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INTEGRAL GEOMETRY AND MANIFOLDS OF MINIMAL DEGREE IN CP" 

A. B, Goncharov UDC 517.43 

i. INTRODUCTION 

I. An n-parameter family of submanifoldsB~CB, dimB=n, is said to be admissible if 
the value of any smooth function f at each point x can be reconstructed, knowing only the 
integrals of f over the submanifolds of the family passing through an infinitesimal neighbor- 
hood of the point x. (A rigorous definition will be given in Sec. 2.) 

The classical example is the family of all hyperplanes in R ~÷I or C ~. Its admissibility 
follows from the locality of the inversion formula for the Radon transformation (cf. Sec. 2). 

The goal of this paper is to construct a large class of admissible families of hyper- 
surfaces. In Sec. 7 we prove that in this way one gets all admissible families of curves 
on algebraic surfaces up to birational isomorphism. Explicit local inversion formulas are 
obtained. 

2. We recall that if X is a submanifold in CP~I which does not lie in a hyperplane 
(nondegenerate submanifold), then 

d e g X ~ c o d i m  X + 1, (I) 

where degX is the number of points of inte{section of X with a generic plane of complementary 
dimension. Indeed neither the degree nor the codimension changes under passage to a hyper- 
plane section so that arguing by induction one can assume that dimX = 0. In this case X is 
a collection of points not lying in any hyperplane. 

In 1885 geometer Federigo Enriques discovered that all nondegenerate irreducible sub- 
manifolds for which equality holds in (i) can be simply and beautifully described ([12], cf. 
also See. 3). 

Exampl e i.i. a) Let X d be an irreducible nondegenerate curve of degree d in CP d. Then 
4-I x~) (it is also it is projectively equivalent to the Veronese curve (xo:xl)~+(x~:xo x1:... : 

called a rational normal curve [ii, p. 196]). 

b) Del Pezzo proved [ii, p. 561] that any irreducible nondegenerate surface of degree 
n - 1 in CP n is either a Veronese surface 

(X 0 : X  1 :X2) ~ (X~ : XoX 1 : XoX 2 : X~ :XlX 2 :X~) ( 2 )  

in CPS, ora surface S k constructed as follows: 

We take two Veronese curves lying in crossing planes of dimensions k and n - k - 1 in 
CP n and we establish an isomorphism between them. The surface S k consists of lines joining 
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corresponding points of these curves (for k = 0, n = 2 and k = i, n = 3 one gets CP z and a 
quadric in CPn). 

From now on, taking some liberties with language, we shall call nondegenerate, irredu- 
cible manifolds for which equality holds in (i), manifolds of minimal degree in CP n. 

THEOREM A. A family consisting of hyperplane sections of an n-dimensional manifold of 
minimal degree X~cCP ~, tangent to the algebraic submanifolds MI,...,MN_ n is admissible. 

Remark 1.2. The only restriction on the submanifolds Mi is that the family defined by 
them should depend on n parameters. This is always so for generic M i because tangency with a 
submanifold is a condition of codimension 1 for hypersurfaces. 

We note that until now only separate examples of admissible families of hypersurfaces 
of dimension greater than 1 were known, namely the Radon transform, the horospherical trans- 
formation in Lobachevskii space [3], and all admissible complexes of quadrics in CP 3 [9]. 

Example 1.3. a) X '~ = CP~(N= n). Then "hyperplane sections" are simply hyperplanes in 

Cp~q 

b) X n is a quadric Q, CCP ~+I. In this case the family of all hyperplane sections is 

birationally isomorphic to the family of all spheres ~ (z i- ai)~= r ~ in C'k 
~i 

In order to see this we consider the stereographic projection ~x:~-+CP ~ from the point 
z~Q~,. We recall that from the projective point of view the sphere is a quadric in CP ~, 

2 containing the quadric ~z~ = 0 in the hyperplane at infinity (z1:...: Zn). Hence if H x is a 

hyperplane in CP ~+~, tangent to Qn at the point x, then ~x is regular outside the cone H x ~ Q~, 
and the complement of its vertex projects to a hyperplane quadric in CP~o Consequently, the 
projection of the hyperplane section Qn contains it. 

c) The map (2) transforms conics into hyperplane sections of a Veronese surface. 

Following the classics, we shall call n-parameter families of submanifolds of an n-di- 
mensional manifold complexes. 

In Sec. 5 we prove that the complexes described in Theorem A are precisely all admissible 
complexes in general position consisting of hyperplane sections of manifolds of minimal de- 
gree in CP ~. Moreover, we construct all others. 

Up to now we have defined admissible families of submanifolds B~B, where ~ belongs to 
a manifold of parameters F only in the case when dimB = dim F. Although the same definition 
makes sense for dimB < dimF admissibility in this case should be defined differently, im- 
posing a considerably more stringent condition: the existence of a universal local inversion 
formula (cf. [i] and point 1 of Sec. 5). 

THEOREM B. a) The family of hyperplane sections of a surface of minimal degree in dim × 
B < dim r tangent to the algebraic curves CP ~, tangent to the algebraic curves M~,...,M k on 
it with multiplicities %, .... Ck, where ci-~...~%-~n--2 is admissible. 

b) Any admissible family of irreducible curves in the category of algebraic manifolds 
is birationally isomorphic to a family from point a). 

c) Families from point a) are birationally isomorphic if and only if they are isomorphic. 

The study of admissible families of reducible curves reduces to the case of irreducible 
curves (cf. Lemma 7.1). 

Thus, any admissible family of curves on an algebraic surface has a canonical realization 
by hyperplane sections of either a surface S k in CPn, or a Veronese surface in CP 5 uniquely 
determined up to isomorphism. 

In connection with Theorem B one should stress that admissibility is a purely local 
concept. Hence it is natural to classify admissible families at least up to local isomor- 
phism. In the category of algebraic manifolds this is classification up to birational iso- 
morphism. 

In Sec. 6 we give the following integral-geometric characterization of manifolds of mini- 
mal degree in CP n. 



