Reading

Read and make sure you understand FIS §1.1, §1.2, §1.3.

Problems

In writing down your solution you should justify every statement. If it is true, cite a Definition, Lemma, Proposition, Theorem, or Corollary etc. from the book or from class, or give a proof; if it’s false, provide a counterexample.

1. Let F be a field. Prove the following statements:

 (a) The two neutral elements 0 and 1 in F are unique.

 (b) Let $a \in F$ be an element. Then $-a \in F$ is unique. If $a \neq 0$ then $1/a \in F$ is unique as well.

 (c) $0 \cdot a = 0$ and $(-1) \cdot a = -a$ for every $a \in F$.

 (d) $-(a \cdot b) = (-a) \cdot b$ for every $a, b \in F$.

 (e) Let $a, b \in F$ be a pair of elements. Then the equation $a + x = b$ has a unique solution in F. If $a \neq 0$ then the equation $a \cdot x = b$ has a unique solution in F as well.

2. Let F be a field. Let V be your favorite vector space discussed in class (e.g. n-tuples, matrices, polynomials) over the field F. Verify in detail that V indeed satisfies all of the vector space axioms.

3. FIS §1.2 Exercises 1, 13, 21.