimensional planes in C pn ~ B. 

Then ~BS ~ Op~ (-k-l). Hence the construction given above lets us integrate sections of 
line bundles O (-k-s-l) ® © (-k-s-l), where s > 0 (cf. [!8, Chapter II, Sec. 3]). In part- 
icular, for s = 0, ~r is the determinant bundle over Grk(E Pn), i.e., its fibre over the 
point ~ corresponding to the (k + l)-dimensional linear subspace h G in C n+1, is det h S, 

Remark. A basic point in this construction is the canonical ehoice of a finite-dimen- 
sional space in Hom c(~B~B~B [B S , ~B S ® ~-B~). If the space (8) is empty, then instead 

Of it, one should take any finite-dimensional space of differential operators from ~BIB% 
to ~B~ (imposing suitable conditions on their symbols). Thus, one can, for example, inte- 
grate%sections of the bundles O (-k-s-l) • O (-k-s-l) on pn for s < 0 over k-planes. 

One should note that the condition d(F) = i follows from the existence of a local in- 
version formula if and only if ~p is a line bundle on F. 

If the submanifolds B~ are the zeros of sections of a holomorphic bundle E on B, then 
the restriction of~~ß : = detE • ~B to B~ is Ssom~rphic to ~BE, i.e.,~r is one-dimensional. 

Conversely, if codimB~ B ~ 2 and there exists a line bundle ~~ on B, such that ~B IB~ ~ ~B S, 

then the submanifolds B~ are zeros of sections of some bundle on B. (For codim BsB = i, 

this is obvious. For codimB~ß = 2, it was proved by Serre [27].) 

Section 4. Rationa!ity Theorem and Geometric Meaning of the Condition d(r) = 1 

I. RATIONALITY THEOREM. If for the double bundle (I) the degree d(F) is equal to I, 
then the manifold B S is rational and on PTB~*B there is a canonical rational structure. 

Remark 4.1. It does not generally follow from the rationality of PTB~*B that B~, just 
as the rationality of PTB~*B does not follow«;from the rationality of B~. 
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Proof. Let a = pd~ be the canonical 1-form on T'B. It will be helpful for us to in- 
troduce the following noi@tion: L$: = TB$*B. 

A vector v • TSF defines a section 7v(A) of the normal buddle NL$T*B. The formula 

~ - ~  ( w  (~)) 

defines a map 

%: L~-->T~F. 

We define the submanifold ~ c T*B x T*r as the manifold of pairs (I • LG, ~$*I)). 
We have the diagram 

T*B T~r 

PROPO$1TION ~~2.~ If ~2: ~ + F is a submersion, then ~4 is canonically isomorphic to 
TA*(B x r). 

Proof. Let a = (x, ~) e A. Then TaA c TxB ® T~F. By hypothesis d«~s: TaA + T~F is 
an ep~ism. Henee Ker'd«~2 coincides with TxB E ® 0 and T« (B x r)/T cA = TxB/TxB ~. 
We denote by Ty,y*X the fibre of the bund!e Ty*X at the point y • Y. Then the natural map 

9B: Tt  A (Bx r)'-~ T~, B~B (9) 

is an isomorphism so we need to verify the commutativity of the following diagram: 

T;(B~r) 

~er 
For  t h i s ,  i t  s u f f i c e s  t o  show t h a t  i f  I • L$, t h e n  t h e  c o v e c t o r  [ I ,  v g ( t ) ]  v a n i s h e s  

on any  v e c t o r  ( v  1, v=)  • T«A, £ . e . ,  < v { ( t ) ,  v=> = - < I ,  v~>.  But  s i n c e  a = pdq ,  t h i s  i s  t h e  
definition of the map vg I .  

It follows from this that d(F) is equal to the degree of the map v~ (il $ is not a 
critical value for the map ~2: A + r). In particular, if d(F) = i, then the projectiviza- 
tion of the map v$ defines a birational isomorph$sm Pv$: PTB$*B + PTg*F. 