THEOREM C. Let us assume that the family consisting of hyperplane sections of an irre- 
ducible manifold X~_CP '~, tangent to codimX generic submanifolds is admissible. Then X is 
a manifold of minimal degree. 

3. Differential-Geometric Applications. Let {B$} be a 2-parameter family of curves 
on the surface B, $~F. Then a generic point x~B defines a curve F x on the surface of 
parameters r whose points parametrize the curves of the family {B$} passing through x, i.e., 
rx:= {~FIx~B~}. We have obtained a 2-parameter family {Fx} of curves in F called dual 
to the original one. 

In [5], Gel'fand, Gindikin, and Shapiro, using a weaker condition for admissibility 
(which we shall call formal admissibility), which in return makes sense for families of real 
curves too, proved the following remarkable theorem. 

THEOREM 1.4 [5]. A complex of curves on a surface is formally admissible if and only 
if it is the dual complex to the geodesics of an affine connection. 

We call the family of geodesics of an affine connection algebraic if it is a family of 
curves in the category of algebraic manifolds. 

THEOREM 1.5. a) For any of the complexes described in point a) of Theorem B the dual 
family consists of the geodesics of a connection. 

b) This construction gives all algebraic families of geodesics up to birational iso- 
morphism. 

A conformal manifold is called a Weyl-Einstein manifold if there exists an affine 
connection of zero curvature on it which preserves the conformal structure, whose Ricci ten- 
sor R(i j) is proportional to the metric: R(ij) = A(x)gij. 

Using the idea of [i, 4] one can prove the following generalization of the theorem of 
Gel'fand-Gindikin -Shapiro. 

THEOREM 1.6. a) Three-dimensional manifolds parametrizing formally admissibly families 
of curves on surfaces are canonically endowed with a Weyl-Einstein manifold structure. 

b) All Weyl-Einstein manifolds are obtained in this way. 

See [4] about the Weyl-Einstein equations and their twistor interpretation. 

We call a solution of the Weyl-Einstein equations algebraic if the family of curves 
corresponding to it according to Theorem 1.6 is algebraic. If we assume in point a) of Theo- 
rem B that c I + ... + c k = n - 3 then the three-dimensional manifolds parametrizing this family 
are all algebraic solutions of the Weyl-Einstein equations. 

4. Content of the Paper. Theorem A is proved in Secs. 3-5. First of all we need an 
explicit description of all manifolds of minimal degree in CP ~ (Sec. 3). In Sec. 4 we in- 
troduce the concept of composition of double bundles, prove that the composition of admis- 
sible double bundles is admissible, and decompose the double bundle corresponding to the 
family of hyperplane sections of a generic manifold of minimal degree into a composition of 
two admissible ones. In Sec. 5 we give explicit local inversion formulas. 

Theorem C is proved in Sec. 6. In Sec. 7 we prove Theorem B. I thank S. G. Gindikin 
for his interst in the work and S. L. Tregub for helpful discussions. 

2. DEFINITION OF ADMISSIBILITY 

i. It is natural to talk about families of submanifolds in the language of double 
bundles. We recall that by a double bundle is meant a diagram of manifolds 

A 

8 T 

f o r  wh ich  n 1 × n~: A ~ B  ;4 F i s  an i m b e d d i n g .  F o r  x ~ B  and g~_ r we s e t  B ~ : =  rq o ~-t (g), 
r~ : =  n2 o =71 (x). 

Thus ,  a d o u b l e  b u n d l e  d e f i n e s  a f a m i l y  {Be} o f  s u b m a n i f o l d s  o f  B and a l s o  t h e  f a m i l y  
{rx} o f  s u b m a n i f o l d s  o f  r d u a l  t o  i t .  C o n v e r s e l y ,  a f a m i l y  o f  s u b m a n i f o l d s  {B~} o f  B d e f i n e s  
t h e  i n c i d e n c e  s u b m a n i f o l d  A : =  {(x, ~ ) C  B × F i x  ~ B~}. I t s  p r o j e c t i o n  t o  t h e  f a c t o r s  d e f i n e s  
a d o u b l e  b u n d l e .  
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. We choose a density ~ on B$ and define an integration operator 

s: c ~  (B) -~ c '~ (r);  i: / (z) ~ l ! (x) ~ .  
B~ 

In other words, the Schwartz kernel of the operator I is a distribution of the form 
~(x, ~)5(A)db on B × F, where 5(A) is the 6-function of the submanifold A c B × F, db is the 
volume element on B, ~(x, ~) is a function on A. 

By local inversion formula for the integral transform I we shall mean the inverse opera- 
tor J: C~(F) + C~(B) whose Schwartz kernel has the form LS(A)dT, where L is a differential 
operator in a neighborhood of A. 

One can rewrite the local operator J in the form J~(x)~ I (L~)vx, where L x is a differ- 
Fx 

ential operator in a neighborhood of F x and v x is a density on F X. 

If dimB$ is odd, then there are never local inversion formulas. Hence we shall as a 
rule work in the category of complex-analytic manifolds although as before we shall inte- 
grate smooth functions. For example, the Radon transform in C ~ looks as follows: 

n--I 

and has a local inversion formula for any n (c n are constants): 

n--I 

= <,, . l  <<,) . . . .  '> - <,o) 

If the integral transform I is invertible, then clearly B < dim F. 

Definition 2.1. Let dimB = dimF. A family of submanifolds {B$} is called admissible 
if there exist (k, 0)-forms U~ on B~ such that the integral transform 

I:  Co (B) -+ C ~ (I'), I:  / (x) ~ I / (x) ~g~ ,  
B~ 

a d m i t s  a l o c a l  i n v e r s i o n  f o r m u l a  w i t h  S c h w a r t z  k e r n e l  o f  t h e  f o r m  Lf~6(A)d~d~,  w h e r e  L i s  a 
h o l o m o r p h i c  d i f f e r e n t i a l  o p e r a t o r  i n  a n e i g h b o r h o o d  o f  A and  d~ i s  an ( n ,  0 ) - f o r m  on r .  

