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These are notes for a pair of lectures, given at the second Simons Workshop in Mathe-
matics, July 15 and 17, 2024.

1 Introduction

The aim of these lectures is to describe a conjectural approach to more explicitly under-
standing the hyperkähler metrics on moduli spaces of Higgs bundles. I will specialize to
SL(2)-Higgs bundles, but the picture is similar for any reductive G.

Basic philosophy: replace SL(2)-Higgs bundles and flat connections over a Riemann
surface C by GL(1)-Higgs bundles and flat connections over a branched double cover Σϕ2

of C, called spectral curve. The surprise is how well this works. Indeed, the conjecture says
that the metric on M is constructed from two ingredients:

1. The periods Zγ of the spectral curves Σϕ2 ,

2. A collection of integer “Donaldson-Thomas invariants” DT(γ), which count (tropi-
calizations of) special Lagrangian discs in T∗C with boundary on Σϕ2 .

Although ultimately the metrics we want to understand are smooth and have no obvi-
ous integrality properties, this way of understanding them involves Donaldson-Thomas
invariants, cluster transformations, wall-crossing phenomena. It is most digestible near
asymptotic infinity, but in principle gives information everywhere on M.

The strategy of the lectures will be roughly:

1. The moduli space M, its basic features and hyperkähler structure; the weak form of
the metric conjecture (now almost proven).

2. The strong form of the conjecture (idea: calculate the nonabelian Hodge map), and
the available evidence that the conjecture is correct.

This is a review of joint work with Davide Gaiotto and Greg Moore, follow-up work
with Lotte Hollands and David Dumas; closely related work by Mazzeo-Swoboda-Weiss-
Witt, Fredrickson, Mochizuki; inspired by Fock-Goncharov, Kontsevich-Soibelman, Hitchin,
Corlette, Donaldson, Simpson, Biquard-Boalch.

1.1 References

The conjecture reviewed in these notes is mostly contained in the papers [1, 2], which
are joint work of mine with Davide Gaiotto and Greg Moore. In [3] I reviewed some
parts of the conjecture, focusing on the abstract construction of hyperkähler metrics from
a special Kähler base and Donaldson-Thomas invariants; in these lectures I focus more on
the examples provided by moduli spaces of Higgs bundles, and even more specifically,
on one specific moduli space of Higgs bundles with irregular singularity.
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These works depend on many prior developments in physics and mathematics. Here I
can only single out a few which were of singular importance (for more, see the references
in [1, 2]):

• The work [1] originated in an attempt to understand the physical meaning of the
remarkable wall-crossing formula for generalized Donaldson-Thomas invariants,
given by Kontsevich-Soibelman [4].

• Many of the key constructions in [1] can be understood as infinite-dimensional ana-
logues of constructions used by Cecotti-Vafa and Dubrovin in tt∗ geometry [5, 6],
with additional inspiration from work of Bridgeland and Toledano Laredo [7].

• The application to Hitchin systems in [2] depended importantly on the work of
Fock-Goncharov on moduli spaces of local systems over surfaces [8], as well as the
foundational work of Hitchin [9] and Corlette, Donaldson, Simpson [10, 11, 12] on
Higgs bundles without singularities, Simpson’s extension to Higgs bundles with
regular singularities [13], and Biquard-Boalch for Higgs bundles with wild ramifi-
cation [14].

2 Background on Hitchin system

2.1 The unpunctured case

Let me first recall the simplest case to define (though not the simplest case to study!)
The most fundamental reference is [9]. A very useful review can be found in [15] and
references therein.

We fix a compact Riemann surface C of genus gC ≥ 2.

Definition 2.1 (SL(2)-Higgs bundles). A SL(2)-Higgs bundle is a pair (E, φ), where:

• E is a holomorphic vector bundle of rank 2 over C, with det E = O,

• φ is a holomorphic section of End E ⊗ KC(P), with Tr φ = 0.

With respect to a local trivialization of E, then, φ is represented by a traceless 2 × 2
matrix whose entries are holomorphic 1-forms.

Definition 2.2 (Stability of SL(2)-Higgs bundles). We say (E, φ) is stable if, for all φ-
invariant E′ ⊂ E, we have deg E′ < 0. We say (E, φ) is strictly polystable if it is a direct
sum of two degree-zero φ-invariant line bundles. We say (E, φ) is polystable if it is either
stable or strictly polystable.

