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CONSTRUCTIONS OF THE WEIL REPRESENTATIONS OF
CERTAIN SIMPLE LIE ALGEBRAS

A, B, Goncharov UDC 519.46

la, Let G be a simple complex Lie group with the parabolic subgroup P such that the radical N in the
Levi decomposition P = M- N is Abelian. An equivalent definition is that X = P\ G is an irreducible compact
Hermitian symmetric space. Let N_ denote the unipotent subgroup opposite to N, and let %, m, %, and N_ denote
the corresponding Lie algebras; and let Px = My * Ny be the Levi decomposition of the stabilizer of = x in G.
Henceforth we will identify o+ with o7,

Definition. K*(K¥) is the cone of the vectors of highest weight in the M (Mx)-module % (r}X), i.e., each
vector of the cone is leading with respect to a certain Borel subgroup in M(Mx).

See [1] for more details of the geometry of these cones,
LEMMA 1. A g ¢ transforms K;,g into K. ®.

The aim of this note is to embed % in @ (k% — the algebra of regular differential operators on K¥. Thus,
we obtain a representation of ¥ in terms of regular functions on K*. Roughly speaking, the construction is as
follows: G acts in the sections of a certain linear G-bundle Ej associated with a character y,: P —c* [for t =
Cent §¢ =~ C we have dx?\(t) = A+t]. Expressing a neighborhood of the identity in G in the form p.exp (9t.), we iden-
tify a neighborhood of the point P*e in X with M_ and let us consider an ~_-invariant trivialization of E; over
Jt.. For t <& the operator %; in Sec. 3 is the coordinate expression of an appropriat® action of 2. If A is the
same as in Theorem 1 (Sec. 3), then the Fourier transform (see Sec. 2) F (%) of the operator % lies in @ (&*).
The reason for this remarkable phenomenon is Lemma 1,

Let us observe that r (2, for » = % has order 2 and cannot be expressed in terms of operators of order
1 from @ (K*).

1b. The coadjoint representation of G has exactly one nonzero orbit Ug of smallest dimension. It passes
through the vector of highest weight in &*. The constructed representation corresponds to O in the sense that
2-dimK* = dim Og. But Og does not have polarization for &=sl(n, €) and, therefore, the usual methods for con-
struction of a representation with respect to an orbit do not work. The problem of construction of "minimal
representations" has been considered by various authors (see [2, 3]), but the construction has almost always
been obtained by the restriction of the Weil representation of sp 2n) to 2  sp 2n). Our construction is more
universal, and a new construction of the Weil representation has been obtained for ¥ = sp (2=, €). It is easily
carried over to a wide class of simple Lie algebras, e.g., to the class of the Lie algebras that can be split
over a field k of characteristic zero and which have a parabolic subalgebra with Abelian radical.

In the following discussions we will consider the analytical side of the matter: the construction of a unitary
representation of G, and so on.

I. N, Bernshtein, I. M, Gel'fand, and S. 1. Gel'fand have observed that so (8, C) is embedded in the alge-
bra of differential operators on the basic affine space A for SL (3, C) (not published), We have
A > {(z, w) & C | zyw; + zgwy -+ z5ws = 0; 2 2= 0, w 5= 0},

after which we can easily write out the embedding of se @n + 2, C) in the differential operators on {@z ») =
C™ | zwy + . . . 4 2wy = 0}. (Although the connection with a compact Hermitian symmetric space was not revealed,)
I am thankful to I. N, Bernshtein for communicating this to me,
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Using this opportunity, I thank I. N. Bernshtein for a series of consultations about various problems of
representation theory and S. G. Gindikin for assistance,

2. Preliminary Results. Let V be a finite-dimensional linear space over C and { , ) be the pairing of V
and V*. For » = v we define a derivation of the ring S(V¥*) by setting o, (*) = «, »*, for »* & v*. Let )y denote
the linear function on V* defined by the vector v and let # (V) denote the algebra of regular differential opera-
tors on V,

Let us define an isomorphism of algebras F:2 (V) — @ (v*) by specifying it on the generators by the equa-
tions F (9,) = ip, and F () = id,.. This definition is correct, since F ([8y, Yyul)= <2, v*> and [F (3y), F (Y,)] = [0,
19,4} = <v, v*>.

Let I denote the ideal in s *) that defines the variety &* (J o; and let I® pe the space of polynomials of
degree of homogeneity k in I.

Proposition 2. a) 1(2) is an irreducible M-module that occurs in %* ® %* with multiplicity one,
b) 1@ .5+ =1
We omit the proof for want of space.

For t =% let Lt be the vector field on %_ that originates by the action of G on X ( m. is embedded in X
as in Sec. 1). Let us consider s @*) @M. as vector fields on m.. Henceforth » =;, and y, y. = N

Proposition 3. a) Ly es2m) @ ;..
b) L (41, y2) = Y2 [[n, v1ls val.
A2) (L, L\=L g EREQN, since [y, nleMCRN*FRN_.

b) Since %_ is Abelian, by virtue of the Jacobi identity the right-hand side of b) defines an element of
s2 @) @ fi_. It remains to verify that we get the same thing on commuting both the sides first with Ly, and then
with Ly,. =

3, Basic Construction. Let 2. denote the space of the differential operators from 2 %.) =2 of order at

most k and homogeneity I. For example, L, = 4, = 2;". Let us agree to write an operator ® < £ in the form

o «
3=Zay:..-ayga(y).

