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Abstract. A new method for the three-dimensional reconstruction of a structure from projections of 
randomly oriented particles on a plane is proposed. Reconstruction is performed in two steps. First, 
we find mutual orientation of particles, i.e., Euler angles, describing the angle of one particle with 
respect to another. Almost all the paper is devoted to solving this problem. Then we perform the 
three-dimensional reconstruction of an object from its projections in already-known directions. 

The stability of the method with respect to experimental errors is shown. Three-dimensional 
reconstruction of asymmetric biological objects might be one of its applications. 
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1. I n t r o d u c t i o n  

In 1917, Radon [1] considered the transformation assigning to a function p(x) on 
the n-dimensional space, the function t~ on the set of all hyperplanes in this 
n-dimensional space determined by integrals of p over  hyperplanes 

iS(to, p) = ~ p(x) .  8((x .  t o ) -  p) dx, I~[ = 1. 

Radon obtained an explicit inversion formula expressing p in terms of ~6. During 

the past 20 years, Radon's  work has found wide application in R/Sntgen (X-ray), 
nuclear magnetic resonance, and ultrasonic tomography of the human body and 
other  objects, electron microscopy of biomolecules, radioastronomy, and m a n y  
other  fields (see reviews [2] and [3]). 

Radon's  paper, together  with the preceding paper by Minkowsky of 1915, 
started a new trend of mathematics: integral geometry. The  main problem of 
integral geometry is to study an integral transformation assigning to a function p 
on a manifold M the function t5 on a family of submanifolds h~/of M defined by 
integrals of p over  these submanifolds. 

The new epoch in the development  of integral geometry started after the works 
by Gelfand, Graev,  and Shapiro [5, 6]. Until then, in problems of three-dimen- 
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sional reconstruction, only the Radon transformation itself (on the plane and in 
the space) and Radon inversion formula had been used. 

In this and subsequent papers, I propose a new approach to the three- 
dimensional recovering of the structure from the projections of randomly 
arranged particles on the plane. An essential role in this approach is played by 
Palay-Wiener's theorem for the Radon transformation proved by Geifand and 
Graev in 1961, see [5, 7]. 

From the integral geometry viewpoint, one of the main results is the following: 
to recover (up to a motion of the whole space) a function p(x) with compact 
support from its Radon transform ~(oJ, p) we do not need to know how ~(~o, p) 
depends on to. It only suffices to have a set of one-dimensional projections of 
~(oJ, p) as functions of p without knowing in precisely what direction a projection 
is performed, i.e., without knowing w. This result is considered in detail in [11] in 
the most difficult case n = 2. 

Algorithms of three-dimensional reconstruction allow us to recover the par- 
ticle's density distribution p(xj,  x2, x3) from its planar projections in known 
directions usually determined by vectors on a sphere of radius 1 in the three- 
dimensional space. To determine the projection in direction ~- is to determine 
integrals of p(x~, x2, x3) over the lines parallel to z. For instance, to determine 
the projection in direction (0,0, 1) is to give the function p(xl,x2) = 

p(X I , X2, X3) dx3 (for details, see [3]). 
There are problems, however, in which the orientation of ~'i is not known 

beforehand. A typical problem is that of the study of ribosomal particle structures 
in electron microscopy. These identical asymmetric particles are precipitated 
onto a layer so that the orientation on it is generally random. A photo of an 
electron microscope is the set of different projections p¢~ of these particles, i.e., 
actually the set of projections of the same body whose orientation is unknown. 

At a first glance, it seems that a projection of n arbitrarily oriented identical 
particles provides much less information on a distribution-function of a particle 
than n-projections of one particle in known directions. The main aim of this 
paper is to show that no information is actually lost, since we will show that the 
mutual arrangement of identical particles is recovered from their projection for 

n ~ 3 .  
Let us describe the setting in detail. First note that the centre of mass of a 

particle coincides with the projection of its centre. Therefore, we will assume that 
the projection of the centre of mass is known. 