Proposition 2.3 (Moduli space of Higgs bundles). There is a moduli space M = M(G, C)
parameterizing polystable SL(2)-Higgs bundles (E, φ) up to equivalence. M is a mani-
fold away from the locus of strictly-polystable Higgs bundles. It has complex dimension
6gC − 6. It carries a natural complex structure I1 and holomorphic symplectic form Ω1.

The holomorphic symplectic form Ω1 comes from the fact that variations of the bundle
E are valued in H1(End E), while variations of the Higgs field φ are valued in H0(End E⊗
KC), and the two are Serre dual.
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2.2 The Hitchin map

Next we exhibit M as a complex integrable system, i.e. a holomorphic Lagrangian
fibration over a base B.

Given a Higgs bundle (E, φ) ∈ M and z ∈ C, we can consider the eigenvalues of φ(z).
As z varies these sweep out a curve Σ:

Σ = {(z, λ) : λ2 + ϕ2(z) = 0} ⊂ T∗C , (2.1)

where
ϕ2 = −1

2
Tr φ2 . (2.2)

The projection ρ : Σ → C given by ρ(z, λ) = z is a branched double cover, ramified at the
zeroes of ϕ2.

Definition 2.4 (Hitchin base and Hitchin map). Define the Hitchin base B = H0(C, K2
C).

The Hitchin map is the map π : M → B given by

(E, φ) 7→ ϕ2 = −1
2

Tr φ2 . (2.3)

Proposition 2.5 (Hitchin map has Lagrangian fibers). The fibers Mϕ2 = π−1(ϕ⃗) are com-
pact complex Lagrangian subsets of (M, I1, Ω1). (In particular, dimC B = 1

2 dimC M.)

We can say more precisely what the fibers are, over most of the Hitchin base:

Definition 2.6 (Singular locus and smooth locus). The singular locus Bsing ⊂ B is the set
of ϕ⃗ ∈ B for which Σϕ⃗ is singular. The smooth locus is Breg = B \ Bsing. It consists of those
ϕ2 which have only simple zeroes (4gC − 4 of them). Also let Mreg = π−1(Breg).

Proposition 2.7 (Fibers of the Hitchin map over Breg). Suppose ϕ⃗ ∈ Breg. Then Mϕ2

is a torsor over the compact complex torus Prym(ρ : Σϕ2 → C). After choosing spin
structures on C and Σϕ2 , we can identify Mϕ2 with the space of flat U(1)-connections ∇
over Σϕ2 , equipped with a trivialization of det ρ∗∇.

So we reach the following picture: a point ϕ⃗ ∈ Breg gives a smooth spectral curve
Σϕ2 ; the torus Mϕ2 is a space of flat U(1)-connections over Σϕ2 . When ϕ⃗ ∈ Bsing, Mϕ2 is
compact, but generally singular.

2.3 The hyperkähler metric

A key fact about M is that it carries a canonically defined hyperkähler metric g. How-
ever, g is not easily written in closed form. To construct g, one needs to consider Hitchin’s
equation: given a Higgs bundle (E, φ) this is a PDE for a Hermitian metric h in E, written

FDh + [φ, φ†h ] = 0. (2.4)

Here Dh denotes the Chern connection in (E, h), the unique h-unitary connection compat-
ible with the holomorphic structure of E.

Now there is the following key theorem:
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Theorem 2.8 (Existence of harmonic metrics). The equation (2.4) has a solution h for each
(E, φ); this h is unique up to scalar multiple. We call h the harmonic metric.

Using Theorem 2.8 one can define Hitchin’s metric on M, as follows. Given a tangent
vector v to M whose norm we wish to calculate, we represent v by a family of Higgs
bundles (Et, φt), with harmonic metrics ht. Identifying the underlying Hermitian bun-
dles with a single (E, h) we have an arc of unitary connections Dt and skew-Hermitian
Higgs fields Φt = φt − φ†

t on (E, h), determined up to gauge transformations i.e. auto-
morphisms of (E, h). In particular, differentiating at t = 0 gives a pair

d
dt

∣∣∣∣∣
t=0

(Dt, Φt) = (Ȧ, Φ̇) ∈ Ω1(su(E))⊕ Ω1(su(E)), (2.5)

defined up to gauge transformations. Then the norm of v is the L2 norm

g(v, v) =
∫

C
∥Ȧ∥2 + ∥Φ̇∥2 (2.6)

where for (Ȧ, Φ̇) we choose the representative minimizing the norm.

