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1 Introduction

The classical dilogarithm

Li2(z) := −

∫ z

0

log(1− t)d log t

is a multivalued analitic function on CP 1\{0, 1,∞}. It has a single-valued version: the Bloch-
Wigner function

L2(z) := ImLi2(z) + arg(1− z) log |z|

which satisfies the famous 5-term functional relation. Namely, for any 5 distinct points z1, ..., z5
on CP 1 one has (r is the cross-ratio).

5
∑

i=1

(−1)iL2(r(z1, ..., ẑi, ..., z5)) = 0

In this note we show that the Bloch-Wigner function can be naturally extended to the
(infinite dimensional) variety of all algebraic curves in CP 3 which are in sufficiently general
position with respect to a given simplex L. (By definition a simplex in CP 3 is a collection of
4 hyperplanes in generic position).
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We call the corresponding function the Chow dilogarithm function. When our curve is a
straight line we obtain just the Bloch-Wigner function evaluated at the cross-ratio of the 4
intersection points of this line with the faces of the simplex L. It is interesting that even in
this case we get a new presentation of L2(z).

Any algebraic surface in CP 4 which is in general position with respect to a given simplex
produces a 5-term relation for the Chow dilogarithm function. Namely, the intersection of
the surface with a codimension 1 face of the simplex provides a curve and a simplex in CP 3

. A simplex in CP 4 has 5 codimension 1 faces. The alternating some of the corresponding 5
values of the Chow dilogarithm is zero.

The differential equation for the Chow dilogarithm function reflects the geometry of the
intersection points of the corresponding curve with the faces of the simplex.

Finally, one can prove that the Chow dilogarithm function can be expressed by the Bloch-
Wigner function.

In general the Chow n-logarithm is a collection of differential forms on Bloch’s higher Chow
varieties. For example the Chow n-logarithm function lives on the variety of all n-dimensional
varieties in CP 2n−1 which are in generic position with respect to a given simplex. Each
(n+1)-dimensional variety in CP 2n generic with respect to a simplex provides a (2n+1)-term
functional equation for the Chow n-logarithm function.

In particulary we get an explicit definition of the Grassmannian polylogarithms whose
existence was conjectured in [BMS] and [HM] (see also [HY]).

The main application is an explicit construction of the Beilinson regulator

grγnK2n−i(X) −→ H i
D(X/R,R(n))

from an appropriate piece of algebraic K-theory to the Deligne cohomology of an arbitrary
regular variety over R. Namely using the (bi)-Grassmannian n-logarithm and the results of
[G3] we construct a cocycle in the Deligne cohomology representing the universal Chern class
cn ∈ H2n

D (BGL(C)•, R(n)).
Suppose that X is a projective smooth variety over Q of dimension i − 1. Beilinson’s

conjectures [B] predicts that the image of the regulator map is a lattice whose covolume (with
respect to the Q-structure provided by H i

D(X/R,Q(n)) coinsides (up to a nonzero rational
multiple) with the special value at s = n of the L-function L(hi−1(X), s). Therefore the special
values of the L-functions of varieties over number fields should be expressed in terms of the
Grassmannian polylogarithms.

In particulary for X = SpecC we get an explicit construction of the Borel regulator
K2n−1(C) → R. This togerther with the Borel theorem [Bo2] leads to formulas expressing
the special values of ζ-functions of number fields at s = n by means of the Grassmannian
n-logarithm function.

In the last section we scetch a construction of the multivalued analitic version of the Chow
polylogarithms.

2 Construction of Chow polylogarithms

1 Higher Chow varieties and polylogarithms. A simplex in CP n is a collection of

2



hyperplanes L0, ..., Ln in generic position, i.e. with empty intersection.
Let us choose in CP n a simplex L and a generic hyperplane H . We might think about this

data as of a simplex in n-dimensional affine space An := CP n\H
Let Zq

p(L) be the variety of all codimension q effective algebraic cycles in CP p+q which
intersect properly (i.e. in right codimension) all faces of the simplex L. It is a union of infinite
number of finite dimensional algebraic varieties. (This is the set-up for the definition of Bloch’s
Higher Chow groups [Bl]).