3. MANIFOLDS OF MINIMAL DEGREE IN CP ~ 

i. Let dl,...,d r be nonnegative integers, d = d I +...+ d r + r - i. We take r planes 
H l ..... H r in Cp ~ in general position, dim H i = d i. Let XdiCHi be a Veronese curve in H i . 

We fix isomorphisms between Xdr and the remaining curves: ]i:Xdr~-~Xd~. 

For x~Xd, we consider the (r - l)-dimensional plane spanned by the points x, f1(x) .... , 

fr_1(x). When x runs through the whole curve Xdr these planes sweep out an r-dimensional sub- 
manifold in CP d (possibly sinBular) which we denote by X(d ...... at), or for short, X~ (cf. Fig. 

i). 

LEMMA 3.1. 

Proof. A generic hyperplane h containing HI,...,Hr_ I intersects Xdr at d r points xl,..., 

Xdr. Hence h ~ X7 is the union of dr(r - l)-dimensional planes of the form xi, f1(xl) ..... fr-l(xl) 

and the submanifolds X(d ...... dr_1~Hr..Hr-r Hence 

deg (h ~ X(d ...... dr) = d r + deg (h ~ X~  ...... dr_0). 

The manifold X(d ...... d r) is nonsingular if and only if d i > 0 for all i. If d1~...~dr, 
d i ~ 0, di+ l = 0 then X~ is a cone over X(d ...... di) with "vertex" in the (r -- i)-plane. 

Further, the degree of a cone in ps+r over a Voronese surface whose "vertex" is an r- 
dimensional plane is equal to 4. 

THEOREM (Enriques [12~ 13]). Let X be an irreducible suhmanifold of CP d, not lying in 
a hyperplane, and degX = codimX + i. Then X is one of the submanifolds listed below: 



2J=P7 

W 
.," (~l_x) 2 
~z= zy ÷j 

Fig. 1 Fig. 2 

i ) CPd; 

2) a quadric in CPd; 

2) a Veronese surface in P~ or a cone over it in ps+r; 

4) a manifold X(d ...... dr). 
F 

2. We need another construction of the manifolds X~. Let E == ~=~, O(dz) be a vector bundle 

over pX, P(E) be the manifold of hyperplanes in its fibers, and v: P(E) + pl be the canonical 
projection. We denote by O~ (I) the line bundle over P(E) whose fiber over the point x is the 
quotient of the fiber of E over x by the hyperplane corresponding to the point x. Then 
~,©~ (I) ---- E. The line bundle ©~ (I) defines a map 

~: D (E)-+ P (H e (P (E), Cgn (i)))-~=/6 (H 0 (P , ,E ) ) .  

Namely,  ~ (x) i s  t h e  h y p e r p l a n e  in  H ° (/3 (E), ©= (i)), c o n s i s t i n g  o f  s e c t i o n s  which  v a n i s h  a t  x .  

The subbundle Ei:-----O(c~) G..- ~O(~-d,')O .. • C O(dr) defines a curve X~ C fi (E). The re- 
striction of O= (1) to it is isomorphic to © (d~), so that ~ (X~) is a Veronese curve in a d i- 

plane Hi ~ P (H ° (P (E), O~ (I)). After the identification 

b (H0 (p (E), o= (i))) = (HO (p~, E)* \ \  0)IC* 

t h i s  p l a n e  c o i n c i d e s  w i t h  (H ° (pl, Ei)~ ~ 0)/E*. 

The map ~ c a r r i e s  t h e  f i b e r  o f  P(E)  o v e r  t h e  p o i n t x ~  p l  i n t o  an ( r  - 1 ) - p l a n e  i n t e r -  
s e c t i n g  e a c h  o f  t h e  c u r v e s  T (Xt) in  a p o i n t .  Hence ~ (P (E)) can  be i d e n t i f i e d  c a n o n i c a l l y  
with X(d,, dr). 

4. COMPOSITION OF DOUBLE BUNDLES 

I. Let the manifold F parametrize~the submanifolds C~ in C (i.e., ~ F  ) and C in its 
own right parametrize the submanifolds B c in B, while dimC$ + dimB c < dimB. 

In this case we can consider the family of submanifolds 

B~: = U ~c. (4) 
c~C~ 

It will be convenient for us to say the same thing in the language of double bundles. 
Namely, let 

4 A2 

B C C r 

be double bundles corresponding to the families {Bc} and {C~}. We set A = {(a I, as) ~ A x x A 2 1 
as (al)= 61 (a~)} . We get the following commutative diagram: 
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A 

A~ A 2 

B C 1" 

( 6 )  

(71 and y~ are the projections of ACiA~ × A 2 onto the factors). It is easy to verify that 

the double bundle B~°Y~A ~I ' corresponds to the family (4) of submanifolds B$ in B defined 
above. We shall say that it is the composition of the double bundles (5). 

LEMMA 4.1. The composition of admissible double bundles is admissible. 

Proof. We choose admissible densities Xc and ~$ on Bc and Cg, respectively, and we de- 
fine an integral transform I: C~ (B)--~C ~ (F) by the formula 

Then I = I , o  I z ,  where 

i: i<x>  l (I 
c~ 73 c 

I x i~p 
c ;  (..'~) ~ c ~ (c)  ~ c ~c (r) ,  

~ :  i (=) m- i / (=) zo; 4 :  ~ (c) m- I ~ ¢)*~" 
Bc c~ 

We denote by J~ and JX local inverse operators for I~ and IX, respectively. Then J = 
Jz o J~ is the inverse operator for I. We prove that it is local. We set 

~ = ~= o ~1 ¢); Cx = ~ o ~ (x). 