Let AnnT$F x = {£ • T$*FI(£, v) = 0 Vv • T~Fx}. 

LEMMA 4.3. If ~i: A + B is a submersion, then 

T* pB ( a,A (B X F)) = A n n  T~F x (a = (x, ~)). 

P r o o f .  I f  ( £ 1 ,  £2) • Ta,,A*(B x F) c Tx*B × Tg*r and v • Tgr x, t h e n  0 = < (£x ,  £2 ) ,  :(0, 
v )>  = <£2, v>,  so  t h a t  

T* p~(  ~,a (B X P ) ) c A n n  T~F~. 

The opposite inclusion is proved just as in Lemma 4.2 i. 

PROPOSITION 4.4. The number d(r) for the double bundle (i) is equal to the number of 
subspaces of the form T$F x (where x • B$) wbich lie in a hyperplane in general position in 
Tsr. 

Proof. The condition d(r) = 0 is equivalent to the fact that PB(T « ,A*(B × F) has non- 
zero codimension in T$*F. According to Lemma 4.3 the latter condition means precisely that 
in a hyperplane in general position in TsF, there are no subspaces of the form T~F x, where 
x • B~. 

Now let d(F) > 0. Then it follows from Proposition 3.3 that ~i: A + B is a submer- 
sion at a generic point. Hence the map PF: T « ,A*(B x F) + Tg,FxF is an isomorphism at a 
generic point. It remains, just as before, to use Lemma 4.3 , 
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Now we show that the rationality of the manifolds d(F) = 1 follows from the condition 
B E . Let H c PTE*F be a plane in general position of dimension dimB E. According to Propo- 
sition 4.4, d(F)-is equal to the degree of the rational map 

x ~ B~ ~ P (Ann T~F~) N H. 

In conclusion, we note that if codimB E = 1 and d(F) = i, then on B~ there is a canon- 
ical rational structure. Namely, the map 

x ~ B ~ ~  T~P~~ T~P 

is a birational isomorphism of B E onto the manifold of subspaces of codimension 1 in TEF, 
i.e., onto CP n-z m. 

In geometric considerations the following lemma is orten helpful. 

LEMMA 4.5. Let us assume that ~2: A < F is a submersion. Let q e Tx*B. Then there 
exists a natural bijection between pA-Z(x, q) and {E ~ Fxl the restriction of q to TEF x is 
equal to 0} . 

This follows directly from (9). 

For example, for a complex of lines in C P~, d(B) is equal to its degree in the class- 
ical sense (cf. [25, Chapter Vl]). Hence it is natural to call d(B) the degree and d(F) 
the codegree of the double bundle. 

2. THEOREM 4.6. Let us assume that for a double bundle in the category of 9@mplex 
manifolds dimA > dimB (i.e., dimB~ # 0). Then 

a) if dimB = 2 and the maps OB°: TA*(B × F)\0 ÷ T'B\0 and pF°: TA*(B x F)\0 ÷ T'F\0 
are isomorphisms, then the family F x is locally-isomorphic to the family of lines in CP ~. 

b) if dimB = dimF e 3, ~I: A ÷ B is a submersion and the map pF o is an isomorphism, 
then the family F x is locally-isomorphic to the family of hyperplanes in C pn. 

c) if dimB = dimF ~ 3, ~i: A ÷ B is a submersion and pT ° isinjective, thencodimB E=l. 

Interesting results in the C~-situation were obtained by Quinto (under considerably 
strongér hypotheses of the double bundle) (cf. [15; 13, Chapter VI, Sec. 3]). 

Proof. First, we prove point c). Since ~i: a ÷ B is a submersion,, the canonical map 

Pr: T* T* o, A(Bxr)-~ ~ , r r  

Hence it fol!ows from the injectivity of the map pF ° that for any xz, is an isomorphism. 

x 2 E B E 

P Ann T~r~. n P Ann T~r~, = ~ .  (1o) 

Thus, we have a bijective map 

where 

f~: B~ × CP ~-~-~ --> CP ~-1, 

n =  d i m B a n d k  = d i m P ~ .  