The intersecion of a cycle with a codimension 1 face Li of the simplex L provides a map

ai : Z
q
p (L) −→ Zq

p−1(Li)

Further, projection with the center at the vertex lj of L defines a map

bj : Z
q
p(L) −→ Zq−1

p (Lj)

Notice that Zn
0 (L) = CP n\L = (C∗)n. So one can attach to a simplex L ⊂ CP n canonical

n-form ΩL with logarithmic singularities in CP n\L. Let zi be a linear homogeneous equation
of a hyperplane Li, then

ΩL = (2πi)−nd log
z1
z0

∧ ... ∧ d log
zn
z0

It is skewsymmetric with respect to reordering of hyperplanes Li.
Recall that a p-current on a smooth manifold X is a linear continuous functional on the

space of (dimRX−p)-forms with compact support. By a current on a singular variety we will
understand a current on its smooth part.

In this paper for each given q ≥ 0 I will construct explicitly a canonical chain of (q−p−1)-
currents ωq

p = ωq
p(L,H) on Zq

p(L). The restriction of ωq
p to the subvariety Ẑq

p(L) of smooth
cycles in generic position with respect to the simplex L will be a real-analytic differential
(q − p− 1) form.

Let Hi := H ∩ Li. Set Im(x + iy) := iy. The currents ωq
p will satisfy the following

conditions:

i) dωq
0(L,H) = ImΩL (1)

ii) dωq
p(L,H) =

p+q
∑

i=0

(−1)ia∗iω
q
p−1(L,Hi) (2)

iii)

p+q+1
∑

j=0

(−1)jb∗jω
q
p(L,H) = 0 (3)

We call the collection ωq
p the q-th Chow polylogarithm. The function Pq := ωq

q−1 on Zq
q−1(L)

will be called the Chow polylogarithm function.
2. The homomorphism rn. Let X be a variety over C and f1, ..., fn be rational functions

on X(C). Set
rn(f1, ..., fn) := (4)
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(2πi)−nAltn
∑

j≥0

1

(2j + 1)!(n− 2j − 1)!
log |f1|d log |f2|∧...∧d log |f2j+1|∧di arg f2j+2∧...∧di arg fn

Here Altn is the operation of alternation:

AltnF (x1, ..., xn) :=
∑

σ∈Sn

(−1)|σ|F (xσ(1), ..., xσ(n))

Let Sm(ηX) be the space of smooth n-forms with values at iR at the generic point of X , i.e.
each form is defined on an open subset of X(C). We get a homomorphism

rn : ΛnC(X)∗ −→ Sn−1(ηX) (5)

such that drn(f1 ∧ ... ∧ fn) = Im
(

(2πi)−nd log f1 ∧ ... ∧ d log fn

)

The form (4) is (up to a constant) the product in the real Deligne cohomolgy of 1-cocycles
(log |fi|, d log fi).

3. The primitive rn(L;H). The form ΩL has periods in Z. So ImΩL is exact. However
there is no canonical choice of a primitive (n − 1)-form for it. (The group (C∗)n acting on
CP n\L leaves the form invariant and acts non trivially on the primitives). But if we consider
a simplex L in the affine complex space An (or, what is the same, choose an additional
hyperplane H in CP n, which should be thought of as the infinite hyperplane) then there is a
canonical primitive rn(L;H).

Namely, choose linear homogeneous coordinates z0, ..., zn in CP n such that Li is given by
equation zi = 0 and H by

∑

zi = 0. Then

rn(L;H) := rn(
z1
z0

∧ ... ∧
zn
z0
) (6)

is a primitive of ImΩL in CP n\L. The element z1
z0
∧ ...∧ zn

z0
is skew-symmetric with respect to

reordering of coordinates, so the same is true for the form rn(L;H).
4. The main construction. The form rn(L;H) defines an (n− 1)-current on CP n.

Definition 2.1. ωq
p is the Radon transform of the current rp+q(L;H) in CP p+q over the family

of cycles Yξ parametrized by Zq
p(L).

More precisely, this means the following. Consider the incidence variety:

Γp := {(x, ξ) ∈ CP p+q × Zq
p(L) such that x ∈ Yξ}

where Yξ is the cycle in CP p+q corresponding to ξ ∈ Zq
p(L). We get a double bundle

Γp

π1 ւ ց π2

CP p+q Zq
p(L)
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Then
ωq
p := π2∗π

∗
1rp+q(L;H)

The fibers of π2 are compact, so the push forward of currents is well defined. It commute with
the De Rham differential d:

π2∗d = dπ2∗ (7)

Theorem 2.2. The currents {ωq
p} satisfy the condition (2).