Remark 2.9 (Hyperkähler quotient). I have not really explained why the metric g con-
structed in this way turns out to be hyperkähler, or even Kähler. The most conceptual
explanation of this comes by viewing the construction in terms of an infinite-dimensional
hyperkähler quotient. This was explained by Hitchin in [9].

2.4 The semiflat metric

Now we want to describe a first approximation to Hitchin’s metric.
The regular part Breg of the Hitchin base carries a (rigid) special Kähler structure in

the sense of [16], as follows.
The deck transformation σ : Σϕ2 → Σϕ2 induces an action on H1(Σ, Z). Let H1(Σϕ2 , Z)±

denote the ±1-eigenspaces.

Definition 2.10 (Charge lattice). The charge lattice is

Γϕ2 = H1(Σϕ2 , Z)− . (2.7)

Let ⟨, ⟩ denote the intersection pairing on Γ and ⟨⟨, ⟩⟩ its inverse on Γ∗
R. These lattices

make up a local system Γ over Breg. We write local formulas using a local trivialization of
ΓR by “A and B cycles” obeying

⟨AI , AJ⟩ = 0, ⟨BI , BJ⟩ = 0, ⟨AI , BJ⟩ = δI
J . (2.8)

Definition 2.11 (Period map). Let λ denote the tautological (Liouville) holomorphic 1-
form on Tot[KC]. The period map is the map

Z : Γϕ2 → C, Zγ =
∮

γ
λ (2.9)

which we could also view as an element Z ∈ Γ∗
C.
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Then we have dZ ∈ Ω1(M)⊗ Γ∗
C, and we can define a 2-form ⟨⟨dZ, dZ⟩⟩, given con-

cretely by

⟨⟨dZ, dZ⟩⟩ =
r

∑
I=1

dZAI ∧ dZBI − dZBI ∧ dZAI . (2.10)

Proposition 2.12 (Positivity). ⟨⟨dZ, dZ⟩⟩ is a positive (1, 1)-form on Breg.

Thus it defines a Kähler metric on Breg.
Now we consider the fiber directions. As we have said, Mϕ2 is a space of flat U(1)-

connections over Σϕ2 . In particular, for each γ ∈ Γϕ2 there is a corresponding holonomy
θγ : Mϕ2 → R/2πZ. Their differentials can be assembled into dθ ∈ Ω1(M)⊗ Γ∗

R. If we
choose a basis for Γϕ2 then we get R/2πZ-valued coordinates θ1, . . . , θ2r on Mϕ2 .

Definition 2.13 (Semiflat metric). The semiflat metric gsf on Mreg is the metric whose
Kähler form in structure I1 is

ωsf
1 = 2⟨⟨dZ, dZ⟩⟩ − ⟨⟨dθ, dθ⟩⟩. (2.11)

Now we can formulate the weak version of our conjecture. It says that, away from the
singular fibers, Hitchin’s metric is exponentially close to the semiflat metric.

Definition 2.14 (Threshold). Fix ϕ2 ∈ Breg. Then |ϕ2| is a singular flat metric on C, with
singularities at the zeroes of ϕ2. The threshold M(ϕ2) is twice the length of the shortest
inextendible geodesic (saddle connection) in this metric.1

Conjecture 2.15 (Weak metric conjecture). Fix ϕ2 ∈ Breg. As we rescale ϕ2 → R2ϕ2 with
R > 0, Hitchin’s metric approaches the semiflat metric exponentially fast:

g = gsf + O(e−2RM(ϕ2)) . (2.12)

The meaning of the conjecture is that the naive cartoon drawing of the torus fibration is
exponentially close to being the correct metric picture. It is an instance of the Strominger-
Yau-Zaslow picture of Calabi-Yau manifolds.

This conjecture is now almost proven [18] following earlier work [19, 17, 20]: on the
section θγ = 0 it is fully proven, on the full moduli space it is proven with the exponent
RM instead of the desired 2RM.

There is a similar conjecture for higher rank G. Here too it is proven that g approaches
gsf exponentially fast [20] but the conjectured coefficient has not been verified.

3 Our strategy

Now let us explain our strategy for describing the hyperkähler metric on M.