Then if W is a function on F then (Jq;)(x) is the integral of L~ (where L is a differ- 
ential operator) over the manifold ~ F~. It remains to note that this manifold coincides 
with ~c= 

2. Let 

r, = (~2 o v=) o (~i o ?,)-, (x). II 

A 

/ \ 
~(P(E)) P(H°{PT~E)) 

be the double bundle corresponding to the family of hyperplane sections of the Veronese 
manifold~(P(E))~P(H°(P I, E)). We consider the following commutative diagram: 

A 

/ \  
A~ A 2 (7)  

F(PCE)) P(E) P(H (P~E) 

Here the points of P(E) parametrize hyperplanes in the fibers of P(E) over pl so that 
the double bundle in the left corner is admissible: the corresponding integral transform is 
the Radon bundle transform. 

The double bundle in the right corner of the diagram describes the family of all sec- 
tions of the bundle ~: P (E)~P i. (All such sections are projectivizations of sections of 
the bundle E over pl.) 

We recall that a family of compact smooth submanifolds B~B, $~ I" is called complete 
if the canonical map 7'$I'~F (B~,N~B) is an isomorphism. 



For example, the family of all sections of the bundle P(E) + p1 is complete. 

THEOREM 4.2 [2, 3]. Let F' be a complete family of compact nonsingular rational curves 
covering the entire manifold C. Then the complex of curves tangent to dimF' - dimC algebraic 
hypersurfaces M i is admissible. • 

In Sec. 5 we explicitly write local inversion formulas for these complexes in the case 
of interest to us when F' is the family of all sections of the bundle ~: P(E) ÷ p1 and thus we 
get a proof of this theorem which is independent of [2, 6]. 

The remaining admissible subcomplexes are obtained by degenerations of these. I.N. 
Bernshtein and S. G. Gindikin described them completely. In order to explain precisely how, 
we consider a tower of o-processes 

~ :  C q oq Cq_loq -1 c I - - - ~ . . . - - - ~ C o = ~ c ,  

where a~: Ci--~C i-I is a a-process with center in an irreducible algebraic submanifold Y~-I~ 
Ci. I. Let ZI,...,Z m be algebraic hypersurfces in C q and gl,...,~m be integers. We denote 

by F (C; ~g; ZI .... , Zm; 11 ..... Im) the family of all (smooth rational) curves C~ whose lift to 
cq intersects the preimages of Y0,...,Yq_1 and is tangent to ZI,...,Z m with multiplicities 
~i, .... ~m, respectively. Let dj = codimYj. 

It is easy to show that the family constructed must depend on dim F'-- ~ l~-- (dj--I) 

parameters (cf. Remark i.i). Let this number be at least dimD. ~=* j=0 

THEOREM 4.3 [2, 6]. a) The family F (C; ~; Z~, . .., Z~; l, ..... l~) is admissible. 

b) This construction gives all admissible subfamilies of a complete family of rational 
curves C$ covering C. • 

Inversion formulas for degenerate complexes are obtained by passing to the limit from 
the formulas for complexes in general position. 

Applying Lemma 4.1, we get that the composition of the double bundle of (7~) standing 
in the left corner of (7) with any admissible complex of rational curves on P(E) is admis- 
sible. 

To prove Theorem A for the submanifolds ~ (P (E)) it remains to show that here the ad- 
missible complexes from Theorem 4.2 give precisely those complexes which are indicated in 
Theorem A. For this we need to translate the definition of composition of double bundles into 
the language of symplectic geometry which will be done below. 

Explicit inversion formulas for quadrics and cones over a Veronese surface will be given 
elsewhere. 

3. Lagrangian Manifolds and Envelopes. Let X and Y be symplectic manifolds, A (re- 
spectively, Ly) be a Lagrangian submanifold of X × Y (respectively, Y). We set 

A o Ly  := px (X X Ly  [] A), 

where PX is the projection of X × Y to Y. 

LEMMA 4.4 [7~ Sec. 4~ Chap. IV]. If X x Ly is transverse to A then A ° Ly is an immersed 
Lagrangian submanifold of X. • 

We denote by T~B the conormal bundle to the submanifold A and B. It is easy to verify 
that this is a Lagrangian submanifold of T*B which is homogeneous (with respect to the action 
of C* on the fibers). 

LEMMA 4.5. Each homogeneous Lagrangian irreducible algebraic submanifold of T*B has the 
form T~0B , where A 0 is the nonsingular part of the irreducible algebraic submanifold A c B. • 

We consider an arbitrary double bundle (3). Let Y c F. 

Definition 4.6. The manifold Ey of critical values of the map ~r :a$*(Y)-->P is called 
the envelope of the family {By}, where y ~  K- 

Let ~s: T*B--)-B be the canonical projection. 

Proposition 4.7. ~ (T~ (B X F)o T~I') ~ Ey. 

Proof. The vector v~TuF defines a section Yv(b) of the normal bundle NBiB. Hence the 
formula [b = ~B(X)] 
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vy: ~ ~- -<~ ,  vo (b)> (8)  

defines a map v~,: T* B - - ,  T*F. By 

If x~ Ey, then by definition there exists a ~ ~_ T~B, such that for a = (x, y)~A 

Let T*, yF be the fiber of the conormal bundle at the point Y ~ Y. 

LEMMA 4 . 8 .  a) (x, ~; y, ~ y ( ~ ) ) ~ T $ , A ( B  × r ) .  

b) (Y, ~y (~)) ~ r~,~r. 

Proof. a) It is necessary to verify that for any (ul, u2) ~ TeA 

<(L v~ (~)), (v, v~)> = <L v~> + <,~y (~), v~> = o, 

but this is also the definition (8) for ~y. 

b) This follows from (8) and (9). • 

It follows from Lemma 4.8 that Ey C ~B (T~ (B X F) o T~F). To prove the opposite inclu- 
sion we note that if (x, ~) ~ T* (B X F) * o TyF, then by definition there exists a (y, N) ~ T*F 
for which (x, ~; y, ~) ~ T*A (B × F). For any v I ~ T~B~ the vector (u t, 0) ~ T~A, so that <~, u1> = 0 
and (9) holds. Consequently, x is a critical value for the map ~i: n21 (Y)--> B. 

