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Metric on moduli of Higgs bundles
Andrew Neitzke

These are notes for a lecture series on moduli of Higgs bundles, originally delivered
at the mini-workshop “Gauge theory and Geometry in Göttingen” March 1-4, 2018.

1 Introduction

The aim of these lectures is to describe a conjectural approach to “more explicitly”
understanding the hyperkähler metric g on the moduli space M of Higgs bundles.

1.1 Overview

M is a complex integrable system: this means that it admits a holomorphic fibration
π : M → B with complex Lagrangian fibers. There is a complex codimension 1 “singular
locus” Bsing ⊂ B. Let Breg = B \ Bsing, and Mreg = π−1(Breg). On Mreg, the fibers of
π are compact complex tori, roughly the Jacobians of a family of smooth spectral curves
Σϕ⃗ ⊂ T∗C parameterized by ϕ⃗ ∈ Breg.

The conjectural picture we are aiming for is that the hyperkähler metric g on M is
constructed from two ingredients:

1. The special Kähler structure on Breg, constructed from periods Zγ of the spectral
curves Σϕ⃗,

2. A collection of integer “Donaldson-Thomas invariants” DT(γ), which count (tropi-
calizations of) special Lagrangian discs in T∗C with boundary on Σϕ⃗.

So, what we will describe is a conjectural recipe which uses Zγ and DT(γ) to build the
hyperkähler metric on M.

If one sets all DT(γ) = 0 in this recipe, one obtains a simple and explicit hyperkähler
metric gsf on Mreg, the “semiflat metric,” so called because it is flat (and translation in-
variant) on the torus fibers. gsf however does not extend over Msing, so it cannot be equal
to Hitchin’s metric on M. The effect of the nonzero DT(γ) is to add corrections which
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break the translation invariance. Away from Msing, these corrections are of the order
e−2M where M is the area of the smallest special Lagrangian disc, i.e. we predict

g = gsf + O(e−2M). (1.1)

In particular, if we follow some path to infinity in M along which M → ∞, we expect
to see g converging to gsf. On the other hand, as we approach Msing the effect of these
corrections is large: it smoothes out the singularity of gsf.1

The strategy of the lectures will be roughly:

1. The moduli space M, its fibration M → B and special Kähler structure.

2. The conjectural metric construction.

3. The available evidence that the conjecture is correct.

1.2 References

The conjecture reviewed in these notes is mostly contained in the papers [1, 2], which
are joint work of mine with Davide Gaiotto and Greg Moore. In [3] I reviewed some
parts of the conjecture, focusing on the abstract construction of hyperkähler metrics from
a special Kähler base and Donaldson-Thomas invariants; in these lectures I focus more on
the specific example of moduli spaces of parabolic Higgs bundles.

These works depend on many prior developments in physics and mathematics. Here I
can only single out a few which were of singular importance (for more, see the references
in [1, 2]):

• The work [1] originated in an attempt to understand the physical meaning of the
remarkable wall-crossing formula for generalized Donaldson-Thomas invariants,
given by Kontsevich-Soibelman [4].

• Many of the key constructions in [1] can be understood as infinite-dimensional ana-
logues of constructions used by Cecotti-Vafa and Dubrovin in tt∗ geometry [5, 6],
with additional inspiration from work of Bridgeland and Toledano Laredo [7].

• The application to Hitchin systems in [2] depended importantly on the work of
Fock-Goncharov on moduli spaces of local systems over surfaces [8], as well as the
foundational work of Hitchin [9] and Corlette, Donaldson, Simpson [10, 11, 12] on
Higgs bundles without singularities, Simpson’s extension to Higgs bundles with
regular singularities [13], and Biquard-Boalch for Higgs bundles with wild ramifi-
cation [14].

1In some cases the hyperkähler metric g on M actually has singularities. The singularities of g are milder
than those of gsf — in particular, the singularities of g occur in complex codimension at least 2. In these
cases, the corrections do not completely smooth the singularity of gsf, but they still improve it.
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2 Background on Hitchin system

2.1 Data

Throughout these lectures we will fix data (G, C, m⃗) as follows:

• A group G = SU(K) or U(K), with diagonal subgroup T ⊂ G,

• A compact Riemann surface C, equipped with a finite subset P ⊂ C,

• A vector m⃗p = (mC
p , mR

p ) ∈ CK ⊕ RK for each p ∈ P, with the additional constraint
that all components of mR

p lie in [0, 2π).

It is often convenient to think of mC
p and mR

p as diagonal K × K matrices rather than as
vectors. They must satisfy a further constraint:

• If G = U(K), then ∑p∈P Tr mC
p = 0, and ∑p∈P Tr mR

p ∈ 2πZ.

• If G = SU(K), then Tr mC
p = 0, and Tr mR

p ∈ 2πZ.

Finally, we require that 2gC + |P| − 2 > 0; equivalently, if C has genus 0 we require
|P| ≥ 3, and if C has genus 1 we require |P| ≥ 1.

Definition 2.1 (Generic puncture data). We say m⃗ is generic if, for all p ∈ P, each mC
p ∈ CK

has all entries distinct; equivalently, as a diagonal matrix, mC
p is a regular element. The

generic case is the simplest case, and for the main purposes of these lectures, it is fine to
restrict to the generic case throughout.

Example 2.2 (The case of G = SU(2)). A good case to keep in mind is the case G = SU(2).
In that case our data reduces to a Riemann surface C, a finite subset P ⊂ C, and numbers
mC

p ∈ C, mR
p ∈ R for each p ∈ P. The generic case is the case when all mC

p ̸= 0.

Remark 2.3. For any p ∈ P, the outputs of all constructions to be discussed below are
invariant under the symmetric group SK acting on m⃗p.

2.2 Moduli of Higgs bundles

Usually one would start out with ordinary Higgs bundles, but with an eye to what will
come later, we go straight to the parabolic case. Roughly this means that we will consider
Higgs fields φ which, rather than being holomorphic, are allowed to have simple poles at
the points p ∈ P.2

2The parameter mC
p will control the eigenvalues of the residue of φ; the “strongly parabolic” case of

nilpotent residues is thus the case mC
p = 0, which we usually avoid.
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The original reference for the material in this section is Simpson [13]. A very useful
review of the unpunctured case can be found in [15] and references therein.

