INFINITESIMAL STRUCTURES RELATED TO HERMITIAN
SYMMETRIC SPACES
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0. Let M be a compact, Hermitian, symmetric space (c.H.s.s.) of rank rkM > 1, In each tangent space
I«M Vz = M, we shall construct in a canonic way a cone Ky, such that the cones Kx corresponding to distinct
points x are linearly equivalent. Given any domain on M, the local diffeomorphisms which preserve this family
of cones can be extended to holomorphic automorphisms of M, On the n-dimensional complex manifold % ,
we give a cone ¥y C Tyll, y = 4 , which depends holomorphically on y and is linearly equivalent to the cones
Ky. At the same time, M is distinguished as a manifold with a flat structure.

If M = CG}, then the cones Ky are the cones of the null directions of a conformal class of complex met-
rics. The study of this infinitesimal structure, both in the flat and curved cases, plays an essential role in R,
Penrose's theory of twistors. Part of the results of the present work may be interpreted as a generalization to
higher dimensions of Penrose's results.

We remark that our work is related to integral geometry (see [1, 4, 5]).

The problem of characterizing the infinitesimal structures of c. H. s, s. was formulated by S. G. Gindikin,
The author is sincerely grateful to S. G. Gindikin for his great interest in this work, and for the useful discus-
sions and suggestions.

1, Let us introduce some notation: L is a semisimple Lie group over C; P is a parabolic subgroup of L
with Levi decomposition P = GN and such that M = L./ P is a ¢. H. s.s., which holds if and only if the radical N
is Abelian; Gy is the semisimple part of G; £, #, ¥, %, are the corresponding Lie algebras; Px = GyNy is the
stability subgroup at the point =z = M.

Definition. Let Kx be the cone of highest weight vectors in the Gx-module TyM (i.e., each vector of Kx
is the highest relative to some Borelian subgroup of Gx).

Proposition 1, The group of all linear automorphisms of the cone Ky equals Gx. The number of nonzero
Gx-orbits in TyM is rkM. Ky is minimal among these orbits, and ! = L takes Ky into K.

Therefore, we have associated to M, in a correct way, a cone K (M) C V ~C», wheren =dimM, From
now on, we shall assume that L is simple (the general case reduces to this one) and that rkM > 1, Below we
give the concrete realizations of K(M).

1, M=C6) M ~C"QC", K (M)={vQwe (" QL.
2. M= 80 (n-+ 2)/50 (n) X SO (2) is a quadric in CP““, K(M) is a nondegenerate quadratic cone.

3. M =80(2n)/U(n) is the connected component of the manifold of maximal isotropic subspaces relative
to a nondegenerate complex metric on ©"K (M) 2 (v A w = AN},

4. M =Sp )/ Um) (the Lagrangian Grassmanian), K (M) = {v-v & S?C"}.

5. M = E¢/CO(10) (the complexification of the projective plane over the octonions). K(M) is isomorphic
to the cone of simple half-spinors in the half-spinorial representation.

6. M=E;/E;-U({1). K(M) is isomorphic to the cone over the irreducible idempotent elements in the Jor-
dan algebra constructed from the complexified Hermitian matrices of order 3 over the octonions),

Let v be the vertex of the Dynkin diagram of & such that the deletion of vy results in the diagram of .
In the fundamental representation corresponding to v, consider the cone Ky of highest weight vectors. For
M= CGm, Ky is the cone of decomposable m-vectors, while for M = S0@2n)/Ufn), Ky is the cone of simple
half-spinors in the sense of E. Cartan's definition, in the half-spinorial representation (see [2]).
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Proposition 2, Ky is a cone over M. The intersection of Ky with the subspace tangent to K, along the
generafrix C* -x, where z = &, is a cone over K. C T«M.

Using this proposition and induction, we are able to describe the connected components of the manifold
of isotropic subspaces (we call them families).

Proposition 3. There is a bijective correspondence between the families in K(M) and those subgraphs of
the Dynkin diagram of £ which contain ¥ and are isomorphic to the diagram Ay, (chains). The dimension of
an isotropic subspace equals the number of vertices in the corresponding chain. The group G acts transitively
on each family.

IfM= CG?n, we say that a given isotropic subspace has type a (respectively, §) if it is contained in a
maximal isotropic subspace of the form ¢™® » (respectively, (» ® ¢* ).

Now let us give, on the n—-dimensional complex manifold .# , a cone ¥y C Tv.#f, y =.# such that Xy
depends holomorphically on y and there exists a C-linear isomorphism 4,: V — Ty with 4, (K (M)} = &v, Com-
posing the transformations from G with the isomorphisms Ay, we obtain a G-structure on .#. Set ¥V = v,
70— g c g2 V), ¥® = s+ @ g5 v+ @ %D, A Lie algebra structure can be introduced on & %® (see [3]).

Proposition 4, If rkM > 1, then gW~v*, @ -0, 2D g g0 g g0, P~gW gy, g =0

Consider a domain in CB upon which there is given a flat (in the sense of G-structure) family of cones,
Then it follows from Proposition 4 that the Lie algebra of the local Lie group of those diffeomorphism which
preserve the given family of cones is isomorphic to £. If G = CO(), n = 3, this is Liouville's theorem. The
algebra & is recovered as the subalgebra of ¢ preserving a point.