Proof. Let L̂i be the simplex cut by L in the hyperplane Li. Consider the (n − 2)-form
rn−1(L̂i;Hi) in Li as (n− 2)-current in CP n.

Lemma 2.3. drn(L;H) = Im(ΩL) +
∑n

i=0(−1)irn−1(L̂i;Hi)

Proof . Use the formula d(di arg z) = 2πiδ(z)dzdz.

Lemma 2.4. π2∗Im(ΩL) = 0

Proof. Im(ΩL) is a sum of forms of type (p+ q, 0) and (0, p+ q). So its integral over any
family of complex varieties is zero.

Theorem follows immediately from (7), and this lemmas.
Notice that (1) is true just by the definition. Finally, (3) is provided by

Lemma 2.5.
n+1
∑

j=0

(−1)jb∗jω
n
0 = 0.

Proof. Let s(z0, ..., zn) := z1/z0 ∧ ... ∧ zn/z0. Lemma follows from the identity

n+1
∑

j=0

(−1)js(z0, ..., ẑj, ..., zn+1) = 0

5. An interpretation on the language of the real Deligne cohomology. Let Ap
X

be the space of all p-currents on X . The De Rham complex of currents (A•
X , d) is a resolution

of the constant sheaf R.
The n-th Deligne complex R(n)D can be defined as the total complex associated with the

following bicomplex:

A0
X(n− 1)

d
−→ A1

X(n− 1)
d

−→ . . .
d

−→ An
X(n− 1)

d
−→ An+1

X (n− 1)
d

−→ . . .

↑ πn ↑ πn

Ωn
X

∂
−→ Ωn+1

X

∂
−→

(8)
Here πn : Am

X ⊗ C −→ Am
X(n − 1) := Am

X ⊗ R(n − 1) is the projection induced by C =
R(n− 1)⊕ R(n) −→ R(n − 1). Further, A0

X(n− 1) placed in degree 1 and (Ω•
X , ∂) is the de

Rham complex of holomorphic forms with logarithmic singularities at infinity.
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Ẑq
p(L) for p ≥ 0 form a truncated simplicial variety Ẑq

• . The conditions i) and ii) just
mean that the sequence of forms ωq

p is a 2q-cocycle in the bicomplex computing the Deligne

cohomology H2q(Ẑq
• ,R(q)D).

6. First application: the bi-Grassmannian polylogarithms. Let us denote by Ĝq
p

the Grassmannian of p-planes in Ap+q in generic position with respect to a given simplex L.
The operations ai and bj transforms planes to planes. So we get the following diagram of

manifolds which is called the bi-Grassmannian Ĝ(q):

↓ ... ↓ ↓ ... ↓

Ĝ(q) :=
→
...
→ Ĝq+1

1

→
...
→ Ĝq+1

0

↓ ... ↓ ↓ ... ↓ ↓ ... ↓

...
→
...
→ Ĝq

2

→
...
→ Ĝq

1

→
...
→ Ĝq

0

Here the horisontal arrows are the arrows ai and the vertical ones are bj . The bi-Grassmannian

Ĝ(n) is a truncated semisimplicial scheme: Ĝ(n)(k) :=
∐

p+q=k Ĝ
q
p.

Let ψq
p(q) be the restriction of the differential form ωq

p to Ĝq
p. The conditions i), ii)

they satisfy are exactly the defining conditions for the single-valued Grassmannian polyloga-
rithm whose existence was conjectured by Hain-MacPherson and Beilinson-Schechtman ([HM],
[BMS], see also the pioneering work [GGL]). So we proved this conjecture.

R.Hain and J.Yang [HY] proved that for a certain semisimplicial Zariski open subset U• ⊂
Ĝn

• there exists a class in H2n(U•,R(n)D) whose Ω
n

Ĝn
0

-component is d log z1 ∧ ...∧ d log zn. The

other components can be represented by iterated integrals.
After this the property iii) plays the key role. Namely, set ψq+i

p (q) = 0 if i > 0. Then the
condition iii) guarantee that the forms ψq+i

p (q) = 0 where i ≥ 0 is a 2q-cocycle in the bicomplex

computing the Deligne cohomology H2q(Ĝ(q)•,R(q)D). We will call it the bi-Grassmannian
n-logarithm. ( [G3]).

3 Properties of Chow polylogarithm functions

1. Basic integral and its general properties

Lemma 3.1. For any rational functions f1, ..., fn on X the (n − 1)-form
rn(f1 ∧ ... ∧ fn) defines a current on X(C).