Definition 2.4 (Parabolic Higgs bundles for G = U(K)). When G = U(K), a (G, C, m⃗)-
Higgs bundle is a pair (E, φ), where:

• E is a holomorphic vector bundle of rank K over C,

• φ is a holomorphic section of End E ⊗ KC(P),

with additional “parabolic structure” at the points p ∈ P as follows. Each Ep carries a
decreasing filtration with weights in [0, 2π), where

dim Grα Ep = multiplicity of α in mR
p . (2.1)

The residue Resp φ preserves the filtration on Ep and thus descends to act on the graded
pieces Grα Ep, with generalized eigenvalues determined by mC

p . Altogether then,

Gr Ep =
⊕

λ⃗

Ep,⃗λ (2.2)

where Ep,⃗λ is in grade λR, and Resp φ acts on Ep,⃗λ with generalized eigenvalue λC.

Remark 2.5 (Parabolic structure in case of generic puncture data). The case of generic
puncture data is simpler: then Ep =

⊕
λ⃗

Ep,⃗λ with all Ep,⃗λ one-dimensional, Resp φ acting

by λC on Ep,⃗λ, and filtration weight given by λR on Ep,⃗λ.

Definition 2.6 (Parabolic Higgs bundles for G = SU(K)). When G = SU(K), a (G, C, m⃗)-
Higgs bundle is a pair (E, φ) as in Definition 2.4, obeying two additional conditions:

• det E is trivial in the parabolic sense: this means that the holomorphic line bundle
(det E)⊗O

(
∑p∈P np p

)
over C is trivial, where np = 1

2π Tr mR
p .

• Tr φ = 0.

Definition 2.7 (Parabolic degree). Let E be a (G, C, m⃗)-Higgs bundle, and E′ ⊂ E any
holomorphic subbundle preserved by φ. Then E′

p also gets a filtration with weights in
[0, 2π), and we define

pdeg E′ = deg E′ +
1

2π ∑
p

∑
µ∈[0,2π)

µ dim Grµ E′
p. (2.3)

Example 2.8 (Parabolic degrees in the simplest case). With generic puncture data and
G = SU(2), the two weights which occur in the decomposition of Ep are either (0, 0) or of
the form (α, 2π − α), for some α ∈ (0, π]. Assume we are in the latter case. Now suppose
E′ ⊂ E is a line subbundle. If E′

p is the line Ep,⃗λ with λR = α, then the contribution to
pdeg E′ from p ∈ P is 1 − α

2π ; otherwise the contribution is 1 − α
2π .
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Remark 2.9 (Integrality of pdeg E). Our conditions on mR imply that the whole bundle E
has pdeg E ∈ Z, either for G = U(K) or G = SU(K).

Definition 2.10 (Stability of parabolic Higgs bundles). We say E is stable if for all E′ ⊂ E
preserved by φ we have

pdeg E′

rank E′ <
pdeg E
rank E

. (2.4)

We say E is polystable if it is a direct sum of stable Higgs bundles with the same pdeg
rank .

Proposition 2.11 (Moduli space of parabolic Higgs bundles exists). There is a moduli
space M = M(G, C, m⃗) parameterizing polystable (G, C, m⃗)-Higgs bundles (E, φ), with
pdeg E = 0, up to equivalence. M is a manifold away from the locus of unstable (but
still polystable) Higgs bundles. It carries a natural complex structure I1 and holomorphic
symplectic form Ω1.

The holomorphic symplectic form Ω1 comes from the fact that variations of the parabolic
bundle E are valued in (for G = U(K)) H1(ParEnd E), while variations of the Higgs field
φ are valued in H0(SParEnd E ⊗ KC(P)), and the two are Serre dual.3

Remark 2.12 (Dimension of M). The complex dimension of M is

dimC M =

{
(2gC − 2)K2 + 2 + |P|K(K − 1), G = U(K),
(2gC − 2)(K2 − 1) + |P|K(K − 1), G = SU(K).

(2.5)

From now on we write dimC M = 2r.

Example 2.13 (The abelian case). G = U(1) is the abelian case, in which dimC M = 2gC
irrespective of |P|. When P = ∅ we have simply M = T∗ Jac C, the cotangent bundle
to a compact complex torus. When P ̸= ∅, M is a torsor over T∗ Jac C. This is the only
example of M which is so “linear” in nature: for nonabelian G the space M will be much
more interesting.

Example 2.14 (Some low-dimensional nonabelian cases). Here are a few examples:

• If G = SU(2) and C is a genus 0 curve with |P| = 4, then dimC M = 2.

• If G = SU(3) and C is a genus 0 curve with |P| = 3, then again dimC M = 2.

• If we want to take P = ∅, then the simplest nonabelian case is G = SU(2) and C a
genus 2 curve, in which case dimC M = 6.

Remark 2.15 (Restriction of Jordan form). When some λ⃗ occurs with multiplicity greater
than 1 in m⃗p, there is a natural way of getting a subspace of M: we can restrict the Jordan
block structure of the endomorphism Resp φ acting in each Ep,⃗λ (e.g. if λ⃗ has multiplicity

2 we can require that Resp φ acts by the scalar λC in Ep,⃗λ instead of a nontrivial Jordan

3Here ParEnd means endomorphisms preserving the filtration, and SParEnd ⊂ ParEnd means endo-
morphisms which in addition act as 0 on the associated graded (i.e. they are strictly upper triangular, not
just upper triangular).
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block). In the physics literature it is proposed that this subspace of M can be considered
as a moduli space of Higgs bundles in its own right, with all the structure we will discuss
in the rest of these lectures; in particular we can get more 2-dimensional examples in this
way. I am not sure whether this construction has yet been carefully developed in the
mathematics literature.

2.3 The Hitchin map

Now we want to exhibit M as a complex integrable system, i.e. a holomorphic La-
grangian fibration.