Proposition 5. A flat G-structure is induced on M.
This is a consequence of the fact that N is Abelian,
2, Set
¢! = Hom (At ¥, 07,

l ~
f @y e D) = Z (=D f (g e e Upggege - o Opag) Ppgihs
=0

where f = ¢&!, Then a;f = ¢*-%1+1, and §;09;,=0. Let Hk! =Ker o ) Ck.Y/Im 8;—1 ) ¢4, The obstruction to identifying
the (k + 1)-th infinitesimal neighborhood of a point in a manifold with G-structure, with the (k + 1)-th infinite-
simal neighborhood of a point in a G-flat manifold, is given by the k-th-order structure functions (s.f.) (see
[3, 7]) under the assumption of annihilation of the lower order s. f. This obstruction takes values in the G-
module Hk'l’z, For the conformal structure (G = CO(@n)), the first-order s.f., i.e., torsion, is equal to zero
because H'? = 0 for CO (), while the second~order s.f. is the Weyl tensor.

THEOREM 1, a) M=+C6) = the ¥-module e; H%2 is irreducible, H%2 505 & == co (n). HY2 0 % = co (n)
n>4 H¥ =06 % = co(3).

b) M =c6] = o Hi2 = H, ® H. — the self-dual and anti-self-dual parts, which corresponds to the decompo-
sition
A2(C"QCM = A2 @ A% = S%C" @ A" @ A" © S,
H, and H_ are irreducible, #%* (H**) =0em=2 (n=2). HY = 0.<=> HY? 0.
Definition. A submanifold .#° — .# such that 7.#" C %, vz = # , is called an integral manifold in #
THEOREM 2. Let M be irreducible, rkM > 1, and M = Sp (n) / U(n).

a)If M = CG%Q, then the G-structure on .# is flat & given any family of isotropic subspaces of dimen-
sion >1 and any subspace in the family, there exists an integral manifold tangent to this subspace.

b) If M = CGpy» then the (anti) self-dual part of the s.f. vanishes « given any family of isotropic sub-
spaces of dimension >1 and type a (respectively, 8) and any subspace in the family, there is an inte-
gral manifold tangent to this subspace. If both parts of the s, f. vanish, then the G-structure on .# is
flat,

3. Let us fix a decomposition Hom (V A V, V) = € @ 4, (Hom (V, ¥)). Since ¥ is reductive, there is a canonical
choice for C. For the Gy-structure, there is a canonical Gg-connection on .#. If G, = SO(n), then the latter is
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the Levi—Civita connection. While there is no canonical G-connection on .#, one may define a Cartan connec-
tion (about Cartan connections see [7]). One may also define O-geodesics on ..

Consider the bundle =: ., — # whose fiber 7r"1(x) is the projectivization of the cone #-.

THEOREM 3. The choice of the complement C determines a field of directions I{y), y = #,, and I(y)
projects isomorphically into a generatrix of the cone -

The O-geodesics are precisely the projections of the integral curves of this field of directions.
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A REMARK ON EXTENSION OF MEASURES

E. P, Demidovich and M., T. Tarashchanskii

Let (@, %) be a measurable space, % be a o-subalgebra of the o-algebra %, and y, be a o-additive mea-
sure defined on %. Suppose that there exists a o~homomorphism h of the o~algebra % onto the algebra ®/u,
of the uy-equivalence classes that is an extension of the canonical o-homomorphism g, of the o-algebra s onto
%B/p,. Then a o-additive measure u that is defined on ¥ and extends p, can be put in correspondence with the
measure pg. Indeed, for this it is sufficient to set u(A) = uy(A") for 4 = %, where A' is an arbitrary represen-
tative of the class gg'(h(A)).

It is clear that not every extension g of the measure u,, if it exists, has the above form. Nevertheless,
the existence of at least one extension of the measure p, to a o~additive measure defined on % implies the
existence of a c-homomorphism h: % — ®B/u, that extends the o~homomorphism gy The present communication
is devoted to a proof of this statement.

1. A well-known theorem of Sikorski (see [1, Theorem 33.1]) asserts that complete Boolean algebras are
injective objects in the category of Boolean algebras with homomorphisms as morphisms of the category. This
theorem becomes invalid when the category of o-algebras with o-homomorphisms (see [2, Example]) or the
category of complete algebras with complete homomorphisms (see [3, Theorem 4]) is considered. However,
Sikorski's theorem remains valid for the category of the o-algebras that satisfy the o-chain condition (and, by
the same token, for the category of the complete Boolean algebras) with o-homomorphisms. More precisely,
each object of this category is injective,

In order to show this, we introduce the following notation. Let X and Y be the Stone spaces of Boolean
algebras ¢ and ®, respectively, and h; and h} be isomorphisms of the algebra € onto the algebra @ (X) of the
clopen subsets of X and of the algebra © onto the algebra $(Y) of the clopen subsets of Y, respectively. Fur-
ther, let h be a homomorphism of the algebra € into the algebra », It defines a homomorphism h' of the alge-
bra ¢ (X) into the algebra ¢(Y) in a natural manner; namely, h'(F) = h{,hh[{l (F) foreach 7 = @ (X). Byvirtue of
Theorem 11,1 and a remark in [1], this homomorphism is induced by a continuous mapping ¢ of the space Y
into X, and, by definition, ¢~ (F) = h'(F) for each F e @ (X).
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