Proof. We may suppose that the divisors of functions fi are disjoint because (5) is a
homomorphism. Resolving singularities we reduce lemma to the case when these divisors have
normal crossing. Our statement is local, so we can assume that in local coordinates z1, ..., zm
one has f1 = z1, ..., fk = zk and divfj for j > k does not intersect the origin. After this the
statement of lemma is obvious.
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In particulary if dimX = n the integral
∫

X(C)

r2n+1(f1, ..., f2n+1) (9)

is convergent.

Proposition 3.2. Integral (??) is a rational multiple of

∫

X(C)

2n+1
∑

j=1

(−1)j log |fj|d log |f1| ∧ ... ∧ ˆd log |fj | ∧ ... ∧ d log |f2n+1| (10)

Theorem 3.3. Suppose that dimX = n. Then integral (9) does not change if we multiply one
of the functions fi by a non zero constant.

A simplex L in An determines n coordinate functions zi such that < zi, lj >= δi,j. So on
a subvariety X ⊂ An n rational functions appear.

Theorem (3.3) just means that the function Pn is invariant under the natural action of the
torus (C∗)n on Zn

n−1(L) and so does not depend on the choice of the hyperplane H . The forms
ωn
p for p < n− 1 depend on H .

(C∗)n-orbits on Ĝn
n−1 are paprametrized by configurations of 2n generic hyperplanes in

CP n−1. Namely, the orbit of a plane h ∈ Ĝn
n−1 is determined by the 2n-tuple of hyperplanes

{h ∩ Li} in h considered modulo PGLn-equivalence. In the next section we describe the
Grassmannian n-logarithm using this language.

2. The Grassmannian n-logarithm function. Let h1, ..., h2n be arbitrary 2n hyper-
planes in CP n−1. Choose an additional hyperplane h0. Let fi be a rational function on CP n−1

with divisor hi − h0. It is defined up to a scalar factor. Set

Pn(h1, ..., h2n) :=

∫

CPn−1

r2n−1(

2n
∑

j=1

(−1)jf1 ∧ ... ∧ f̂j ∧ ... ∧ f2n)

It is skewsymmetric by the definition. Notice that

2n
∑

j=1

(−1)jf1 ∧ ... ∧ f̂j ∧ ... ∧ f2n =
f1
f2n

∧
f2
f2n

∧ ... ∧
f2n−1

f2n

So if g1, ..., g2n−1 are rational functions such that divgi = hi − h2n then

Pn(h1, ..., h2n) =

∫

CPn−1

r2n−1(g1, ..., g2n−1)

Theorem 3.4. The function Pn has the following properties:
a) For any 2n+ 1 hyperplanes in CP n one has

2n+1
∑

j=1

(−1)jPn(hj ∩ h1, ..., hj ∩ h2n+1) = 0
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b) For any 2n+ 1 hyperplanes in CP n−1 one has

2n+1
∑

j=1

(−1)jPn(h1, ..., ĥj, ..., h2n+1) = 0

Proof.
a) Let g1, ..., g2n+1 be rational functions on CP n with divgi = hi − h0. Then

dr2n

(

2n+1
∑

j=1

(−1)jg1 ∧ ... ∧ ĝj ∧ ...g2n+1

)

= (11)

2πiδ(fj)dfj ∧ d̄fj ∧ r2n−1

(

∑

j 6=i

(−1)jg1 ∧ ...ĝi ∧ ... ∧ ĝj ∧ ...g2n+1

)

(Notice that d log g1 ∧ ... ∧ ˆd log gj ∧ ... ∧ d log g2n+1 = 0 on CP n). Integrating (11) over CP n

we get a).
b) is obvious: we apply r2n−1 to zero element. Theorem is proved.

Conjecture 3.5. The Chow n-logarithm function can be expressed by the Grassmannian n-
logarithm function.

4. Relation with classical polylogarithms. The classical polylogarithms ([Lei]) are
defined by the following absolutely convergent series

Lin(z) =

∞
∑

k=1

zk

kn
|z| < 1

They are continued analytically to a covering of CP 1\{0, 1,∞} by induction

Lin(z) :=

∫ z

0

Lin−1(t)
dt

t
, Li1(z) = − log(1− z)

The classical n-logarithm Lin(z) has a remarkable single-valued version (Zagier’s function,
see [Z1] and [BD]):

Ln(z) :=
Re (n : odd)
Im (n : even)

(

n−1
∑

k=0

βk log
k |z| · Lin−k(z)

)

, n ≥ 2

Here 2x
e2x−1

=
∑∞

k=0 βkx
k, so βk = 2kBk

k!
where Bk are Bernoulli numbers.