Given a Higgs bundle (E, φ) ∈ M and z ∈ C, we can consider the eigenvalues of φ(z).
As z varies these sweep out a curve Σ ⊂ Tot[KC(P)]:

Σ = {(z, λ) : det(λ − φ(z)) = 0} ⊂ Tot[KC(P)]. (2.6)

We call Σ the spectral curve associated to the Higgs bundle (E, φ). The projection Tot[KC(P)] →
C restricts to ρ : Σ → C which is a K-fold branched covering.

Now what are all the curves Σ we can get in this way? We can describe them by their
coefficients, ie write

det(λ − φ) = λK +
K

∑
n=1

λK−nϕn = 0, ϕn ∈ KC(P)n. (2.7)

The coefficients ϕ⃗ = (ϕ1, . . . , ϕK) lie in the Hitchin base:

Definition 2.16 (Hitchin base). If G = U(K), the Hitchin base B = B(G, C, mC) is the
space of tuples ϕ⃗ = (ϕ1, ϕ2, . . . , ϕK) where ϕn is a holomorphic section of KC(P)n, and mC

p

controls the residues ϕn(p) via the equation4

det(λ − mC
p ) = λK +

K

∑
n=1

λK−nϕn(p). (2.8)

If G = SU(K) then we make the same definition except that ϕ1 = 0 everywhere.

B is a complex affine space, a torsor for the complex vector space of ϕ⃗ vanishing at P.

4Recall that for a section of Kn
C the residue at a pole is the coefficient of (dz)n

zn : this is a well defined
complex number. This generalizes the case of a meromorphic 1-form where the residue at a pole is the
coefficient of dz

z . Said otherwise, the fiber of KC(P) over p ∈ P is canonically trivial, and likewise for
KC(P)n.
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Definition 2.17 (Hitchin map). The Hitchin map is the map π : M → B given by

(E, φ) 7→ (ϕ1, . . . , ϕK) (2.9)

where the ϕn are defined by (2.7).

Proposition 2.18 (Hitchin map has Lagrangian fibers). The fibers Mϕ⃗ = π−1(ϕ⃗) are com-

pact complex Lagrangian subsets of (M, Ω1). (In particular, dimC B = 1
2 dimC M.)

[say why?]
We can say more precisely what the fibers are, over most of the Hitchin base:

Definition 2.19 (Singular locus and smooth locus). The singular locus Bsing ⊂ B is the set
of ϕ⃗ ∈ B for which Σϕ⃗ is singular. Bsing has complex codimension 1 in B. The smooth locus
is Breg = B \ Bsing. We also let Mreg = π−1(Breg).

Proposition 2.20 (Fibers of the Hitchin map over Breg). Suppose ϕ⃗ ∈ Breg. Let Mϕ⃗ =

π−1(ϕ⃗). Then:

• If G = U(K), then Mϕ⃗ is a torsor over Jac Σϕ⃗. After choosing spin structures on C
and on Σϕ⃗, in the case of generic puncture data, we can identify Mϕ⃗ with the space
of flat U(1)-connections over Σϕ⃗ \ ρ−1(P) with holonomy around ρ−1(p) given by
exp(imR

p ).

• If G = SU(K), then Mϕ⃗ is a torsor over Prym(ρ : Σϕ⃗ → C). After choosing spin
structures on C and on Σϕ⃗, in the case of generic puncture data, we can identify Mϕ⃗

with the space of flat U(1)-connections ∇ over Σϕ⃗ \ ρ−1(P) with holonomy around
ρ−1(p) given by exp(imR

p ), equipped with a trivialization of det ρ∗∇.

So we reach the following picture: a point ϕ⃗ ∈ Breg gives a smooth spectral curve Σϕ⃗;
the torus Mϕ⃗ is a space of flat U(1)-connections over Σϕ⃗, with fixed holonomies around
the punctures.

Remark 2.21 (Concrete description of the singular locus). What is Bsing concretely? The
branch locus of the covering ρ : Σϕ⃗ → C is the zero locus of the discriminant ∆ϕ⃗ of the

equation (2.7). ∆ϕ⃗ is a holomorphic section of KC(P)K(K−1). ϕ⃗ ∈ Breg iff ∆ϕ⃗ has only
simple zeroes; in this case it has K(K − 1)(2gC + |P| − 2) of them, and the genus of Σϕ⃗ is

gΣ = 1 + K2(gC − 1) +
1
2

K(K − 1)|P|. (2.10)

Example 2.22 (Hitchin base and spectral curves for G = SU(2)). When G = SU(2), B is
the space of meromorphic quadratic differentials ϕ2 on C, with a pole of order ≤ 2 at each
p ∈ P, of residue Resp ϕ2 = (mC

p )
2. It has complex dimension dimC B = 3gC − 3 + |P|.

The spectral curve for a given ϕ2 ∈ B is

Σϕ2 = {(z, λ) : λ2 + ϕ2(z) = 0} ⊂ Tot[KC(P)]. (2.11)
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Σϕ2 is a 2-fold branched covering of C, branched at the zeroes of ϕ2. The regular locus
Breg ⊂ B consists of those ϕ2 which have only simple zeroes (4gC + 2|P| − 4 of them).

Example 2.23 (A one-dimensional Hitchin base). Suppose G = SU(2), |P| = 4, gC = 0.

• If mC = 0, B is a complex vector space of dimension 1, and Bsing ⊂ B is the ori-
gin; for generic mR, the fiber Mϕ⃗=0 consists of five CP1’s arranged in an affine D4

configuration.

• If mC ̸= 0, B is a complex affine space of dimension 1. If mC is completely generic,
Bsing ⊂ B consists of 6 points, and the fiber Mϕ⃗ over any ϕ⃗ ∈ Bsing is a nodal torus.
(For special choices of mC some of these discriminant points may collide.)

[also do the 3-punctured SU(3) case?]
We should emphasize that this one-dimensional example can lead to the wrong mental

picture about the generic case: generally, when mC = 0, Bsing is some codimension-1 cone
inside B, and in particular, when dimB > 1, Bsing is not compact. For mC ̸= 0, Bsing ⊂ B
is not a cone anymore, but near asymptotic infinity of B, it still looks asymptotically like
a cone.