In the double bundle (7) as an abbreviation we shall denote (p (P (E)) by B. Then the 
projection 

r*~, (B × P (E)) C T* (B × P (E)) - -  T*B × T*P (E) 

to the second factor is a bijection at a generic point. It is easy to verify this directly 
or to derive it from the admissibility of the double bundle using Theorem 4.9 (cf. below). 

Hence, if (x, ~; y, N) ~ T~, (B x P (E)), then the formula (x, $) ÷ (y, -~) defines a homo- 
geneous symplectomorphism cD: T*P (E) --> T*B. Consequently, for any Lagrangian submanifold L C 

T*P (E) (I) (L) = T*A~ (B X P (E)) o L. (10)  

L e t  I ~ P ( H  ° (pl,  E)). We d e n o t e  by C~ ( r e s p e c t i v e l y ,  B~) a c u r v e  in  P(E)  ( r e s p e c t i v e l y ,  
a h y p e r s u r f a c e  in  B) .  Then a c c o r d i n g  t o  (10)  and P r o p o s i t i o n  4 .7  

T*B~B = (I) (T*~P (E)). 

L e t  (I): T*B~--~ T 'B2 be a homogeneous  s y m p l e c t o m o r p h i s m .  Then by Lemma 4 .5  t h e r e  e x i s t s  
• B a s u b m a n i f o l d  o f  B 2 which  we d e n o t e  by ~(X) such  t h a t  cD (T~:B1) = T,v~x) 2. 

The tangency-intersection conditions with the submanifolds of Theorem 4.2 mean pre- 

cisely that * * Tc~P (E)~O intersects TM~P(E)~0. The condition of tangency of the hypersurfaces 

Bg with ~(N k) have the same interpretation. Thus, in the composition of the double bundle 
(7Z) with the complex of curves C~ tangency-intersection conditions are singled out which 
are obtained from exactly one of the complexes described in Theorem A. Theorem A is com- 
pletely proved for the manifolds ~ (75 (E)) . • 

THEOREM 4.8. Any admissible complex of hyperplane sections of the manifold ~ (P (E)) is 
obtained by composition of the double bundle (7) and an admissible complex of curves C$ on 

P(E) .  

Proof. We consider the following diagram: 

T 9e (B~T) ,4 

T*B T*T 

where PB and PF are the projections of the submanifold T* (B × F) ~ T*B )< T*F onto the fac- 
tors. If dimB = dimF then all three manifolds in (Ii) have the same dimension. The degree 
of the map PF is called the codegree of the double bundle. 

THEOREM 4.9 [B]. If (3) is an admissible double bundle and dimB = dimF then its co- 
degree is equal to I. • 
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LEMMA 4.10. In composition of double bundles the codegrees multiply. 

Proof. In the diagram (6) 

T~ (B × F) = TI~(B × C) o T* .~, (C × r ) .  

Here o is composition, respectively, in T*B x T*C and T*C × T*F. • 

If in Theorem 4.8 one omits the word "admissible," then the corresponding result is 
obtained in point 2. 

It is shown in Sec. i of [8] that the condition "codegree equal to I" for complexes of 
curves is equivalent to the main condition of admissibility of [i]. Hence it follows from 
Theorem 4.9, Lemma 4.10, and the admissibility of the double bundle (71) that any complex of 
hyperplane sections T (P (E)), having codegree i can be obtained from an admissible complex 
of curves and consequently is admissible by Lemma 4.1. • 

5. EXPLICIT LOCAL INVERSION FORMULAS 

i. Universal Local Inversion Formula [5]. We consider a family {B$} of curves in B 

where ~ F  and dimB < direr. Let ×x: C= (F)-+QI,°(Fx) be a holomorphic differential operator 
of the first order while d×x (I]) = 0 for / ~ Co (B). 

If y is a two-dimensional cycle in F x and dim cB ~ 3, then 

~ ×~ A ~ (11) = c(7)/(x), ( 1 2 )  
Y 

where  c ( ~ )  i s  i n d e p e n d e n t  o f  f .  I n d e e d  t h e  i n t e g r a l  (12)  i s  u n c h a n g e d  u n d e r  d e f o r m a t i o n  o f  
t h e  c y c l e  ¥.  Hence  i t  d e f i n e s  a g e n e r a l i z e d  f u n c t i o n  on B w i t h  s u p p o r t  a t  t h e  p o i n t  x .  I n  
f a c t  f o r  any  p o i n t  y ~ x one can  d e f o r m  t h e  c y c l e  ~ so  t h a t  t h e  ( c o n i c a l )  s u r f a c e  U B~ does  

n o t  t o u c h  y .  I t  f o l l o w s  f r o m  h o m o g e n e i t y  c o n d i t i o n s  t h a t  t h i s  g e n e r a l i z e d  f u n c t i o n  i s  p r o -  
p o r t i o n a l  t o  ~ ( x ) .  

The same i n f e r e n c e  i s  t r u e  i f  dimcB ~ 2, b u t  B can  be  imbedded  in  a t h r e e - d i m e n s i o n a l  
m a n i f o l d  B' so  t h a t  t h e  f a m i l y  {B~} becomes  p a r t  o f  a l a r g e  f a m i l y  o f  c u r v e s  i n  B' f o r  which  
×x e x i s t s .  T h i s  i s  p r e c i s e l y  t h e  c a s e  we e n c o u n t e r  be low .  

2.  The m a n i f o l d  P(E)  i s  o b t a i n e d  f rom ( C " ~ 0 ) × ( C ~ 0 )  w i t h  c o o r d i n a t e s  ( t o ,  t l ;  x l , . . . ,  
x n)  by t h e  i d e n t i f i c a t i o n  

(to, t~; x~ . . . . .  x~)  ~ (~t0,  ~ q ;  ~ , x ~  . . . . .  ~ x . )  ~ (to, q ;  ~x~ . . . . .  ~x2) .  