1We redefined it by a factor of 2 relative to [17]; this accounts for the fact that some factors of 2 here differ
from those in the references.
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3.1 The other complex structures of M
So far we have focused on just one of the complex structures of M, which we called

I1, and its holomorphic symplectic form Ω1. We have also said that M is hyperkähler,
which means it has more structure. Our construction of the metric needs to use all that
structure.

The definition of hyperkähler manifold says that M has complex structures I1, I2, I3
obeying I1 I2 = −I2 I1 = I3 and cyclic permutations, with corresponding Kähler forms
ω1, ω2, ω3. The holomorphic symplectic forms are related to the Kähler forms by Ω1 =
ω2 + iω3 and cyclic permutations. In fact M has a whole family of complex structures
Iζ , ζ ∈ CP1 (where Iζ=0 = I1, Iζ=i = I2, Iζ=1 = I3), and corresponding holomorphic
symplectic forms Ωζ . What are they?

Given a SL(2)-Higgs bundle (E, φ) and solution h of Hitchin’s equations (2.4) there is
a corresponding 1-parameter family of flat SL(2, C)-connections over C:

∇(ζ) = ζ−1φ + D + ζφ†. (3.1)

Let M♭ be the moduli space of flat reductive SL(2, C)-connections over C. M♭ car-
ries a complex structure I♭ and a holomorphic symplectic structure ΩABG (Atiyah-Bott-
Goldman).

Proposition 3.1. For any ζ ∈ C×, the map (E, φ) 7→ ∇(ζ) identifies

(M, Iζ , Ωζ)
∼−→ (M♭, I♭, ΩABG) . (3.2)

So the complex structures Iζ , ζ ∈ C×, look very different from I0 and I∞.

3.2 Local Darboux coordinates

Proposition 3.1 implies that any holomorphic function X on M♭, when applied to
the flat connection ∇(ζ), becomes a holomorphic function on (M, Iζ). Extending this to
coordinate systems, any holomorphic Darboux coordinate system {Xi} on (M♭, ΩABG)
becomes a holomorphic Darboux coordinate system on (M, Iζ).

Our aim is to calculate holomorphic Darboux coordinates Xγ(ζ) of a given fixed Higgs
bundle. Since ∇(ζ) varies holomorphically with ζ, the coordinates Xγ(ζ) do as well; so
they can be thought of as functions on the twistor space of M.

• Q: Which holomorphic Darboux coordinate system on (M♭, ΩABG) will we use? A:
We actually will not use just one: instead, as we move around on the Hitchin base
B and/or vary the argument of ζ, we will choose different coordinate systems in
different regions, separated by codimension-1 “walls.”
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• Q: Why do you need to have such a complicated structure? A: Because we want to
study these coordinates through their analytic properties in the ζ-plane, and only
certain coordinates will be good in the sense of having simple analytic behavior as
ζ → 0, ∞; moreover, which coordinates are good changes as we move around on B
or vary the argument of ζ.

• Q: How does this help you get the metric? A: On (M, I1) we already have the holo-
morphic symplectic form Ω1 = ω2 + iω3. All that is missing is the third symplectic
form ω1. Once we have holomorphic Darboux coordinate functions Xγ(ζ), we can
specialize them to say ζ = 1 and get a formula for the holomorphic symplectic form
Ωζ=1 = Ω3 = ω1 + iω2; then the desired ω1 is just Re Ωζ=1.

• Q: Won’t the jumping of the Xγ(ζ) at the walls cause a problem? A: No, the jumps
are always by symplectomorphisms, so that even though Xγ(ζ) jumps, Ωζ doesn’t.

4 An irregular extension

To go further, we introduce some of the simplest model examples, where we can actu-
ally describe the Xγ concretely. These examples however are slightly outside our original
setup: we need to allow the Higgs bundles to have singularities. To get the very simplest
setup we will actually allow irregular singularities.

4.1 Definitions

We let C = CP1, with the usual inhomogeneous coordinate z, and use objects which
are meromorphic, with poles at z = ∞, rather than holomorphic.

Fix a polynomial q of degree N ∈ 2N + 1. (In fact we only need to know q modulo
polynomials of degree ≤ N−3

2 .)