2.4 The hyperkähler metric

A key fact about M is that it carries a canonically defined hyperkähler metric g. How-
ever, g is not easily written in closed form.

To construct g, one needs to consider Hitchin’s equation: given a Higgs bundle (E, φ)
this is a PDE for a Hermitian metric h in E, written

FDh + [φ, φ†h ] = 0. (2.12)

Here Dh denotes the Chern connection in (E, h), the unique h-unitary connection com-
patible with the holomorphic structure of E. One considers (2.12) for metrics h which are
smooth on C − P and have a prescribed singular behavior near each p ∈ P.

Definition 2.24 (Adapted metrics for generic puncture data). In the case of generic punc-
ture data, a Hermitian metric h in E is adapted if, for a holomorphic section s where
s(p) ∈ Ep has grade α, we have h(s, s) ∼ |z| 2α

2π near p.

Remark 2.25 (Holonomy of Dh around punctures for generic puncture data). For an
adapted metric h on E, and generic puncture data, the holonomy of Dh around p is just
exp(imR). This is one of the most concrete ways of understanding the role of mR in the
story.
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For more general puncture data, the situation is a bit more complicated: in addition
to polynomial growth we need to allow logarithmic behavior, in a way dictated by the
Jordan block structure of φ. The precise statement can be found in [13].

A basic fact from [13] is:

Theorem 2.26 (Existence of harmonic metrics). The equation (2.12) has an adapted so-
lution h for each (E, φ); this h is unique up to scalar multiple. We call h the harmonic
metric.

Using Theorem 2.26 one can define Hitchin’s metric on M, as follows. Given a tan-
gent vector v to M whose norm we wish to calculate, we represent v by a family of Higgs
bundles (Et, φt), with harmonic metrics ht. Identifying the underlying Hermitian bun-
dles with a single (E, h) we have an arc of unitary connections Dt and skew-Hermitian
Higgs fields Φt = φt − φ†

t on (E, h), determined up to gauge transformations i.e. auto-
morphisms of (E, h). In particular, differentiating at t = 0 gives a pair

d
dt

∣∣∣∣∣
t=0

(Dt, Φt) = (Ȧ, Φ̇) ∈ Ω1(u(E))⊕ iΩ1(u(E)), (2.13)

defined up to gauge transformations. Then the norm of v is the L2 norm

g(v, v) =
∫

C
∥Ȧ∥2 + ∥Φ̇∥2 (2.14)

where for (Ȧ, Φ̇) we choose the representative minimizing the norm.

Remark 2.27 (Hyperkähler quotient). I have not really explained why the metric g con-
structed in this way turns out to be hyperkähler, or even Kähler. The most conceptual
explanation of this comes by viewing the construction in terms of an infinite-dimensional
hyperkähler quotient. In the original context of Higgs bundles without singularities, this
was explained by Hitchin in [9]. In the case of parabolic Higgs bundles which we are con-
sidering here, the construction of M and g by hyperkähler quotient was given by Konno
in [16].

2.5 The special Kähler structure

The regular part Breg of the Hitchin base carries a (rigid) special Kähler structure in
the sense of [17], as follows.

Definition 2.28 (Charge lattices for G = U(K)). Suppose G = U(K) and ϕ⃗ ∈ Breg. Then
define:

• Γflavor =
⊕

p∈P Γflavor,p where Γflavor,p is the weight lattice of the centralizer of mC
p in

G,

• Γgauge
ϕ⃗

= H1(Σϕ⃗, Z),

• Γϕ⃗ =
(

Γflavor ⊕ H1(Σ′
ϕ⃗
, Z)

)
/ ∼

9
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where Σ′
ϕ⃗
= Σϕ⃗ \ ρ−1(P), and the relation ∼ is as follows. A point of π−1(p) with ram-

ification index ν corresponds to a factor U(ν) in the centralizer of mC
p . We identify a

clockwise loop around this point with the weight of the determinant representation of
this U(ν) factor.

Example 2.29 (Charge lattices for G = U(K) with generic puncture data). When the
puncture data is generic, we can say all this more simply:

• Γflavor is the free Z-module generated by loops around the points of ρ−1(P),

• Γgauge
ϕ⃗

= H1(Σϕ⃗, Z),

• Γϕ⃗ = H1(Σ′
ϕ⃗
, Z).

[discuss SU(K) case]
In any case, these lattices assemble into an exact sequence of local systems of lattices

over Breg,
0 → Γflavor → Γ → Γgauge → 0. (2.15)

Γgauge has a nondegenerate skew pairing, the intersection pairing on H1(Σϕ⃗, Z). We will
sometimes write local formulas using a local trivialization of Γgauge by “A and B cycles”
obeying

⟨AI , AJ⟩ = 0, ⟨BI , BJ⟩ = 0, ⟨AI , BJ⟩ = δI
J . (2.16)

Definition 2.30 (Period map). Let λ denote the meromorphic 1-form on Tot[KC(P)], in-
duced by the tautological (Liouville) holomorphic 1-form on Tot[KC]. λ has poles along
ρ−1(P). The period map is the map

Z : Γϕ⃗ → C, Zγ =
∮

γ
λ (2.17)

which we could also view as an element Z ∈ Γ∗
C.