In the affine part of P(E) with coordinates (t; x I ...... x,-1) ~ (1, t; xi, • •., xr-1, l)the sec- 

t" + . . . + a~t + a~. tions of P(E) have the form xi=Pi(t)/P~(t), i ~ i~r-- I, where Pi (t) -- a~. 

We define the integral transform I by the formula 

Let a~ = i. 

I: i(t,x)  f1(t ,  P'(') ) d, dr =: xl 

We set 

-~- " . Oa W daj+l -- Daodal, 

where we sum over 0• / ~r, 0 ~]~ k~ -- I (i, ]) =/= (r, 0) and 

E Z" D~.:= a} O0--T + aj 0a~" 
l<~<~_r --1 ~ l~<~<~k r 

L e t  r 0 be  t h e  m a n i f o l d  o f  c u r v e s  o f  t h e  f a m i l y  p a s s i n g  t h r o u g h  t h e  p o i n t  (to, x o ) ~  P (E). 

Proposition 5.1. The restriction of u(I/) to r0 is a closed 1-form. 
4 

Proof. The function of a~ ..... a~i, where I < i ~ r, form a system of coordinates on F0. 

We calculate d~ (I/)It0 in the simplest case r = 2, k I = k 2 = 1 (in general the same mechanism 
works ) : 

I: ]~-S/  (t, aLt+a°blt+bo ) dtd[=:I/(a°'al'b°'bl)" 
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If b 0 = 1 then 

a 0 ×(I/)-- a(U).da - - (  oT% ~ a  o 

(0~(1.0 0 a o , a 
d~(.[/)lF.-7-\ O~oOb ~ -~--~al ( O-~a ° -w a 1 ~  + b:~) (.1/)) dbl/~ da I. 

In order to verify that this expression is equal to 0, it is convenient first not to impose 
the condition b 0 = i. Then obviously the function [/(ao, al, bo, bl) satisfies the differential 
equations 

( . .) <.. . . .),i=0 oaoob~ OaVO., (I/) = O, o-~a ° -~ a: ~ + b o ~ + b: 

If we now impose the condition b 0 = 1 then in the first of the equations it is necessary to 
a a o a o 

substitute for -~0 the operator (o-~-ao + : -b~a + b l  o - - ~ ) .  

We note that ~: C ~ (F)-~ Qi,0 (F0) is a first-order differential operator. Hence, for any 
point ~ ~ F0 there exists a linear operator M: T~F0-+ T~F such that for u ~ T~F0 

× (I/) (v) --~ d (I/) (My). ( 13 ) 

We denote by r N the manifold of all curves of the family tangent to an analytic hyper- 
surface N. 

LEMMA 5.2. The restriction of × (I]) to F0 ~FN depends only on 1] IrN° 

Proof. Without loss of generality one can assume that t o = 0. Let ~ ~ F 0 ~ FN; C~ be 
the corresponding curve in P(E), tangent to N at the point (t, x). It is easy to verify 
that the tangent space at the point ~ to the manifold of all curves C$ passing through (t, x) 
lies in TsF N. We have 

r--i ki 

where in place of 8/8a 0 it is necessary to substitute Da0. The manifold of curves passing 
through (t, x) is definedby the equations Pi(t) = xPr(t). Hence the vector field a/Oa} -- 
t.a/aa~-1 is tangent to it and t.× (I/) +d (~) and consequently, × (I/), too can be calculated 
from the restriction of If to FN. 

Let N ! .... ,Nd_ k be analytic hypersurfaces in P(E), k~,r, and F(N):= ~ F~j (1~]~d--k). 

LEMMA 5.3. The restriction of × (~) to F0 N F (N) depends only on the restriction of If 
to r(N). 

The proof follows quickly from Lemma 5.2 and (13). • 

The local inversion formula for the family of curves F(N) is obtained by integration of 

the 2-form ×/~x (f/) over F 0 ~ F (N) . Here we must require that this analytic subset of 
is a cycle. In particular, it must be closed and consequently, by Chow's theorem, algebraic 
(since F(~.~) is a projective algebraic manifold). If the submanifolds Nj are algebraic, then 
this is always so. 

One can show that if F(t,~) ~ F (N) is algebraic for any (t,x) ~_P (E),then Nj is an alge- 
braic submanifold. 

6. PROOF OF THEOREM C 
* *F 

Above we defined for a double bundle (3) a map TB~ B-+T$ 

LEMMA 6.1 [8, Lemama 4.2]. The diagram 

[cf. (9)]. 

U ~ 8 

/ 
r*s 7*r (=~B*r) 

c a n  b e  c a n o n i c a l l y  i d e n t i f i e d  w i t h  t h e  d i a g r a m  ( 1 2 ) .  I 
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COROLLARY 6.2. The codegree of the double bundle (3) is equal to the degree of the map 

v E . • 

Let F' be a submanifold of F, ~,~: T2~B-+ T~F' be the corresponding map i~: T~F-+ T~F' be 

the canonical projection corresponding to the imbedding T%F' < T~F~. Then it follows from (9) 
that one has ~ = ~ ° ~. 

L~MMA 6.3. ~ = i~o ~ • 

Let F'C~-~-r be a complex singled out by conditions of tangency with codimX hyper- 
surfaces in X~cCP~, h~ be the hypersurface in CP ~, corresponding to the point ~F and 
B~: = X N h~. 

Proposition 6.4. The projectivization of the submanifold v~ (T~ ,  X) ~ T~C~nis canoni- 
cally isomorphic to the submanifold B$ of the hyperplane h$. 