Consider the following special family of (n− 1)-planes ha in A2n−1 defined in coordinates
z1, ..., z2n−1 by equations

zn = 1− z1, zn+i = zi − zi+1, (i = 1, ..., n− 2), z2n−1 = zn−1 − a (12)

If n > 2 ha even does not intersect properly the codimension 2 faces of L. However the
function Pn(ha) was defined in s.3.
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Theorem 3.6. The value of the function Pn on the plane (12) is equal to (2πi)−nLn(a)

To visualize the configuration of hyperplanes {h ∩ Li} in h consider the projectively dual
configuration of points in CP n−1. For the plane ha it looks as follows. Consider the set of
vertices l1, ..., ln of a simplex and points m1 ∈ l1l2, m2 ∈ l2l3, ..., mn ∈ lnl1 on its sides (see the
picture). Then the configuration of points (l1, ..., ln, m1, ..., mn) corresponds to a certain plane
ha and any plane ha produces such a configuration.

m
m

m
m

l
0  

1

l

l

l

2

2

3

3

0  

1

Figure 1:

The constant a has the following geometric interpretation. Let m̂i be the point of intersec-
tion of the line lili+1 with the hyperplane passing through all the points mj exept mi. Then
a = r(li, li+1, mi, m̂i+1) (here r is the cross-ratio).

Theorem (3.6), and proposition (3.2) imply that

Ln(a) = cn · (2π)
n

∫

CPn−1

log |1− z1|

n−1
∏

i=1

d log |zi| ∧

n−2
∏

i=1

d log |zi − zi+1| ∧ d log |zn−1 − a|

(cn is a rational constant). This presentation seems new even for the dilogarithm.

4 Cocycles for all continuous cohomology classes of GLN(C)

Let H2n−1
c (GLn(C),R) be the space of continuous cohomology of the Lie group GLn(C). It is

known that
H∗

c (GLn(C),R) = Λ∗
R(c1, c3, ..., c2n−1)

where c2k−1 ∈ H2n−1
c (GLk(C),R) are certain canonical classes called the Borel classes ([Bo1]).

In this section we will construct measurable cocycles for all Borel classes. Measurable and
continuous cohomology of a Lie group G are isomorphic.

1. A (2n − 1)-cocycle of the Lie group GLn(C). Choose a hyperplane h in CP n−1.
Then the function

cn2n−1(g1, ..., g2n) := Pn(g1h, ..., g2nh) (13)

is a (2n-1)-cocycle of GLn(C). The cocycle condition is just the property b) in theorem (3.4).
The cocycle cn2n−1(g1, ..., g2n) is defined everywhere on GLn(C)

2n but discontinuous near the
identity.
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2. A (2n − 1)-cocycle for the Borel class of GLn+m(C). Theorem (3.4a) guarantee
that this cocycle can be extended to the group GL(C). Namely, to do this for the group
GLn+m(C) we should proceed as follows.

It is convinient to consider the dual function P̃n on configurations of 2n points in CP n−1.
By definition its value value at a configuration of points is equal to the value of Pn on the
projectively dual configuration of hyperplanes in CP n−1

Let us call by m-flag in CP k a sequence of subspaces L• := L0 ⊂ L1 ⊂ ... ⊂ Lm−1 where
dimLi = i.

Let H1∗H2 be the joining of planes H1, H2. In general dim(H1∗H2) = dimH1+dimH2−1.

For 2n generic (m+ 1)-flags L
(1)
• , ..., L

(2n)
• in CP n+m−1 set

P̃(m)
n (L(1)

• , ..., L(2n)
• ) :=

∑

j1+...+j2n=m

P̃n

(

(L
(1)
j1−1 ∗ ... ∗ L

(2n)
j2n−1|L

(1)
j1
, ..., L

(2n)
j2n

)
)

Here (L
(1)
j1−1 ∗ ... ∗L

(2n)
j2n−1|L

(1)
j1
, ..., L

(2n)
j2n

) is the configuration of 2n points in CP n−1 obtained by

the projection of L
(k)
jk

with the center at L
(1)
j1−1 ∗ ...∗L

(2n)
j2n−1. More precisely, the set of all planes

of dimension j1+ ...+ j2n containing L
(1)
j1−1 ∗ ...∗L

(2n)
j2n−1 is a projective space of dimension n−1.