The restriction of Z to the image of Γflavor is constant. It follows that the derivative
dZ : Γ → T∗Breg descends to dZ : Γgauge → T∗Breg, which we can also view as

dZ ∈ T∗Breg ⊗ (Γgauge
C

)∗. (2.18)

Let ⟨, ⟩ denote the intersection pairing on Γgauge and ⟨⟨, ⟩⟩ its inverse on (Γgauge)∗. Then
we can define a 2-form ⟨⟨dZ, dZ⟩⟩ ∈ Ω2,0(Breg). Using a local trivialization of Γgauge,

⟨⟨dZ, dZ⟩⟩ =
n

∑
I=1

dZAI ∧ dZBI . (2.19)

Proposition 2.31 (Lagrangian property). We have

⟨⟨dZ, dZ⟩⟩ = 0. (2.20)
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Note that (2.20) is automatic in case dimC B = 1, but otherwise it is a nontrivial con-
straint on Z. The idea of the proof of (2.20) (in the unpunctured case) is to consider two
tangent vectors to B i.e. infinitesimal variations of Σ, and study the corresponding varia-
tions δ1, δ2 of the cohomology class [λ] ∈ H1(Σ, C) by integrating along arbitrary 1-cycles
on Σ. δ1, δ2 turn out to be of type (1, 0) (you can get them by pairing the normal variation
of Σ with the holomorphic symplectic form on T∗C) and thus

∫
Σ δ1 ∧ δ2 = 0.

Definition 2.32 (Special Kähler form on Breg). Next we define a 2-form on Breg by

ω = ⟨⟨dZ, dZ⟩⟩. (2.21)

In terms of A and B cycles, ω = ∑r
I=1 dZAI ∧ dZBI .

Proposition 2.33 (Positivity of ω). ω is a positive (1, 1)-form on Breg, and thus it defines
a Kähler metric on Breg.

From the existence of Z with the above properties one can deduce all the structure of
special Kähler manifold on Breg. In particular, for any choice of linearly independent “A
cycles” A1, . . . , Ar ∈ Γgauge with ⟨AI , AJ⟩ = 0, lifted to ÃI ∈ Γ, the functions aI = ZÃI

give a local coordinate system, so-called “special coordinates.” It is conventional to also
define dual coordinates aD,J = ZB̃J

.

2.6 The semiflat metric

As we have said, Mϕ⃗ is a space of flat U(1)-connections over Σϕ⃗ \ ρ−1(P), with fixed
holonomies around ρ−1(P). In particular, for each γ ∈ Γϕ⃗ there is a corresponding holon-
omy θγ : Mϕ⃗ → R/2πZ. Their differentials can be assembled into

dθ ∈ Ω1(M)⊗ (Γgauge)∗. (2.22)

If we choose a basis for Γϕ⃗ then we get R/2πZ-valued coordinates θ1, . . . , θ2r on Mϕ⃗.

Definition 2.34 (Semiflat metric). The semiflat metric gsf on Mreg is the metric whose
Kähler form in structure I1 is

ωsf
1 = 2⟨⟨dZ, dZ̄⟩⟩ − ⟨⟨dθ, dθ⟩⟩. (2.23)

Relative to special coordinates, (2.23) becomes

ωsf
1 = −4i(Im τ)I J(daI ∧ dāJ)− 2dθAI ∧ dθBI , (2.24)

where τI J =
∂aD,I
∂aJ .

As we will show below, ωsf
1 is the Kähler form for the hyperkähler metric on M in the

case G = U(1).

11
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2.7 The Hitchin section

Definition 2.35 (Hitchin section, for G = SU(2)). Choose a spin structure on C and thus

a line bundle K
1
2
C. Given ϕ2 ∈ B we consider the Higgs bundle (E, φ):

E = K
1
2
C ⊕ K− 1

2
C (−P), φ =

(
0 ϕ2
1 0

)
. (2.25)

Note ϕ2 is a section of Hom(K− 1
2

C (−P), K
1
2
C) ⊗ KC(P) = KC(P)2 as needed, and by 1 we

mean the canonical section of Hom(K
1
2
C, K− 1

2
C (−P))⊗ KC(P) = O. If at each p ∈ P we set

mR
p = (π, π) and mC

p = (
√

Resp ϕ2,−
√

Resp ϕ2), then (E, φ) is a stable (C, G, m⃗)-Higgs
bundle lying in the fiber Mϕ2 . This gives a section of the Hitchin map for this (C, G, m⃗).

There is a similar construction of sections of the Hitchin map for other G; for the un-
punctured case it originates in [18].

3 Hyperkähler structure

3.1 The hyperkähler structure of M
So far we have focused on just one of the complex structures of M. Now let us look at

the other complex structures Iζ , ζ ∈ C×. (note Iζ=0 = I1, Iζ=i = I2, Iζ=1 = I3.)
Given a Higgs bundle (E, φ) and solution h of Hitchin’s equations (2.12) there is a

corresponding 1-parameter family of flat GC-connections over C:

∇(ζ) = ζ−1φ + D + ζφ†. (3.1)

Proposition 3.1. For any ζ ∈ C×, the map (E, φ) → ∇(ζ) identifies

(M, Iζ , Ωζ)
∼−→ (M♭, ΩABG) (3.2)

Here M♭ = M♭(G, C, mζ) is the moduli space of flat reductive GC-connections over C \ P
with some prescribed structure at the points of P — e.g. in the case of generic puncture
data, the holonomy around p ∈ P has to be conjugate to the diagonal matrix exp(mζ

p)
with

mζ
p = ζ−1mC

p + imR
p + ζmC

p . (3.3)

ΩABG is the standard “Atiyah-Bott-Goldman” symplectic structure on M♭.

3.2 Our strategy

Proposition 3.1 implies that any holomorphic function X on M♭, when applied to
the flat connection ∇(ζ), becomes a holomorphic function on (M, Iζ). Extending this to
coordinate systems, any holomorphic Darboux coordinate system {Xi} on (M♭, ΩABG)
becomes a holomorphic Darboux coordinate system on (M, Iζ).

12
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Our aim is to use this idea to calculate holomorphic Darboux coordinates Xγ(ζ) of a
given fixed Higgs bundle, in an “explicit” way, in terms of the data (Z, θ). Note that since
∇(ζ) varies holomorphically with ζ, the coordinates Xγ(ζ) do as well.

• Q: Which holomorphic Darboux coordinate system on (M♭, ΩABG) will you use?
A: We actually will not use just one: instead, as we move around on the Hitchin
base B and/or vary the argument of ζ, we will choose different coordinate systems
in different regions, separated by codimension-1 “walls.”

• Q: Why will you do that? A: Because we want to study these coordinates through
their analytic properties in the ζ-plane, and only certain coordinates are “good” as
ζ → 0, ∞; moreover, which ones are “good” changes as we move around on B or
vary the argument of ζ.