Definition 4.1 (Irregular Higgs bundle). An irregular SL(2)-Higgs bundle of type q is a pair
(E, φ), where:

• E is a meromorphic vector bundle, holomorphic away from z = ∞, with a valua-
tion ν∞ on meromorphic sections, and a nowhere-vanishing section η ∈ det E with
ν∞(η) = 0,

• φ is a traceless meromorphic section of End(E)⊗ KC, holomorphic away from z =
∞, obeying

ϕ2 = −1
2

Tr φ2 = (q(z) + l(z))dz2 (4.1)

with deg l < N
2 − 1,

such that for any meromorphic section s of E,

ν∞(zms) = ν∞(s) + m, ν∞(φ · s) = ν∞(s) +
N
2

. (4.2)
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Everything we said about ordinary SL(2)-Higgs bundles has an analogue for these
irregular ones, as explained in [14] (plus epsilon). Here I write it in slightly different
language. In particular:

Definition 4.2 (Adapted metric). Suppose (E, φ) is an irregular Higgs bundle. An adapted
metric in (E, φ) is a Hermitian metric h in E, such that

log h(s, s) ∼ 2ν∞(s) log|z| as |z| → ∞ . (4.3)

Theorem 4.3. If (E, φ) is an irregular Higgs bundle, there is an adapted metric h in E
which obeys Hitchin’s equations (2.4), and h is unique up to scalar multiple.

Theorem 4.4. There is a moduli space M(q) parameterizing irregular Higgs bundles of
type q up to equivalence. M(q) is a smooth manifold, of dimension N − 1. The formula
(2.6) defines a complete hyperkähler metric on M(q).

So this is a continuous family of hyperkähler spaces, parameterized by the choice of
q. The space of polynomials q has dimension N + 1, but we should mod out by automor-
phisms of CP1 preserving z = ∞ and by low-degree shifts, so the effective number of
parameters in the family is (N + 1)− 2 − (N−3

2 + 1) = N−1
2 .

The Hitchin base B(q) in this case is just the space of polynomials P2 = q+ l appearing
above, with q fixed and l varying. It has complex dimension 1

2(N − 1) as it should.

Example 4.5. The case N = 3 is the first interesting one. Here we pick

q(z) = z3 + Λz (4.4)

for Λ ∈ C. Then M(q) is a hyperkähler space of complex dimension 2, depending on the
choice of Λ. The Hitchin base is just B(q) = C. If Λ = 0 there is a single singular fiber,
which is a cuspidal torus. If Λ ̸= 0 there are two, which are both nodal tori.

5 The coordinates

Now we describe the holomorphic coordinates Xγ(ζ) on (M, Iζ) which we will use.
We consider only the case of irregular Higgs bundles on CP1. (A very similar construction
works in the case of Higgs bundles with regular singularities.)

5.1 Defining the coordinates

Fix ϕ2 ∈ B and ζ ∈ C×.

Definition 5.1 (ζ-trajectories of a quadratic differential). A ζ-trajectory of ϕ2 is a path
on C along which ζ−1√−ϕ2 (with either choice of sign for

√−ϕ2) is a real and nowhere
vanishing form.

Proposition 5.2 (ζ-trajectories give a foliation). The ζ-trajectories are the leaves of a sin-
gular foliation of C, with singularities at the zeroes and poles of ϕ2. At each zero of ϕ2,
the foliation by ζ-trajectories has a three-pronged singularity, as shown below.
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Proposition 5.3 (Ideal triangulation determined by the ζ-trajectories). Suppose (ϕ2, ζ)
is generic, in the sense that ζ−1Zγ /∈ R for all γ ∈ Γϕ2 . Then there are N + 2 rays ri at
infinity, such that any generic ζ-trajectory is asymptotic to one of the ri. The ζ-trajectories
determine a triangulation T(ϕ2, ζ) of an (N + 2)-gon, as indicated below.

Definition 5.4 (Fock-Goncharov coordinate attached to an edge). Fix an interior edge
E ∈ T(ϕ2, ζ). E determines a class γ ∈ Γϕ2 , shown below:2

To define Xγ(ζ), we consider the connection ∇(ζ) restricted to the quadrilateral shown.
Its space of flat sections is a 2-dimensional vector space V, equipped with 4 distinguished
lines ℓi ⊂ V: ℓi consists of the flat sections which have exponentially decaying norm as
we go to infinity along a leaf of T(ϕ2, ζ) in the i-th direction. Said otherwise, the ℓi give 4
points of CP1. We define Xγ(ζ) to be the SL(2, C)-invariant cross-ratio of these 4 points:

Xγ(ζ) = − (ℓ1 ∧ ℓ2)(ℓ3 ∧ ℓ4)

(ℓ2 ∧ ℓ3)(ℓ4 ∧ ℓ1)
. (5.1)

This definition appears in Fock-Goncharov [8]; it is a complexification of the notion of
shear coordinate.