Proof. PT~-'P ~ can be canonically identified with the hyperplane h E. Further, for an 
arbitr--a~ryfamily {BE} of hypersurfaces the projectivization of the map ('9) 

ev~ :B~ --+ PT~P = P T ~ F  

can be d e f i n e d  as  f o l l o w s :  f o r  a g e n e r i c  p o i n t  x ~ B ~  P~(x)  i s  t h e  h y p e r p l a n e  PT~F x in  PTEF. 
Applying this recipe in our situation, we get the proof of Proposition 6.4. • 

Let xi be a point of tangency of the generic hypersurface B E with the submanifold M i 
(i~<i<codim X). By hypothesis one can assume that this is a generic point on B E. Then 
according to Lemma 6.3 and Proposition 6.4, P~: B~-+CP '~-I is a projection of the submanifold 
B$CA~ with center in the plane spanned by the points xl,...,XcodimX. Hence the degree of 
B E and h$ is equal to deg Pw~-codimX. From this, according to Corollary 6.3, degX = degB$ = 
1 + codimB E, • 

7. PROOF OF THEOREM B 

i. The family of hyperplane sections of the surface S~cCP '~ (cf. Example 1.2, b) is 
isomorphic to the family of all sections of the bundle P (E)-+CP I , where E = ©(k)@O(n--k). 
Hence all its admissible subfamilies and the inversion formulas for them are described in 
Sec. 5. 

LEMMA 7.1. If the curves of an admissible complex are reducible, then one of their com- 
ponent also forms an admissible complex. 

Proof. Let B~ = B~ ) ~ B~ 2) . Then the curves of the dual family are also reducible: 
= x F m Fx F (1) ~ F(~ ) ( t h e  f a m i l y  { ~ } i s  d u a l  t o  {U~)}). I f  e a c h  o f  t h e  componen ts  fo rms  a 2 - p a r a m -  

e t e r  f a m i l y ,  and t h e  a d m i s s i b l e  d e n s i t y  i s  d i f f e r e n t  f rom 0 on t h e  whole  c u r v e  B E t h e n  t h e  
complex  {Bs} c a n n o t  be a d m i s s i b l e  b e c a u s e  i t s  c o d e g r e e  i s  n o t  l e s s  t h a n  2 ( c f .  Theorem 4 .9  
and i t s  p r o o f  i n  [ 8 ] ) .  Hence an a d m i s s i b l e  d e n s i t y  i s  d i f f e r e n t  f rom 0 o n l y  on one o f  t h e  
components  which  a l s o  g i v e s  an a d m i s s i b l e  complex .  

Now let the family {F~ 2)} depend on one parameter. By Theorem 1.4 the curves F x are 
the geodesics of a connection on F. But then {F$ )} is also a family of geodesics. Hence 

-~(~)~ 
again by Theorem 1.4, the complex / ~  ~ is admissible. 

Conversely, if one of the components of a family of reducible curves forms an admis- 
sible complex, then the whole family is also admissible. (An admissible density should be 
extended by zero to the whole curve.) 

We start the proof of Theorem B. First let dimr = 2. 

Proposition 7.2. The family {B$} is birationally isomorphic to a family of smooth com- 
pact rational curves. 

LEMMA 7.3. Let {B~} be an admissible family of curves on a surface, $~F. Then there 
r' exists a Zariski open set C~_F such that the curves parametrizable by it have singularities 

only at a finite set of points S~B. 

Derivation of Proposition 7.2 from Lemma 7.3. Let ~: B~ + B be a blow up with center 
in the set S c B from Lemma 7.3. Applying Lemma 7.3 again to the family of proper preimage 
of curves B$ in B~, where ~F', and iterating this procedure, in a finite number of steps we 
get a family of smooth compact rational curves on the surface B k. • 
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Proof of Lemma 7.3. According to Theorem 1.4 for generic points x~-~-B the curves F x 
are geodesics of an affine connection on r. If we consider all of its geodesics, then we 
get a family in which through any point in each direction exactly one curve leaves. Hence 
their lift to the projectivized tangent bundle PTF is a foliation. There exists a small 
domain U c F for which the foliation in PTU has a factor, the surface BU" 

The fibers of the bundle 7: PTU + U are isomorphic to GP I and transverse to the curves 
of the foliation. Hence, their images in BU are a 2-parameter family of smooth compact ra- 
tional curves {Bg} with normal bundle O (i) . (The index of intersection of these curves is 
equal to i because two points in a small domain U are joined by exactly one geodesic lying 
entirely in U.) 

Let ~ be a geodesic in U and let there exist a family of curves {Fz} such that F~ ~ U = 
~. Then all of them are reducible: F z = F~ I) U F~ 2) , where y~) is independent of z (fixed com- 
ponent): ?~ F(# ) ~ U. 

In all in F the number of such fixed components is finite (because otherwise the curves 
B$ are reducible). One can assume that they lie outside U. 

Let us now assume that Lemma 7.3 is false. Then the singularities of the curves Bg fill 
a curve C c B. Let ~ be a generic point of U and B~ have a singularity at the generic point c 

We take a neighborhood '~ of the point c for any point x of which dimF x = i. The con- 
nected components of the curve F~ ~ U for x~?7 ~ are geodesics in U because by Theorem 1.4 
this is so for the generic point x and the limit of geodesics is a geodesic. We denote the 
domain in BU parametrizing all these geodesics by B U. Then there is a canonical map /: Bu-+ 
BU" Namely, if y~Bu and 7y is the corresponding geodesic in U, then there exists a unique 
point x~_~ ~ such that ?v~F~ ~ U . Let f(y): = x. We note that ~#/-1(x) = ~0(F~ ~ U) and 
as a rule is greater than i, and the images/(~) ~ B~ are singular curves. 

Since all the curves BK in BU are smooth, c is a critical value of the map f. Since c 
is a generic point of the curve C, for y~/-1(e) the kernel of dyf is one-dimensional. Hence 
the number of curves B$ passing through y and tangent to Ker dyf is finite. This contradicts 
the existence of a 1-parameter family of curves B~ with singularity at c. 

Example 7.4. {B$} are horocycles (x--~1) 2 + (y--~2) 2 : ~ on the Lobachevskii plane. The 
dual family consists of the parabolas ~2 = (~1--x)2/(2Y) + Y (Fig. 2). Through close points with 
different abscissas in the (~i, g2) plane there pass exactly two such parabolas. One of them, 
Fxl lies in a small neighborhood U of these points and the other, Fx2 gets out of it strongly. 
Hence, Y~ U consists of two components and ~]-1(x~) = 2, i.e., f:B u ÷ B is a 2-sheeted 
covering. Here the curves B~ on B U have normal bundle O (1), at the same time that the curves 
B$ have normal bundle O (2). 