Each L
(k)
jk

provides a point in this space.
Choose an (m+ 1)-flag L• in CP n+m−1. Set

cn+m
2n−1(g1, ..., g2n) := P̃(m)

n (g1L
(1)
• , ..., g2nL

(2n)
• ) (14)

This function is defined on a Zariski open subset of GLn+m(C)
2n for which the flags in the right

hand side of (14) are in generic position. The cocycles ck3 where also considered by K.Igusa
(unpublished).

Theorem 4.1. a) cn+m
2n−1(g1, ..., g2n) is a measurable cocycle of the Lie group GLn+m(C).

b) The cohomology class of (2πi)ncn+m
2n−1 in H

2n−1
c (GLn(C),R) is a non zero rational multiple

of the Borel class.

Proof. a) follows from the Key lemma in s.2.1 in[G3] and b) from theorem 5.12 in [G3].
The existence of the bi-Grassmannian n-logarithm is the main ingredient of the proof.

This leads to an explicit computation of the Borel regulatorK2n−1(C) −→ R and so, thanks
to the Borel theorem [Bo2], to formulas for special values of Dedekind zeta-functions at s = n.
(These results should not be confused with Zagier’s conjecture, which remaines unproved for
n > 3).

5 Explicit construction of Beilinson’s regulator

1. Affine flags. An affine p-flag is a p-flag L• together with a choice of vectors li ∈ Li/Li−1

for all 1 ≤ i ≤ p. We will denote affine p-flags as (l1, ..., lp). Several affine p-flags are in general
position if all the corresponding subspaces Li are in generic position.
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Let X be a G-variety. There is a simplicial variety BX• where BX(i) := G\X i+1. Let
τ≥nBX• be the n-truncated simplicial variety, where τ≥nBX(i) = 0 for i < n and BX(i)

otherwise.
Denote by Ap(k) the manifold of all affine p-flags in an k-dimensional vector space V k

over a field F . The group GL(V k) acts on it. Let B̂Ap(k)• ⊂ BAp(k)• be the semisimplicial
subvariety consisting of configurations of affine p-flags in generic position in V k.

2. A correspondence between the affine flags and the bi-Grassmannian ([G3],
§3). A finite correspondence between (semi)simplicial varieties X• and Y• is a (semi)simplicial
subvariety Z• ⊂ X• × Y• finite over X•.

There is the following finite correspondence T between the truncated semisimplicial vari-
eties τ≥nB̂A

m+1(n+m)• and Ĝ(n)•. For a point

a = (v
(0)
1 , ..., v

(0)
m+1; ...; v

(k)
1 , ..., v

(k)
m+1) ∈ τ≥nB̂A

m+1(n+m)(k)

representing a configuration of (k+1) affine (m+1)-flags in a vector space of dimension n+m
set

T (a) := ∪k−n
q=0 ∪i0+...+ik=m−q α

−1(L
(0)
i0

⊕ ...⊕ L
(k)
ik
|v

(0)
i0+1, ..., v

(k)
ik+1)

Here (L
(0)
i0
⊕...⊕L

(k)
ik

|v(0)i0 + 1, ..., v
(0)
ik+1) is the configuration of vectors in the space V m/⊕k

s=0

L
(s)
is

obtained by the projections of vectors v
(0)
i0+1, ..., v

(k)
ik+1 and α

−1(...) is the corresponding point
of the appropriate Grassmannian, see (1.4) in [G3].

Theorem 5.1. T is a correspondence between τ≥nB̂A
m+1(n+m)• and Ĝ(n)•

Proof. This is the Key lemma in s.2.1 of [G3] translated to the language of semisimplicial
varieties.

3. A construction of a cocycle representing Beilinson’s class in H2n(BGL(C)•,R(n)D).
Set G := GL(V n+m). Recall that BG• is the following simplicial variety:

BG• := pt
s
0

✛

✛

s
1

G
s
0

✛

✛

✛

s
2

G2

s
0

✛

✛

✛

✛

s
3

G3

s
0

✛

. . .
✛

s
4

Denote by Dp,q(X) the space of (p, q) currents on X . To compute the hypercohomology
with coefficients in the complex of sheaves RD(n) (see (8) we will replace Ω

n+• by its Dolbeaux
resolution Dn+•,•.