• Q: How does this help you get the metric? A: On the moduli space of Higgs bundles
(M, I1) we already have the holomorphic symplectic form Ω1 = ω2 + iω3. All that
is missing is the third symplectic form ω1. Once we have holomorphic Darboux
coordinate functions Xγ(ζ), we can specialize them to say ζ = 1 and get a formula
for the holomorphic symplectic form Ωζ=1 = Ω3 = ω1 + iω2; then the desired ω1 is
just Re Ωζ=1.

• Q: Won’t the jumping of the Xγ(ζ) at the walls cause a problem? A: No, the jumps
are always by symplectomorphisms, so that even though Xγ(ζ) jumps, Ωζ doesn’t.

Remark 3.2 (The case of G = U(1)). A toy model for what we are doing arises in the case
G = U(1). In that case we can easily produce holomorphic Darboux coordinates: just
take the C×-valued holonomies of the complex flat connection ∇(ζ), which are simply5

Xγ(ζ) = exp
(

ζ−1Zγ + iθγ + ζZ̄γ

)
. (3.4)

These functions obey the relation

XγXγ′ = Xγ+γ′ . (3.5)

If we choose a basis {γ1, . . . , γ2r} for Γ, then the corresponding functions {Xγ1 , . . . ,Xγ2r}
give coordinates on M; by abuse of language we refer to the whole collection Xγ as a
coordinate system.

5Note that in the case G = U(1) we have Σ = C, so Γ = H1(C, Z).

13
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Using these coordinates at ζ = 1 we get

ω1 = Re Ω3 = Re⟨⟨d logX , d logX ⟩⟩ = 2⟨⟨dZ, dZ̄⟩⟩ − ⟨⟨dθ, dθ⟩⟩ (3.6)

which is the semiflat Kähler form (2.23). Thus we have proven that, in case G = U(1),
Hitchin’s metric g agrees with the semiflat metric gsf on the nose!

We could try to do similarly for general G. Indeed, if we choose a local section γ of the
local system Γ, then the formula (3.4) makes good local sense, and the functions Xγ(ζ)
so defined give an honest local coordinate system on M. The trouble is that it is not a
holomorphic coordinate system in complex structure Iζ , so we cannot use it to compute the
hyperkähler metric. Instead we will construct some other functions Xγ(ζ) which are true
holomorphic Darboux coordinates.

Happily, it will turn out that (3.4) does not have to be abandoned completely: it is true
“asymptotically”, in two different senses — either as we go to infinity in M, or as we take
ζ → 0 or ζ → ∞.

4 The coordinates

What are the true holomorphic coordinates Xγ(ζ) on (M, Iζ) which we will use?

4.1 Defining the coordinates

Specialize to G = SU(2), and fix ϕ2 ∈ B and ζ ∈ C×. ϕ2 is a holomorphic section of
KC(P)2, i.e. a meromorphic quadratic differential on C with double poles at P, of residues
(mC

p )
2.

Definition 4.1 (ζ-trajectories of a quadratic differential). A ζ-trajectory of ϕ2 is a path on
C along which ζ−1√ϕ2 (with either choice of sign for

√
ϕ2) is a real and nowhere vanishing

form.

Proposition 4.2 (ζ-trajectories give a foliation). The ζ-trajectories are the leaves of a sin-
gular foliation of C, with singularities at the zeroes and poles of ϕ2. At each zero of ϕ2,
the foliation by ζ-trajectories has a three-pronged singularity, as shown below.

At each pole p of ϕ2 with ζ−1mC
p /∈ R, the foliation has a “spiraling” singularity, as

shown below.

14



2021-11-28 19:15:39 -0500 Metric on moduli of Higgs bundles 177ef67

Proposition 4.3 (Ideal triangulation determined by the ζ-trajectories). Suppose (ϕ2, ζ) is
generic, in the sense that ζ−1Zγ /∈ R for all γ ∈ Γϕ2 . Then the ζ-trajectories determine an
ideal triangulation T(ϕ2, ζ) of C, by the picture below.

The proof of Proposition 4.3 is given in [2], leaning heavily on the analysis of trajctories
given by Strebel [19].

Definition 4.4 (Fock-Goncharov coordinate attached to an edge). Fix an edge E ∈ T(ϕ2, ϑ).
E determines a class γ ∈ Γϕ2 , shown below:6

To define Xγ(ζ), we consider the connection ∇(ζ) restricted to the quadrilateral shown.
Its space of flat sections is a 2-dimensional vector space V, equipped with 4 distinguished
lines ℓi ⊂ V: ℓi consists of the flat sections which have exponentially decaying norm as we
go into the i-th puncture along a leaf of T(ϕ2, ζ). Said otherwise, the ℓi give 4 points of
CP1. We define Xγ(ζ) to be the SL(2, C)-invariant cross-ratio of these 4 points:

Xγ(ζ) = − (ℓ1 ∧ ℓ2)(ℓ3 ∧ ℓ4)

(ℓ2 ∧ ℓ3)(ℓ4 ∧ ℓ1)
. (4.1)

This definition comes essentially from the work of Fock-Goncharov [8]; it is a complexifi-
cation of the notion of shear coordinate.

Applying Definition 4.4 for all edges E of T(ϕ2, ϑ) gives functions Xγ(ζ) with γ run-
ning over a basis for a finite-index sublattice of Γ. They are local Darboux coordinates:

Ωζ = ⟨⟨d logX (ζ), d logX (ζ)⟩⟩. (4.2)
6More precisely, the picture shows only the projection of γ to C, and does not show the orientation. The

ambiguity can be fixed as follows: the intersection ⟨γ, Ê⟩ should be positive, where Ê denotes one of the
lifts of E to Σ, oriented so that λ is a positive 1-form along Ê.