LEMMA 7.5. If on the algebraic surface B there is a 2-parameter family of rational 
curves, then it is rational. 

Proof. Let {Bs} be a family of rational curves on B parametrized by the curve S. Let 

Xs ~ {(x,s)Ix~Bs}. Then X S is fibered over S by rational curves. Hence C(Xs), the field 
of rational functions on XS, is isomorphic to the field C (S) (rational function over C (S). 
Since X S is mapped onto B, C (B) is a subfield of C (S)(t). By Lfiroth's theorem it is isomer- 
phic to the field of rational functions over C (S'), where C (S')~C (S). This means that B is 
fibered over S' by rational curves. Let Bg be a rational curve on B different from the fibers 
of this projection. Then it projects to the whole curve S' and again by L~roth's theorem S' 
is rational. Consequently [ii] the surface B is also rational. • 

Since on a rational surface algebraic equivalence for divisors coincides with rational 
equivalence, the family of all curves obtained by deformations of a curve B$0 coincides with 
the complete linear system ILl of all curves (or, better said, divisors) on B linearly equiv- 
alent to B$0. 

According to Proposition 7.2, we can realize the family {Bg} by smooth compact rational 
curves on the surface B' and in particular, assume thatB~0~__--CP ~ . Then all curves of the 
linear system ILl are rational, because the arithmetic genus of B$0 is equal to 0 and is un- 
changed under deformation. (Example: the linear system containing rational singular curves 
(x - a) 2 = (y - b) s consists of all curves of degree 3 in CP~.) 

Let h B'-+P ~ be the map defined by the linear system ILl. Then ~(B$0) is the hyper- 
plane section ~(B') so that the degree of ~(B') in pN is equal to the index of self-intersection 
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of the curve B$0 on B'. On the other hand, by Kodaira's theorem N = dim H ° (B~0, NBLB')from 
which it follows that NB~oB' is isomorphic to the bundle O (N- i) on CP I. Hence the index 

of self-intersection of Bg0 is equal to N - 1 and degi(B') = N - i. 

Let ~ be a minimal linear system on £(B' ) containing {l (B~)}. We write it in the form 

IL--C--~m~xil, where C is a divisor and x i are points on £(B') (possibly infinitely close, 
i=I 

cf. [15, Chap. 5, Sec. 4]), It follows from the irreducibility of £(B$) that C = 0. Fur- 
ther, m i = 1 because the arithmetic genus of Z(B~) is equal to 0. Hence L defines the map 
£(B' ) on the complete surface B C CP n of degree n - 1 (where_n = N - k). Here the complex 
{i(B~)} becomes a complex {£(B$)} of hyperplane sections of B. We note that through any 
point of the surface B there passes exactly a 1-parameter family of curves Z(B$) because 
otherwise the linear system ~ will not be minimal. Hence in describing the admissible com- 
plex {Z(B$)} in terms of tangency-intersections conditions (cf. Theorem 4.3) only tangency 
conditions figure. This is also the canonical realization of the admissible complex of 
curves. Theorem B is completely proved for the case dim F = 2. (We note that one can easily 
avoid references to Theorem 4.3.) 

Now let dim F ~ 3. Then the condition of tangency with dim r - 2 generic curves on B 
singles out an admissible complex of curves (of. Theorem 4.3). Applying Lemma 7.3 to it, 
we get that the singularities of generic curves B$ (where ~ ~ F) ) are concentrated in a 
finite set S c B (independent of ~). The rest of the proof is preserved word for word. g 

2. Thus, in each class of birationally isomorphic admissible families of curves on a 
surface there is a canonical model. (As is known there is no such model for the surface it- 
self. ) The surface B on which it is realized can be defined as the manifold of moduli of 
the dual family {Fx} of subschemes of codimension 1 in F. Here the curves M i figuring in 
the formulation of Theorem B are singled out by the fact that they parametrize irreducible 
subschemes ("multiple" hypersurfaces). Their structural sheaf has the form Or/f c~+I, where 
I x is the defining ideal corresponding to the reduced subscheme and c i is the multiplicity 
with which B$ is tangent to the curve M i. [Thus, in Example 7.3 the point (x, 0) in the 
(x, y) plane parametrizes the subscheme ($i - x) 2 = 0 in the ($i, $2) plane.] 

On the other hand, for a (germ of a) neighborhood of a curve of any formally admissible 
family of curves on an analytic surface there is a canonical analytic model, the surface BU 
constructed in the course of proving Theorem B. It is characterized by the fact that the 
curves B$ on it form a complete family of smooth compact rational curves [with normal bundle 
o (d im lO - -  t )  ]. 

Thus, for a neighborhood of a curve of an admissible family on an algebraic surface 
there are two canonical models: an algebraic and an analytic. It is curious that as a rule 
they do not coincide. More precisely, there is a canonical map/: Eu--+ B. Namely, if 7y is a 
geodesic in U corresponding to the point Y ~ ~u, then (as is clear from theorem B) there ex- 
ists a unique point / (y) ~ BI such that 7~ = Ff0. 0 ~ U. The map f has ramification of degree 
c i at the points of the curve M i. Hence the analytic model coincides with the algebraic only 
for the family of all hyperplane sections of a surface of minimal degree in CP z . (In par- 
ticular, for dim F = 2 one has coincidence only for the complex of all lines in CP2.) 

3. In the course of proving Theorem B, we incidentally proved the following theorem. 

THEOREM 7.5. A complex of curves on an algebraic surface is admissible if and only if 
it has codegree 1 and is birationally equivalent to a family of smooth compact curves. [] 

Analogous arguments show that the same thing is also true for complexes of curves on 
algebraic manifolds of any dimension. 

4. The analog of Theorem 7.5 for complexes of surfaces is false. 

i, 

2. 

3. 
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