The arising problem of three-dimensional reconstruction is equivalent to the 
following (mathematical) problem: Given projections of particles randomly 
turned around their centre of mass on the plane x~, x2, recover the distribution 

function of particles. 
More exactly, let the centre of mass be at the origin (0, 0, 0). Let w be an 

element of the rotation group of the three-dimensional space and p,o(x~, Xe, x3) 
the distribution function of an electron density of a shifted (via to) particle. How 
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does one recover p(xl, x2, x3) from the functions 

pi(Xl ' X2) ~--- I Pt°i(Xl' X2' X3) dx3, 

where tol, • • •, to, are unknown? 
Kam [4] proposed an approximate method for solving this problem based 

mainly on the assumption of uniformity of the distribution of rotation to~ over the 
rotation group of the three-dimensional space. The method of [4] fails completely 
for nonuniform distributions of rotations toi. 

The main idea of our approach is to recover the mutual disposition of identical 
particles from their projections onto the plane x3 = 0, denoted in what follows by 
ct. It turns out that it can be done in a unique way. 

Note immediately that since p(xl, x2, x3) is to be found up to a rotation, we 
may assume to1 to be the identity transformation. Then the rotations to2 , . , . ,  to, 
are, in general, uniquely recovered from the projections. (If we do not assume to~ 
to be the identity, we may find tol-~tok .) 

After this we get the usual problem of three-dimensional reconstruction: 
recovering p(xi, x2, x3) from its projections in given directions. 

We propose two different approaches to the problem of finding to2 . . . . .  to,. 
One of them, a geometric one, is described in Section 2 and the other one in 
Section 3. The geometric approach is announced in [9]. It is inapplicable when 
the intersection of all the planes a, to~Ja, to~Ja is a line. In [11], it is 
shown that for n >I 7 the transformations toi can be recovered, nevertheless, with 
the help of the properties of the projection moments found by Gelfand and Graev 
[5, 7] (the Paley-Wiener theorem for Radon transformation). The results of [11] 
are announced in [10]. 

In this problem the moments of projections are used in the second approach to 
the problem of finding toi. This approach is based on the following construction. 
To O(xl, x2, x3) assign the positive definite quadratic form 

Qp(xl, x2, x3) = I O(yl, y2, y3)(xlyl + x2y2 + x3y3) 2 dyl dy2 dy3 (*) 

Consider the ellipsoid Qp(x)= 1. The ellipsoid obtained by rotating Qp(x) under 
to corresponds to the function po,(x~, x2, x3). The key idea of the second ap- 
proach is to study these ellipsoids, since to is uniquely determined by the image of 
a given three-axle ellipsoid. First, the form of the ellipsoid connected with 
p(xl, x2, x3) is determined, i.e., the lengths of its principal axes (for an asym- 
metric particle these lengths are different). Further, from the projection we find 
the sections of the ellipsoid Qp,,,(x)= 1 by the plane x3 = 0 (see formula (*)). It 
remains for us to make use of the fact that there exists exactly four ways to 
arrange the three-axle ellipsoid of the known form with the centre at (0, 0, 0) so 
that the section by the plane x3 = 0 is of the given form. After this, simple 
additional arguments allow us to find the actual arrangement of the ellipsoid. 
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The present work is oriented toward the electron-microscopic study of biologic 
particles. Nevertheless, the possibility of applying this approach to other tomo- 
graphic problems should be investigated more attentively, especially those prob- 
lems where the object may randomly change its position in the space. 

In the Crystallography Institute of the U.S.S.R. Academy of Sciences, a 
computational experiment with a model of ribosom has been performed which 
confirmed the possibility of a practical application of the geometric approach 
suggested here (1985). The detailed description of the experiment and its results 
are to be found in [12]. 

2. Geometric Method. Recovering the Mutual Orientation o| Particles 
trom the Projections 

2.1. HOW TO RECOVER THE SYSTEM OF PLANES toi-lrr 

Let n~,~2 be the straight line, the intersection of toi-17r and w~ a 7r.. Represent these 
lines as nili2 = "11"0 tOil to~l'w. 

Recall that by the projection of a function defined on the plane onto the line 
hi,,2, we mean its integrals over the system of lines perpendicular to this line. 
Then the projection of pi,(Xl, x2) onto ni,~2 coincides with the projection of 
p~(xx, x2) onto n~2i ,. In fact, the projections coincide with the projections of 
p,%(xl, x2, x3) or po,,2(x~, x2, x3) onto this line. It remains for us to note that the 
projection of p,o, (xl, x2, x3) onto ni,,~, as well as the projection of p,%(Xl, x2, x3) 
onto n ~ ,  coincides with the projection of p(xl,  x2, x3) onto n~,~. 