Then a cocycle representing a class in H2n(BG(C)•,R(n)D) is a sequence of currents

αi ∈ Ai(G(C)2n−1−i), and βj ∈ Dn,j(G(C)n−j), 0 ≤ i, j ≤ n− 1

satisfying the following conditions ( s∗ =
∑

(−1)ks∗k):

dαi = s∗αi+1, dαn−1 = Im(2πi)−nβn, dβj = s∗βj+1 (15)

Choose an affine (m+ 1)-flag L• in V n+m. It defines canonical map

BG(C)•
pL
−→ BAm+1(n+m)

11



Let B̂G(C)• := p∗LB̂A
m+1(n+m). One has

B̂G(C)•
pL
−→ B̂Am+1(n+m)

T
−→ Ĝ(n)(C)

Set α̂i := p∗LT
∗(ψn

n−i−1(n)). The Dolbeaux currents αn−1 and βj satisfying these properties
where constructed in [G3] (see s.4.2 and s. 5.5 there). The currents α̂i satisfy the conditions
(15) because the bi-Grassmannian polylogarithms satisfy similar ones.

The currents α̂i can be canonically extended to certain currents αi on BG(C)• satisfying
the same conditions. Details will be published elsewhere.

Using this Beilinson’s regulator (γ is the Adams filtration)

grγnK2n−j(X) −→ Hj(X,R(n)D)

for any algebraic variety X over C is obtained by the standard procedure ([B]).

6 The Abel-Jacobi map for Higher Chow groups

1. Regulator to the real Deligne cohomology. Let zr(X, i) be the free abelian group
generated by irreducible codimension r algebraic cycles in X ×Ai which intersect properly all
faces X × LI .

The intersection with codimension 1 faces provides zr(X, •) with a structure of simplicial
abelian group. Let zr•(X) be the corresponding (homological) complex. Its homology are
Bloch’s Higher Chow groups: CHr(X, i) = Hiz

r
•(X)

Now let X be a smooth variety. Let us construct homomorphisms

Ai : z
r(X, i) −→ A2r−i−1(X(C)) Di : z

r(X, i) −→ Dr,r−i(X(C))

Denote by πA (resp πX) projection of X×Ai to Ai (resp X). If ω ∈ S2r−i−1(X(C)) is a smooth
test form and Y ∈ zr(X, i) then

< Ai(Y ), ω >:=

∫

Y (C)

π∗
Xω · π∗

Ari(L;H) < Di(Y ), ω >:=

∫

Y (C)

π∗
Xω · π∗

AΩL

If Y → πX(Y ) is not a finite map the second integral vanish thanks to the type considerations.
This is always the case if i > r.

Let us cook up from zr•(X) a cohomological complex setting zr,•(X) := zr(X, 2r − •). Set
A• := A2r−•, D

• := D2r−•.

Theorem 6.1. Y ∈ zr,i(X) 7−→ (Ai(Y ), Di(Y )) provides a homomorphism from the complex
zr,•(X) to the Dolbeaux resolution of the Deligne complex (8)

In particulary we get the regulator map CHr(X, i) −→ H2r−i(X(C),R(r)D) (compare with
[Bl2]). It is quite remarkable that it is defined explicitely on the level of complexes.

2. The Abel-Jacobi map. One has exact sequence

0 −→
H2r−i−1(X,C)

H2r−i−1(X,Z(r)) + F rH2r−i−1(X,C)
−→ H2r−i(X,Z(r)D) −→

12



H2r−i(X,Z(r)) ∩ F rH2r−i(X,C) −→ 0

We will construct first the map

CHr(X, i) −→ H2r−i(X,Z(r)) ∩ F rH2r−i(X,C) (16)

Namely, let us think of Am as of hyperplane
∑m

i=0 xm = 1. Consider canonical chains ∆m :=
{xi ∈ R, xi ≥ 0}. Let Y ∈ zr(X, i), so Y is a cycle in X(C) × Ai(C). Set r(Y ) := πX(Y ∩
X(C)) × ∆i. This is a chain of codimension 2r − i in X(C). If Y is cycle in the complex
zr(X, •) then r(Y ) is a topological cycle. Its homology class is the image of Y under the map
(16).