2More precisely, the picture shows only the projection of γ to C, and does not show the orientation. The
ambiguity can be fixed as follows: the intersection ⟨γ, Ê⟩ should be positive, where Ê denotes one of the
lifts of E to Σ, oriented so that λ is a positive 1-form along Ê.
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Applying Definition 5.4 for all edges E of T(ϕ2, ϑ) gives functions Xγ(ζ) with γ run-
ning over a basis for Γ. We extend to arbitrary γ by requiring XγXµ = Xγ+µ. These are
local Darboux coordinates:

Ωζ = ⟨⟨d logX (ζ), d logX (ζ)⟩⟩. (5.2)

5.2 Asymptotic behavior of the coordinates

The main asymptotic property of the coordinates Xγ(ζ) is:

Conjecture 5.5. Fix a point of M. Then, as ζ → 0 along any ray,

Xγ(ζ) ∼ exp
(

ζ−1Zγ + iθγ + cγ

)
(5.3)

where the constants cγ =
∫

γ α for some α ∈ Ω1,1(Σ). Moreover, if all θγ = 0, then all
cγ = 0, so in that case

Xγ(ζ) ∼ exp
(

ζ−1Zγ

)
. (5.4)

(The idea: it would follow from the exact WKB method applied to the connections
∇(ζ) = ζ−1φ + · · · .)

5.3 Piecewise analytic behavior of the coordinates

As we vary (ϕ2, ζ), the function Xγ(ζ) is only piecewise smooth: it suffers a jump
whenever the triangulation T(ϕ2, ζ) changes. The simplest kind of jump is shown below:

This jump is associated with the “saddle connection” connecting two zeroes of ϕ2,
appearing in the middle of the figure. Such a saddle connection can only appear when
ζ−1Zµ ∈ R−. The coordinates on the two sides of the jump are related by:

Xγ → Xγ(1 +Xµ)
⟨µ,γ⟩. (5.5)

A similar (but more intricate) phenomenon occurs when we cross a (ϕ2, ζ) for which an
annulus of closed trajectories appears: then the Xγ undergo a jump of the form

Xγ → Xγ(1 −Xµ)
−2⟨µ,γ⟩. (5.6)

Both of these are instances of the following general structure:

Xγ → Xγ(1 − σ(µ)Xµ)
DT(µ)⟨µ,γ⟩ (5.7)

10



Metric on moduli of Higgs bundles

where for a saddle connection we have DT(µ) = +1 and σ(µ) = −1, while for a closed
loop we have DT(µ) = −2 and σ(µ) = +1.

Fix ϕ2 and just let ζ vary. Then Xγ(ζ) depends on ζ in a piecewise-analytic way: the
collection {Xγ(ζ)}γ∈Γ jumps at various rays ℓ in the ζ-plane.

At each such ray, the jump is a product of transformations of the form (5.7), where the
µ in (5.7) can be any µ ∈ Γ such that Zµ/ζ ∈ R− along ℓ.

5.4 The integral equation

We are building up an elaborate structure, but it is only going to be useful if it allows
us to say something concrete about Xγ(ζ). Here is one approach:

Conjecture 5.6 (Integral equation for θγ = 0). When all θγ = 0,

Xγ(ζ) = X sf
γ (ζ) exp

[
1

4πi ∑
µ∈Γ

DT(µ)⟨γ, µ⟩
∫

ZµR−

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1 − σ(µ)Xµ(ζ

′))

]
(5.8)

where
X sf

γ (ζ) = exp
(

ζ−1Zγ + ζZγ

)
. (5.9)

The signs σ(µ) = ±1 obey the relation

σ(µ)σ(µ′) = (−1)⟨µ,µ′⟩σ(µ + µ′). (5.10)

The functions Xγ(ζ) appear on both sides of (5.8). Thus (5.8) is an integral equation,
which needs to be solved for the whole collection {Xγ(ζ)}γ∈Γ at once, rather than an
integral formula.