For an asymmetric particle on the plane 7r there exists, in general, no other pair 
of lines hi,~, h~ ,  such that the projection of p~,(xl, x2) onto n~,i~ coincides with 
the projection of pi~(x~, x2) onto ni~,. 

Therefore, on 7r, we should take an ample set of lines through (0,0) and 
consider the projections f~(t) , . ,  i ., f~(t) of a function p~(xl, x2) known from an 
experiment onto these lines. For each pair of functions p~,(x~, x2) and p~(x~, x2). 
compare the two sets {f~(t)} and {fj~(t)} considering f~,(t) and f~(t) almost 
coincidental if J" I f~ ( t ) -  fj~(t)l 2 dt is sufficiently small (ideally, equal to 0). 

2.2. THE STABILITY OF THE METHOD WITH RESPECT TO EXPERIMENTAL ERRORS 

The main point of our algorithm is to find the genuine pair of lines ni,i2(6) and 
ni,~2(i2) on a. We may encounter several suspicious pairs. 

In what follows, we explain why this does not lead to ambiguity in recovering 
the mutual configuration of the planes toT~a and how to remove the false pairs of 
lines. 

The configuration of the planes to71a, i = 2 . . . . .  n, is determined by 2 ( n -  1) 
parameters, since the position of one plane is determined by a unique normal to 
it, i.e., by two parameters. We know all the angles ; q~,j~, between no, and n~/~. For 
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1 

Fig. t. 

a fixed i, there are n - 2  independent angles among them, since the planes split 
the plane to/-la into n -  1 sectors, but the sum of all the angles equals 2rr. This 
implies that among the angles ~ j ~  there are n ( n - 2 ) - 2 ( n - 1 ) = n 2 - 4 n + 2  
independent identities. To get one of them, consider an arbitrary quadruple of 
planes tof,~a, toT=la, to~la, to~la (Figure 1) and their intersections with the unit 
sphere. The lengths of the arch-segments obtained on the sphere equal the angles 
q~},j,. Then (see Figure 1) 

sin A/ (  • sin PC -  sin B/~ 
w ~ 1 .  

s in /~B-  sin .4P-  sin CL 

For an asymmetric particle, it is natural to assume that the function defined on 
the line niii2 (namely the projection of p~,(xl, x2) onto this line) is not even. It 
will be convenient to imagine that each projection of p~(xl, x2) is defined on its 
own plane P~, though these planes are naturally identified with the plane Z = 0. 

The above makes it clear that there is exactly one way to identify the line n~,~ 2 
on the plane p~, with the line n~2~ ~ on the pane p~: so as to make the functions 
defined on them coincidental. 

LEMMA. The arrangement of three (or more) planes (not passing through one line) 
is uniquely defined up to a motion or a reflection of this space if 

(1) on each plane there are given the lines of its intersection with the other planes; 
(2) there is given a way to identify the corresponding lines on different planes 

(such as n i , i ~  Pi, and ni~i, c Pi:). 

Thanks to the lemma, we may find the planes ~-, o~21~, . . . .  to7lw up to the 
reflection with respect to ~r. A rotation of the three-dimensional space is not yet 
defined by the image of a fixed plane w, since we may rotate it afterwards around 
the axis perpendicular to the image of ~r. 

However ,  we have additional information: the rotation to,  l transforms ~r and 
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the line n~i on it into to[lzr with the given line on it, so that the functions on 
these lines are identified. This determines the transformation oJ7 ' uniquely. 

In practice, to construct the planes 7r, toT~cr, oJi~cr we are to recover the 
trihedral angle from the planar angles between the pairs of lines n~,  n~j ; ni~, nq ; 
njz, nj~. The angle between a pair of these lines is well-defined if, on each line, a 
direction is determined so that, these directions coincide with respect to a given 
way of identifying the lines. (The angle between nonordered lines is ambiguously 
determined: it is either ¢ or z r -  ~p.) It is easy to verify that the planes of the faces 
of the obtained trihedral angle do not depend on the arbitrariness in the choice of 
consistent directions of the lines. For example, if we reverse the direction of the 
lines n~ and n~a, then two of the three angles will be replaced by the com- 

plementary ones and we get another trihedral angle, namely the adjoint one. The 
planes of the faces of this trihedrai angle are the same. 