1t is clear from the homogeneity arguments that
Ly l=27" 4+ (D=2l 1)
for je=F(I®), _
Proposition 4. ;' F (1 @).2.
A Let o, (®) be the 2-symbol of the operator ®. This is a function onv T+5_. Let i‘n denote the vector field
on T*M._ that corresponds to the field Ln on M_. Let K*(y) be the shift of k* — r¥n_~% at a point y =m_. It can

be verified that K*(y) is identified with K under the embedding of 9. in X (as in Sec. la), Therefore, it follows
from Lemma 1 that oy ([Ly, ] = Ln(o'(f)) vamshes on each cone K*(y).

Let us set @ (K*) = Norm (/2)/I®, Where Nom (I.2) = (D= 2| DI CI2). Let ne®, y= R, and o =N (see
Sec. 2). We set

Z, =Ly, +hb, Lin, 11 = Lin, gy —* @0 ¥, gyzLy'_

For t= ¥ we have the isomorphism of Lie algebras :— Z; (cf. Sec. 1a).
THEOREM 1. There exists a » =, such that F (%) = 2 (¥*).

A Let us associate the operator - with L, and fs F I [see (1)]. We obtain a morphism of M-modules
ANQFUIP) -9, Let us consider the morphism : 2 ® f > [¥n, /1 of the same M-modules. It follows from the
statement a) of Proposition 2 that dim Hom,, (@ ® F I®), %) = 1. Since A =0, it follows that 4 = A7 #\ e ¢. This

is the desired A, since [%,, FU®))CF I®.2and FU)=F {®.F (s (%) for it. m,
Example, % ~s0(2n + 2, O3 X is a quadric in CP?, K* > {(@, ..., 2n; Wi, . . ., Wp)lZgWy +. . . +2qWp =

0}. Letus set A= 0,0, + 40, 0y, Jo=ui, + ... +ud, and Jy, = wd, + ...+ wad,, . The operators w; = wis —

Uzt Juw—(n— 108, Zy=zd — Uz + Ty — (0 — 1)) Qe Wiy 250, [Wy, Wj]: and [Z, zj] and the operators of
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multiplication by a linear function give a representation of so 2n + 2, ) in terms of regular function on K*,
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PARTIALLY ORDERED SETS OF FINITE GROWTH

A, G. Zavadskii and L, A. Nazarova UDC 519.4

Let %= {a;, .. .. an} be a finite partially ordered set and k be a commutative ring. We say that a represen-
tation of the set M over the ring k is given if a submodule Vj of a certain finitely generated k-module V is as-
sociated with each element o; & ® such that if g; = aj, then v; ©V;

The representations of the partially ordered set % form an additive category, in which equivalent and
indecomposable representations are defined naturally, If k is a field, then the (n + 1)-dimensional integral vec-
tord = (dy, dy, ..., dp), where d; is the dimension of the space V and dj is the dimension of the factor space

Vi 3 V., is called the dimension of the representation S = (V, Vy, ..., Vy).
aj<ai

As in [1-3], we will study representations of partially ordered sets over fields. We need representations
over rings only to recall the definition of partially ordered sets of tame type and to define partially ordered
sets of finite growth.

As the algebras [4] and the quivers [5, 6], the partially ordered sets of infinite type (i.e., having in-
finitely may nonequivalent indecomposable representations) are divided into two disjoint classes: the tame ones
(admitting a classification of representations) and the wild ones ("containing in them" a classical unsolved prob-
lem about a pair of linear operators).

We will say that a representation § = (V, Vi, . .., V) of the partially ordered set % over the field k is
generated by the representation S = (V, V,, ..., V) of the same set over the ring k[X] of the polynomials in
one variable if there exists a finite-dimensional k[X]-module B such that

V=V @B, V,=Im(i
k[ X]
where fj: \_Ii —V are the natural embeddings. The partially ordered set % has tame type over the field k if all
indecomposable representations of each dimension are generated by a finite number of representations of
over k[X].*

It is proved in [3] that a partially ordered set has tame type (over an arbitrary field k) if and only if it
does not contain any one of the following sets as a subset: (1, 1, 1, 1, 1), @1, 1, 1, 2), @, 2, 3), (1, 3, 4,
(1, 2, 6), and N ={a; < a >by <by; ¢; <c, <c3 <c, <cs}, where (I, . . ., Ly) is the cardinal sum of m linearly
ordered sets that consist of I;, . . ., Im elements, respectively.

Let p(d) denote the least possible number of the representations of the set @ over k[X] that generate al~-
most (i.e., all except a finite number of) indecomposable representations of ® over k of dimension d, A de-
tailed study of the partially ordered sets of tame type shows that they are divided into two classes:

*It is clear that this definition is suitable only for the case of an infinite field k. In the finite case the field k is
replaced by its separable closure k.
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