It defines an imbeddEng of B E in Grn-k_z(C pn-z). We denote by R E the closure of the image 
of B E in Grn_k_1(cpn-l). We get a birational isomorphism 

B~: B~ × Cp ~-~-I .__> Cp ~. 

Let us assume that k # n - i. We denote by ~ the exceptional divisor for T E. Then co-• 
dim~$(~) e 2. If y e fE(~), then fE-1(y) ~ i. It follows f rom the assumption (i0) that 
there exists a curve Cy c BE, such that TE(Cy) = y. Since Cy N (BE\BE) contains at most 
one point, in Cy n B E one can find two distinct points x I and x2. Then 

which contradicts (i0). 

v ~ / ~  (x~ x I;P ~-~-~) f] ]~ (x~ x CP~-~-~), 
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The proof of point b) of the theorem follows from point c) of Lemma 4.5 (in which the 
places of B and F should be interchanged) and Theorem 2.3. 

Hence in the proof of point a) one can assume that dimB = 2. According to Lemma 4.5 
again the bijectivity of the map pF ° means that through each point ~ ~ F in any direction 
there passes exactly one curve of the family {Fx}. 
solutions of the differential equation 

where ~ is a polynomial of the third degree in ~2' 

Hence these curves are the graphs of 

Indeed, let ~(t) be a parametrization 
of the curve Fx, $(0) = $. Then, if [,] is a skew-symmetric form in TSF, then q$($(0) = 
[$(0), ~(0)) is a well-defined homogeneous function of degree 3 on the whole complex plane. 
Hence this function is a polynomial and hence ~($; $2') = q$($f', I) is a polynomial of de- 
gree 3. 

An analogous assertion is true for families of curves BS in B. Hence according to the 
classical theorem of A. Tresse [22] (cf. also [23 or 24, Chapter!, Sec. 6]) the family of 
curves F x is locally diffeomorphic to the family of lines in the plane , 
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THE ALGEBRA OF INTEGRALS OF MOTION OF TWO-DIMENSIONAL HYDRODYNAMICS 

IN CLEBSCH VARIABLES 

V. E. Zakharov UDC 517.9 

i. We will consider the equations of two-dimensional hydrodynamics of an incompress, 
ible fluid 

0~ OV x äVy 

on a torus r, i.e., in a square -L < x < L, -L < y < L with periodic conditions on the vel- 

ocity field. Moreover, the mean vorticity equais zero (<~> = I ~dxdy = 0). We also must 
P 

equate to zero the mean flow of the fluid 

<V>= IVdxdy=0. (1.2) 
F 

Then one can introduee a periodic function of the current ~(V x = -(8~/8y), Vy = (8~/8x) 
and rewrite (i) in the form 

?t q- {% f2) = O, {A,  B} = A x B y  - -  A y B x .  (1.3) 

Ler us remark that ~ = -(~H/~~), where H = -i/2 S »~dxdy is the kinetic energy of the fluid. 
P 

E q u a t i o n  ( 1 . 3 )  i s  a H a m i l t o n i a n  s y s t e m ,  t h e  p h a s e  s p a c e  o f  which  i s  t h e  s p a c e  U o f  
smooth p e r i o d i c  f u n c t i o n s  ~ ( x ,  y)  w i t h  z e r o  mean, t h e  H a m i l t o n i a n  i s  t h e  e n e r g y  H, and t h e  
P o i s s o n  b r a c k e t  be tween  t h e  f u n c t i o n a l s  Œ and ~ o f  ~ i s  d e t e r m i n e d  by t h e  f o r m u l a  

[a'~]=I~{6~6~ ' 8~5~} ~xdy" (1.4) 
P 

Equation (1.3), in which ~(x, y, t) is an arbitrary given function, has an infinite 
set of integrals of motion of th@ form 

r = l F ( ~ ) d x d y .  ( 1 . 5 )  
F 
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