15
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4.2 Asymptotic behavior of the coordinates

The main asymptotic property of the coordinates Xγ(ζ) is:

Conjecture 4.5. Fix a point of M. Then, as ζ → 0 along any ray,

Xγ(ζ) ∼ cγ exp
(

ζ−1Zγ + iθγ

)
. (4.3)

If our chosen point of M has all θγ = 0, then all cγ = 1, so in that case

Xγ(ζ) ∼ exp
(

ζ−1Zγ

)
. (4.4)

(The idea: it should follow from the exact WKB method. Morally, the connection
∇(ζ) = φ/ζ + · · · is dominated by the leading term. [explain a little more?])

4.3 Piecewise analytic behavior of the coordinates

As we vary (ϕ2, ζ), the function Xγ(ζ) is only piecewise smooth: it suffers a jump
whenever the triangulation T(ϕ2, ζ) changes. The simplest kind of jump is shown below:

This jump is associated with the “saddle connection” connecting two zeroes of ϕ2,
appearing in the middle of the figure. Such a saddle connection can only appear when
ζ−1Zµ ∈ R−. The coordinates on the two sides of the jump are related by:

Xγ → Xγ(1 +Xµ)
⟨µ,γ⟩. (4.5)

A similar (but more intricate) phenomenon occurs when we cross a (ϕ2, ζ) for which an
annulus of closed trajectories appears: then the Xγ undergo a jump of the form

Xγ → Xγ(1 −Xµ)
−2⟨µ,γ⟩. (4.6)

Both of these are instances of the following general structure:

Xγ → Xγ(1 − σ(µ)Xµ)
DT(µ)⟨µ,γ⟩ (4.7)

where for a saddle connection we have DT(µ) = +1 and σ(µ) = −1, while for a closed
loop we have DT(µ) = −2 and σ(µ) = +1.

Remark 4.6 (Wall structure on B). Suppose we fix ζ and move around in M. We get an
interesting structure on B:

16
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Each simple discriminant point (where ϕ2 develops a double zero) emits two walls.
Each of these two walls carries a transformation of the coordinates Xγ, of the form (4.7),
with DT(µ) = +1.

These two walls are “hyperplanes” in the sense of the special Kähler structure on Breg:
they are of the form ζ−1Z±µ ∈ R−, where µ is the vanishing cycle. When walls collide,
they can generate new walls. The new walls are also of the form Zµ/ζ ∈ R− for some
µ, and carry transformations of the form (4.7). The precise structure of the new walls is
completely determined by the requirement that the Xγ are well defined; this is essentially
an application of the Kontsevich-Soibelman wall-crossing formula [4].

Remark 4.7 (More interesting discriminant points). When Bsing ⊂ B meets itself, there’s
a more interesting structure of walls emanating. Many things can happen; here are two:

At left is what happens when three zeroes of ϕ2 collide: this produces a discriminant
point which emits 5 walls. Each of these walls carries a transformation of the form (4.7)
with DT(µ) = 1. At right is the example of G = SU(2), gC = 0, |P| = 4: as we adjust
all mC to zero, so that all zeroes of ϕ2 move onto punctures, the six discriminant points
collapse into one. The resulting point emits walls with every rational slope, each one
carrying a product of two transformations (4.7), with DT(µ) = 8, DT(2µ) = −2.

For our purpose right now, we do not need to understand the details of the wall struc-
ture on B: rather, what we need is to understand what happens when we fix the Higgs
bundle and just let ζ vary. Then Xγ(ζ) depends on ζ in a piecewise-analytic way: the
collection {Xγ(ζ)}γ∈Γ jumps at various rays ℓ in the ζ-plane.

At each such ray, the jump is a product of transformations of the form (4.7), where the
µ in (4.7) can be any µ ∈ Γ such that Zµ/ζ ∈ R− along ℓ.

Example 4.8 (Finite chamber for G = SU(2), gC = 0, |P| = 4). In case G = SU(2), gC = 0,
|P| = 4, at least for some choices of mC, there exists a domain D ⊂ B such that, when
ϕ2 ∈ D, the function Xγ(ζ) jumps at exactly 24 rays in the ζ-plane, corresponding to
24 lattice vectors γ1, . . . , γ24 ∈ Γ for which DT(γi) = 1. For all other γ ∈ Γ we have
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DT(γ) = 0. One concrete example of a ϕ2 ∈ D is

ϕ2 =
z4 − 1

2(z
4 − 1)

(z4 − 1)2 dz2. (4.8)

Remark 4.9 (Even simpler cases). In “wildly ramified” examples (where we allow higher-
order poles for the Higgs field) the analytic structure of the functions Xγ(ζ) can be even
simpler: in the simplest example, we can arrange that in some domain D ⊂ B there are
jumps along just 4 rays, as shown in the picture above. We will discuss that example more
below.

Remark 4.10 (Higher rank). So far we focused on G = SU(2). The case of G = U(2)
is more or less the same. For K > 2 the situation becomes more interesting: instead of
studying ideal triangulations T(ϕ2, ζ) one needs to study WKB spectral networks W(ϕ⃗, ζ),
as defined in [20].7 Then again there is a recipe for invariants DT(γ) and coordinates
Xγ(ζ). This recipe however depends on some conjectures: most importantly, to construct
the Xγ(ζ) one has to solve a certain linear algebra problem determined by the network
W(ϕ⃗, ζ). Thus the construction has been carried out to the end in various special cases
but not for arbitrary (G, C, m⃗) and (ϕ⃗, ζ). In the special cases which have been worked
out [22, 23] the Xγ(ζ) turn out to be cluster coordinate systems on M, i.e. they belong to
the distinguished atlas constructed by Fock-Goncharov in [8].

5 The integral equation

Conjecture 5.1 (Integral equation for θγ = 0). When all θγ = 0,

Xγ(ζ) = X sf
γ (ζ) exp

[
1

4πi ∑
µ∈Γ

DT(µ)⟨γ, µ⟩
∫

ZµR−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1 − σ(µ)Xµ(ζ

′))

]
(5.1)

where
X sf

γ (ζ) = exp
(

ζ−1Zγ + ζZγ

)
(5.2)

and σ(µ) = ±1 for each µ.