3. Finding Mutual Orientation of Particles by the Moment Method 

Let e~, e2, e3 be an orthonormal basis in the space with coordinates x~, x2, x3. 
Let to~ i be the matrix of an orthonormal transformation to in this basis, i.e., 

Then 

to • ei : 7. toijej. 
1~/~<3 

po,(x, , x2 ,  x3) --- p(toqxj) .  

We have chosen the centre of mass of the particle as an origin. Therefore 

f p (x l ,  X2, X3)Xk dxl  dx2 dx3 = 0, = 1, 2, k 3. 

Consider the set of the second moments of a function f :  

l~k"k2(f) = I f ( x l ,  X2, X3)XklXk2 dxl dx2 dx3, 1 ~< kl,  k2 <~ 3. 

Then 

Xk,<(p,~)= ~ ~t,k,'tot~k~Xl,t~(p). (1) 
1~11,12~3 

In fact, performing the change of variables yi-----~l~j<~3 toqXj (therefore, X k = 

~ 1 ~ 3  tolkYl since for an orthogonal matrix to, (to-1)ij =toii) we get 
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A k,k~(P.,) = I P(°)oXj)Xk'Xk2 dxl dx2 dx3 

Set 

1~11~3 I ~12~3 

= E 0)1, k, " O)lzk2)tl,12(O)" 
1 ~<11./2~3 

//~11(P) )~12(p) ,~13(p)N~ 
A(po)) = ~/~I2(P) /~22(P) ~23(0) }. 

\Ala(R) Az3(R) )(33(P) ] 

Let W = (w0-). Formula (1) can be rewritten in the form 

A(p,o) = W ' .  A(O)" W = W - ' .  A(O)- W. 

Therefore,  

I~(p,o) = tr A(p.,), I2(0,o) = tr A2(O,..), /3(p,o) = det A(p,,) 

do not depend on to, though it occurs in their definition. 
To  each vector )t2(p) of A assign the quadratic form 

¢ok, k2yt,_) dyt dy2 dy3 

(2) 

Ox2(o~(x)7 = ~ )tqxix~ 

= Z xixj" f p(yt ,  Y2, Y3)Y, yj dyl dy2 dy3 
l~i,j<-3 

= I P(Yl, Y:, Y3)" (ylxI + y2X2 + Y3X3) 2 dyl dy2 dy3. (3) 

Note that the distribution function of the electron density of the particle is 
nonnegative. Hence, Q~:~p~(x) > 0 for x =P 0. 

Consider the ellipsoid Qx~(p)(x)= 1. The lengths of its principal axes are 
l/.,/sdp), where si(p) are the eigenvalues of A(p), Formula (3) implies that under 
00, this ellipsoid turns into an ellipsoid corresponding to M(p,,). The main idea of 
the method proposed below is to study the ellipsoid corresponding to 
p,,(x,, x2, x3). If the lengths of the principal axes of the ellipsoid corresponding to 
p(x~, x:,  x3) are different, then a nonidentity transformation w transforms it into 
another, different ellipsoid. 

It is natural to assume that the lengths of the principal axes are different for an 
asymmetric particle. Therefore,  in this case k2(p,~)= k2(p) implies that to is the 
identity transformation. Moreover,  if we know kz(p), then to is uniquely deter- 
mined by 12(P.,). Therefore,  we should find all the vectors. 

Note that the components At~(po,), Alz(po,), A22(P.,) are calculated from the 
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projection of p,o(x~, x2) since 

i,i, = I p,o(xl, x2, x3)xilxi2 dxl dx2 dx3 A 

I p,,,(xl, x2)xi,xi~ dXl dx2, for 1 ~< il, i2 2. 

Geometrically, this means that we know the section of the ellipsoid correspond- 
ing to k2(p,o) by the plane x3 = 0. Let us find the remaining components of k2(p,o). 

First let us calculate Ii(p), 12(p), 13(p). For this, let us make use of the 
geometric method expressed above to find two transformations, say, toe and w3 
different from the rotation around Ox3. Namely, take two projections for which 
this algorithm is best applicable. 