• Q: Where does this equation come from? A: It would lead to Xγ(ζ) with the right
analytic properties in the ζ-plane: asymptotics as ζ → 0, ∞ and jumps at the rays
Zµ/ζ ∈ R− with DT(µ) ̸= 0. The optimistic hope is that these analytic properties
are strong enough to determine Xγ(ζ).

• Q: How do you actually solve it? A: By iteration: pick Xγ(ζ) = X sf
γ (ζ) as initial

guess, and then iterate.
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• Q: Why would you think that that iteration would converge? A1: If all |Zγ| are
large enough, and DT(µ) doesn’t grow too fast as a function of µ (e.g. if only finitely
many are nonzero) saddle-point estimates show the iteration defines a contraction
mapping, so it must converge to a (unique) fixed point. A2: Actually, experimentally
it seems that it always converges! This is strange, and deserves an explanation.

• Q: How does this lead to the weak conjecture, Conjecture 2.15, from the previous
lecture? A: If we substitute X = X sf, the log in the integrand is bounded above by
e−2|Zµ|; thus we expect that the first step of the iteration is already suppressed by
e−2M where M is the minimum |Zµ| for which DT(µ) ̸= 0, and later steps should be
further exponentially suppressed. That suggests that just truncating to the zeroth
iteration (i.e. taking gsf) would already give a result exponentially close to the true
metric, and the accuracy will improve with each iteration we take. In particular we
can truncate to the first iteration. Working this out leads to

g = gsf − 2
π ∑

µ∈Γ
DT(µ)K0

(
2|Zµ|

)
d|Zµ|2 + · · · (5.11)

where K0 is the modified Bessel function. Note that K0(x) ∼
√

π
2x e−x, so g − gsf is

exponentially suppressed as e−2M. The omitted terms · · · should be of order e−4M.

6 Numerical tests

The strongest evidence supporting Conjecture 5.6 is numerical, given in [21].

6.1 The Hitchin section

Definition 6.1 (Hitchin section). Let O(α) denote the trivial meromorphic bundle over
CP1, with a valuation ν∞ given by the usual pole order at z = ∞ shifted by −α. Then
given ϕ2 = P2(z)dz2 ∈ B(q) we consider the Higgs bundle (E, φ):

E = O
(

N
4

)
⊕O

(
−N

4

)
, φ =

(
0 −P2
1 0

)
. (6.1)

This gives a section of the Hitchin map for M(q).

6.2 The Xγ in an example

For example, when N = 3, we have 5 asymptotic rays and dimM = 2. The Xγ(ζ)
are monomials in 2 out of the 5 possible cross-ratios. Precisely which cross-ratios we take
depends on P2 and ζ, as we explained. We take the concrete example

P2(z) = R2(z3 − 1), R ∈ R+. (6.2)

In this case the triangulation T(ϕ2, ζ = 1) looks like:

12
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From this picture we can read off that the relevant cross-ratios are r1235 and r1345.

6.3 Numerical results

In [DNexp] we computed the Xγ = Xγ(ζ = 1) numerically in this example, in two
different ways:

• by directly solving Hitchin’s equation i.e. finding the harmonic maps,

• by solving the integral equations of §5.4.

The github repository neitzke/stokes-numerics contains the code we used. Some
sample output:

comparisons.compareClusters("A1A2", R = 0.07, scratch = True, pde_nmesh = 511)

{’xarcluster’: [-0.5108779665615462, -1.0],

’fdcluster’: [-0.510880773551951, -1.0000000000000009],

’sfcluster’: [-0.7023314112631698, -1.0],

’absdiff’: [2.8069904048910743e-06, 8.881784197001252e-16],

’logdiff’: [-5.4944289580305394e-06, -8.881784197001248e-16],

’phasediff’: [0.0, 0.0],

’reldiff’: [5.494428958012677e-06, 8.881784197001248e-16],

’frames’: <framedata.framedata at 0x7f1a79c6a9e0>,

’errest’: {’absode’: [2.7422339558380702e-14, 6.735318507305554e-14],

’relode’: [5.3676924495678885e-14, 6.739053759474921e-14]}}

So e.g. this says that the quantity X1 = r1235 at R = 0.07 is approximately 0.51088, and
the integral equation computation agrees with the PDE computation to this precision.
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