If it is zero one can define the Abel-Jacobi map

CHr(X, i) −→
H2r−i−1(X,C)

H2r−i−1(X,Z(r)) + F rH2r−i−1(X,C)

as follows. Choose a chain bY which bounds the cycle r(Y ). Then

ω 7−→

∫

b(Y (C))

ω −

∫

Y (C)

π∗
Xω · π∗

Ari(L;H)

is the current representing the cohomology class of the Abel-Jacobi map.

7 The multivalued analytic version of Chow polyloga-

rithms

1. A definition. Let Z̃n
m be the variety parametrizing collections (Xm; f1, ..., fn+m) where

fi are rational functions with normal crossing divisors on an m-dimensional complex variety
Xm. (In particulary we require that all irreducible components of divfi has multiplicity ±1).
Choose a coordinate z on P 1. The function fi defines a rational map X −→ (P 1)n+m. So Z̃n

m

is the higher cubical Chow variety ([BK]).
Let me scetch a construction of multivalued analytic (n − m − 1)-forms

Ln
m(Xm; f1, ..., fn+m) on these varieties satisfying the conditions similar to (1),(2).
There is a canonical m-chain [∞, 0]m ⊂ (CP 1)m. Let

(f1, ..., fm) : X(C) −→ (CP 1)m

Set γ0f1,...,fm := (f1, ..., fm)
−1[∞, 0]m. Let Xfi be the divisor of the function fi. Then this

chain defines a relative homology class in Hm(X(C), Xf1 ∪ ... ∪Xfm). Let γf1,...,fm be a chain
relatively homotopic to γ0f1,...,fm. Suppose that it is in generic position with respect to the
divisors of the functions fm+1, ..., fn. Set

Ln
m(X ; f1, ..., fm+n) :=

1

m!(n− 1)!
Altm+n

∫

γf1,...,fm

log fm+1d log fm+2 ∧ ... ∧ d log fm+n (17)

13



We call this collection of forms the multivalued Chow n-logarithm.
There are the ”boundary maps”

ai : (X ; f1, ..., fm+n) −→ (Xfi; f1, ..., f̂i, ..., fm+n)

(the restriction of the functions fj, j 6= i, to the divisor Xfi). The main properties are

dLn
m = (n+ 1) ·

m+n
∑

i=1

(−1)ia∗iL
n
m−1 and

2n
∑

i=1

(−1)ia∗iL
n
n−1 ∈ (2πi)nQ

for appropriately choosen branches of these multivalued forms.
In [HaM1], [HaM2] M.Hanamura and R.MacPherson suggested an interesting geometrical

construction of a sequence of multivalued analytic forms on Grassmannians satisfying condi-
tions similar to (1),(2), see also [H] for some existence results in this direction.

2. An example: the multivalued Chow dilogarithm function. It is defined as
follows:

L2(X ; f1, f2, f3) :=
1

3
Alt3

∫

γf1

log f2d log f3

Here γf is a path on X(C) relatively homotopic to f−1[∞, 0]: its boundary is the divisor
(f−1(0))− (f−1(∞)).

It satisfies the differential equation

dL2(X ; f1, f2, f3) = Alt3
∑

x∈X(C)

vx(f1) log f2(x)d log f3(x)

where vx(f1) is the order of zero of function f1 at the point x.
3. Motivic interpretation. The integral

∫

γf1,...,fm

log fm+1d log fm+2 ∧ ... ∧ d log fm+n

is a period of the following mixed motive:

M(X ; f1, ..., f2n−1) := Hn
(

(Gm, 1)
n × (P 1)n−1, X ∪ BX)

)

Here Gm := P 1\{0,∞}, and BX is constructed as follows. Let Kn−1 ⊂ (P 1)n be ”the algebraic
cube”. It is union of the hyperplanes where one of the coordinates 0 or ∞. For each x ∈
X ∩Kn−1 × (P 1)n consider the line through x in the direction of fm+1-axis. Bx is the union
of all these lines.

This mixed motive has canonical n-framing. Namely we have a distinguished vector in
grW2nM(X ; f1, ..., f2n−1) and a functional on grW0 M(X ; f1, ..., f2n−1). The vector is given by the
form d log fn∧...∧d log f2n−1. The functional corresponds to a relative 2n-cycle whose boundary
component on X is γf1,...,fn−1

. Our function is the integral of the form d log fn∧ ...∧d log f2n−1

over this 2n-chain.
A more detailed exposition [G5] of these constructions will appear later.
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