After the transformations toe and oJ3 are found, we solve the system of linear 

equations with three unknowns /~13(p), A23(P), "~33(P): 

~, WlT)k,'Wt~'At,,2(p)=Ak,k2(p,o), l~<k,~<k2~<2, s = 2 , 3 ,  
1 ~ l  1,12~3 

where o) 0- t~ is the matrix of the transformation toa. Since all the parameters are 
only known approximately, we may consider a similar system for to3 and find the 
minimum of the function of three variables Ai3(p) (1 ~< i ~< 3): 

2 

~'~ ~<s~3 l ~ k j , k 2 ~ 2  1 ~ I I , 1 2 ~ 3  

Substituting the obtained values Aq(p) into the formulas 

t l (p)  = , h i ( p )  + *22(p) + ,~3~(P), 

12(p) = a~,(#) + a 2z(p) + A~3(p) + 2A~z(p) + 2A 2t3(p) + 2Az3(p), 

~(p) = X,,(p). X22(p)" X33(P)+ 2A~2(p)" Xl3(P)'/~23(P)- (4) 
- ~ ( p )  • , ~ ( p )  - , ~ ( p )  • a ~ ( p ) -  , ,%(p) .  ; ~ ( p ) .  

we get Ii(p), I2(p), I3(p). Therefore, 

To define A23(P=) and M3(la=) we have the system of quadratic equations 

- (I,(p) - A,,(p) - a22(p)) 2 - 2A 122(p,o)), 

A 2 3 ( p ~ o ) ( t l ( p )  - -  a l  l(Po~)) 4- Z23(Pco) " AI l(PoJ) -- (5)  

-- 2A13(P,o) " A23(P~) " A12(P,,,) 

--'~ A l l ( m ) "  A 2 2 ( P ~ ) ( / l ( p ) -  ) I l l ( P )  - -  X22(P)) - -  I3(p), 

which has, in general, four solutions. Note that the presence of exactly four 
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solutions (a priori, we know that there exists at least one solution corresponding 

to the genuine position of the particle) is easy to see in the geometric inter- 

pretation via the ellipsoid. 
In fact, we know 

I i ( p )  = s l ( p )  + s2(p)  + s3(p) ,  12(p) = s~(p)  + s22(p) + s~(p) ,  

I~(p) = s , (p) ,  s~(p), s3(p) 

and therefore 

s , ( p )  " s2(p) + s l ( p )  " s3(p) + s2(p)  " s3(p)  = ½(t~(p)  - 12(p)) 

hence, we may find s~(p), s2(p) ,  s3(p), which are the roots of the cubic equation 

z 3 - I , ( p ) z  2 + ½(I] (p )  - I 2 (p ) ) "  z - 13(p) = O. 

Therefore  the ellipsoids corresponding to different solutions k2 are of the same 
form. Hence,  if the numbers s~(p) are different, i.e., k2 corresponds to the 
three-axle ellipsoid (in particular, this is so for an asymmetric particle), all the 
ellipsoids corresponding to the solutions ~.2 are obtained from someone by 

reflections with respect to the planes through the main axes of the ellipse cut on 
the plane x3 = 0 by the ellipsoid and perpendicular to this plane. 

Recall that (for a three-axle ellipsoid) for each obtained ke there exists a 
unique to, such that k2 = k2(p,~). To  find this to we should find the eigenvectors 

and eigenvalues of the symmetric matrix A recovered from k2 and A(p). 

Let fl(to), f2(to), f3(to) and f t , f 2 , f 3  be the eigenvectors of A and A(p), 
respectively, of length 1 such that to the eigenvectors f~(to) and f~ the same 
eigenvalues correspond. Let us decompose f~(to) with respect to fj: 

 (tol= E 03,J . 

The numbers 030 are the matrix elements of the desired transformation to (with 

respect to f , ,  f2, f3). The matrix of to in the basis e~, e2, e3 are obtained by the 
formula 

to J = Z a,s . to sk-to k, where el-- Z 16) 
l~s,k~3 I~j<~3 

To find the genuine value of to among the four possible ones, make use of the 
algorithm based on the rotation of one projection around another. For each of 
the possible values to", find the line on the plane x3 = 0 spanned by the unit 
vector  cos ~?,, • e, + sin £2 • e2, such that the line to" • !~ belongs to the same plane. 
This means that to~'3 cos sc,~ + to~% sin ~ = 0, i.e., tan ~ = -(to~'3/to~_%). Here to~'~ are 
the matrix elements of to'~. We have shown that if to'~ = to, then the projection of 
p , , ( x l ,  x2) onto to~ • l,, coincides with the projection of p ( x l ,  x2) onto l~. Finding, 

thanks to formula (6j, the lines la and to ~ • l,, and calculating the corresponding 
projections, we find the genuine transformation. 
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3 3 then to" If to~3 = to2~, is the rotat ion by the angle ~ a round  Ox~. There fore ,  

after the rotat ion of p,o(x~, x2) a round  (0, 0) we should get  p,o.(x~, x2). 