The functions Xγ(ζ) appear on both sides of (5.1). Thus (5.1) is an integral equation,
which needs to be solved for the whole collection {Xγ(ζ)}γ∈Γ at once, rather than an
integral formula.

• Q: Why this equation? A: It is expected to lead to Xγ(ζ) with the right analytic
properties in the ζ-plane: asymptotics as ζ → 0, ∞ and jumps at the rays Zµ/ζ ∈ R−
with DT(µ) ̸= 0. The optimistic hope is that these analytic properties are strong
enough to determine Xγ(ζ).

7In retrospect, essentially the same graphs had appeared earlier as Stokes graphs associated to the WKB
analysis of linear scalar K-th order ODEs; see in particular [21].
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• Q: How do you actually solve it? A: By iteration: pick Xγ(ζ) = X sf
γ (ζ) as initial

guess, and then iterate.

• Q: Why would you think that that iteration would converge? A: If all |Zγ| are large
enough, and DT(µ) doesn’t grow too fast as a function of µ (e.g. if only finitely
many are nonzero) saddle-point estimates show the iteration defines a contraction
mapping, so it must converge to a (unique) fixed point.

• Q: How does this lead to asymptotic predictions? A: If we substitute X = X sf, the
log in the integrand is bounded above by e−2|Zµ|; thus we expect that the first step of
the iteration is already suppressed by e−2M where M is the minimum |Zµ| for which
DT(µ) ̸= 0, and later steps should be further exponentially suppressed. That sug-
gests that just truncating to the zeroth iteration (i.e. taking gsf) would already give
a result exponentially close to the true metric, and the accuracy will improve with
each iteration we take. In particular we can truncate to the first iteration. Working
this out leads to

g = gsf − 2
π ∑

µ∈Γ
DT(µ)K0

(
2|Zµ|

)
d|Zµ|2 + · · · (5.3)

where K0 is the modified Bessel function. Note that K0(x) ∼
√

π
2x e−x, so g − gsf

is already exponentially suppressed as e−2M. The omitted terms · · · should be of
order e−4M.

6 Numerical tests

In this last section I want to explain some of the numerical evidence supporting Con-
jecture 5.1. This evidence was obtained in ongoing joint work with David Dumas.

6.1 The simplest nontrivial Hitchin equations

We consider the case of G = SU(2) and C = CP1, where we take ϕ2 to be a polynomial
quadratic differential of degree n, say

ϕ2 = P(z)dz2, (6.1)

and the Higgs bundles are of the form8

E = O
(n

4

)
⊕O

(
−n

4

)
, φ =

(
0 P(z)
1 0

)
dz. (6.2)

Strictly speaking this case is outside the class of examples we have considered so far:
the singularity of the Higgs field φ at z = ∞ is a non-simple pole. The theory of Higgs

8Here O(± n
4 ) means a parabolic line bundle over CP1 of degree ± n

4 , trivialized away from z = ∞; see
[24] for some more explanation.
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bundles with non-simple poles has been worked out by Biquard-Boalch and Mochizuki,
extending Simpson’s work which we used above for simple poles. See e.g. [14]. In short,
essentially all of the theory carries over to this situation, and indeed these examples turn
out to be simpler in some respects.

Solving Hitchin’s equation (2.12) in the specific case (6.2) is equivalent to finding a
harmonic map from C to the hyperbolic disc whose Hopf differential is ϕ2. Such a map
exists and is unique up to PSL(2, R) action on the disc; its image turns out to be an ideal
polygon with n + 2 vertices [25], again determined up to PSL(2, R) action.

6.2 The Xγ

All of the analysis we described in §4-§5 carries over to this case. The quantities Xγ(ζ)
in this case are monomials in cross-ratios rijkl of n + 2 flat sections si of ∇(ζ), determined
by their asymptotic behavior along n + 2 rays approaching z → ∞.9

For example, when n = 3, we have 5 asymptotic rays and dimM = 2. The Xγ(ζ)
are monomials in 2 out of the 5 possible cross-ratios rijkl. Precisely which cross-ratios
we take depends on P and ζ: it is determined by a triangulation T(ϕ2, ζ) of an (n + 2)-
gon, constructed similarly to the ideal triangulation T(ϕ2, ζ) of a punctured surface C
constructed in Proposition 4.3. We take the concrete example

P(z) = R2(z3 − 1), R ∈ R+. (6.3)

In this case the triangulation T(ϕ2, ζ = 1) looks like:

From this picture we can read off that the relevant cross-ratios are r1235 and r1345.

9When ζ = 1 these quantities have a particularly simple geometric meaning: the flat sections si are
the asymptotic vertices of the polygon above, so the rijkl are literally the cross-ratios of these asymptotic
vertices. In particular they are real: this is a special feature arising for these particular Higgs bundles when
|ζ| = 1.
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6.3 Numerical results

In joint work with David Dumas we have computed the Xγ = Xγ(ζ = 1) numerically
in this example, in two different ways:

• by directly solving Hitchin’s equation i.e. finding the harmonic maps,

• by solving the integral equations of §5.

Preliminary numerical results for the quantity X1 = r1235 are plotted below, for R ranging
from R = 10−8 to R = 1. On the left we show the values of X1 computed by both methods,
which we call Xi

1 and Xf
1; on the scale of that plot it appears as though Xi

1 = Xf
1, as

predicted by Conjecture 5.1. On the right we plot the difference log(Xi
1)− log(Xf

1), which
never exceeds 2 × 10−7 over the range of R shown. We expect that this residual can be
attributed to numerical error in the two computations (but this remains to be understood
in detail.)
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Dumas and I have also made similar numerical calculations in other cases:

• As above but with a polynomial P(z) of degree 4,

• For Higgs bundles in the plane with G = SU(3), with ϕ2 = 0 and ϕ3 = P(z)dz3,
for P(z) of degree 2 or 3. (In this case the coordinates Xγ(ζ) are not built from
a triangulation, but rather from a “WKB spectral network” built from ϕ3, as we
explained in Remark 4.10. The construction in this case is described in [23].)

The results are qualitatively similar to those shown above: they appear to support Con-
jecture 5.1.
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