The  advan tage  of the above  approach  is that  the a lgor i thm which makes  use of 

the rotat ion of one  pro jec t ion  a round  another  is needed  in full only to find 

rotat ions to2 and to3. All the remaining opera t ions  are considerably  simpler. 

T o  get comple te ly  rid of the rotat ion of one  p ro j ec tkm with respect  to another ,  

wc int roduce the third momen t s  

ili2i3(P) = I p(XI, X 2 , X3)XilXieXi3 dxi dx2 dx3, 1 ~ /I, i2z ('~ A 3. 

( ' lear ly,  A ~,~,~(p) do not depend  on the permuta t ion  of indices. The  componen t s  

of Ai,i.~i~(p), for  1<~ i~, i2, i a<~2, are calculated f rom the projec t ion.  The re  are 

four independent  c o m p o n e n t s  a m o n g  them, whereas  the total number  of (in- 

dependent )  c o m p o n e n t s  is 10. Therefore ,  we have to find six componen t s ,  namely  

AII3(P), A123(P), AI33(P), A223(O), A233(P), A333(P). 

A formula similar to (5) holds: 

I ~1, ./2,/3~3 

Consider  a system of 2 1 equat ions:  

Y. wl~,," tol~)~:a , , , : (p )=  a k, k~(p,o.), 1 ~<k,<~ k2~<2. 
1~<11,12~3 

tOI2keAt~l~t~(p)- Ak,k~k~(p~,), 1 ~ kl ~ k2 ~ k3 ~ 2, 
1~1,12,13~3 

s = 2 , 3 , 4 ,  

for 18 unknowns  ,p~s)~p~s) 0~s~ (the Euler angles of t ransformat ions  cds)); A~3(p), 

A23(P), A33(I0};, AII3(P), AI23(,D), AI33(P), Ag23(P), A233(P), A333(P). 
Recall,  (see [8]) that the matrix of to in the basis e~, e2, e3 iS expressed via 

Euler  angles q~, ~#2, 0 by the formula  

cos q~l " cos ,,o2- cos 0 • sin q~l • sin q~2 

- c o s  q~ • sin q~2 - cos 0 • sin q~l • cos q~2 
sin ~0~ • sin 0 

sin ~o~ • cos q~2 + cos 0-  cos ~o~ • sin ~02 sin q~2 " sin 0 ]1 
- s i n  ~o~ • sin ~02 + cos 0" cos ~ot ' cos q~2 cos q~2" sin 0 ]] 

- c o s  ~o~ • sin O, cos 0 II 

where O- ~- ~ .  92 ~< 2rr. O ~  < O~  < ~r. 

This system is overdef ined and has a unique solution which can be found with a 

compu te r  by the least-squares method ,  i.e., compu t ing  the min imum of the 
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function in 18 variables 

OOl,k, " totS~2 " Ai,t2(P)-- Ak,k2(Poo~) + 
2<~s~4 l ~ k l , k 2 < - 2  1~1  ,12 ~.3 

l ~ k l ~ k 2 ~ k  3 1~11 ,12 .1:~3  

Further, by the above method we find four possible values ~o~' (a = I, 2, 3, 4) 
for each o~j, 5 <~ j ~< n. 

Note that the matrix elements o~C~i)i., of the transformation o~j satisfy the system 

E 0) (D (J) - - 
O.) l l k  t " t O I 2 k  2 " ( .O13k3AI l121:~(o)  = ) kk t k :~k .~ (Oto i ) ,  

1~-~11,12,13~3 

where I ~< k~ ~< k2 ~< k3 ~< 2. Therefore ,  substituting the matrix elements of trans- 
formations into this system, we find the genuine values of toj. 

In the real situation, the values of p,o,(xl, x2) are known only approximately and 
do not always equal .~ p,o,(xt, x2, x3) dx3. TO choose the more appropriate of the 
above methods, one should understand their advantages and disadvantages. 

If the projection p,o,(xl, x2) becomes too 'dizzy' the farther it goes from the 
centre of mass (i.e., the degree of reliability with which the function p~,,(x~, x2) is 
known diminishes as the distance of the centre of mass grows), then it is advisable 
to make less use of the momerits A i,~_,~,(P), since a third degree polynomial grows 

much faster than a second degree polynomial and, therefore, the error of 
calculating A ~,i~(p) is considerably greater than that for )ta~,.(p). 

On the other  hand, if po,,(x~, x2) are uniformly unprecise, then we had better  
deal with the integral characteristics of the function p,o,(Xl, x~) (like the second 
and third moments) instead of the values of p,o,(xt, x2) at certain lines. 

4. Finding the Mutual Orientation of Particles when the Electron 
Microscope is Supplied with a Goniometer 

If our electron microscope is supplied with a goniometer,  then we may turn the 
film with particles on it by known angles ~0~ and q~2 around the axis Oxl  
(clockwise) (such a possibility is important in defining a rhibosom structure). In 
this case, the transformations toi are very easy to find. Making use of the formula 
(5), we get the system of four linear equations 

~p Ai2(p,o) " cos q~s + Ai3(p60) • sin q~ = Aia(p,;,Q, where i = 1,2; s = I, 2, 

solving which we find X13(po,), A23(P~,), /~33(looj). 

By p~ we have denoted the distribution function of the electron density of the 
particle obtained from the initial particle after the rotation to with the subsequenl 
rotation by the angle q~ clockwise around the Oxt  axis. We may now find the 
values Z~3(p,o ), Az3(p,~), /~33(pto s) by the formula (s = I, 2): 
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A t 3 ( p ~  ~) = - -  A l 2 ( P ~ o )  " sin ~0, + A~3(p,,) cos ~,, 

(p. __ 
A 2 3 ( p ~  ~) - (A33(P~o) - A22(Pco)) c o s  ~Ps " s i n  q~ + 

-]-/~23(PoJ)( cOS2 qPs- sin2 ~s), 

A 3 3 ( P ~  ~) ~ -  /~'33(D~0) COS2 q)s - -  )i-23(pto) COS ~0 s " s i n  ¢~ + A22(p,,,) s i n  2 ¢~. 

5. Several Remarks on Finding the Mutual Orientation of Identical 
Particles with Nontriviai Symmetry Group G 

All the subgroups in the group of rotations of the three-dimensional space are 
divided into three classes. We should operate differently in each of the classes: 

(at The symmetry group G is such that there exists a three-axle ellipsoid 
invariant with respect to G. Then, in principle, we might proceed as earlier. 

(b) Any ellipsoid with the group G is an ellipsoid of rotation. In this case. a 
typical G-invariant ellipsoid is different from the sphere and, therefore, has a 
distinguished axis. It is natural to assume that, in particular, such is the ellipsoid 
corresponding to the distribution function of the particle under investigation. 
Therefore, we should look at the distinguished axis of the ellipsoid. As a result, 
the transformation ~o is found up to rotation around some axis (namely, around 
the distinguished axis of the ellipsoid corresponding to p,o(x~, x2, x3). To find the 
precise value of ~o, we may apply the algorithm based on rotating one projection 
around another. Note that this is easier to apply in this situation than in general 
case, since for each angle ¢ (rotation of one projection around the other one) it is 
easy to analytically find the two lines ll(q~) and 12(q~) in the plane x3 = 0, so that 
the restriction of the function p,~lx~, x2) onto I~(¢) is the same as that of 
p,o,(x~, x2) onto 12(q~). Therefore, in the general situation, we should compare the 
restriction of the corresponding functions onto all the possible pairs of lines 
(depending on two parameters), whereas in our situation we are to investigate the 

restrictions of the functions onto a one-parameter family of pairs of lines which is 
far more simpler, e.g., of the set of 50 lines we should compare 2500 pairs of 
functions in the general case and only 50 in our case. 

An alternative way is to make use of the third moments A~,~(p). 
(c) G is such that any G-invariant ellipsoid is a sphere. An equivalent 

condition is that there are no nonzero G-invariant vectors in three-dimensional 
space. Them in principle, we may similarly make use of higher moments. 
However, G is actually great enough to perform a three-dimensional recon- 
struction from several photos (see the lntroduction). 

Therefore, our method works better when the considered particles are less 
symmetric. Therefore, it is a nice compliment to the conventional methods of 
three-dimensional reconstruction of complic.ated biologic objects that work well 
when the object possesses a sufficiently large symmetry group. 
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