
1 Preface

Two problems involving flat connections over manifolds:

• computing monodromy of Schrödinger operators on surfaces,

• computing Chern-Simons invariants of flat connections.

Unifying tool useful for both: abelianization. Arose in SUSY

gauge theory (work with Gaiotto, Moore) but suppress that in this

talk.

2 Setup

M a manifold: a G-connection ∇ over M is a principal G-bundle

P plus a notion of parallel transport: F∇(℘) ∈ Hom(Px, Px′).

Call ∇ flat if F∇(℘) depends only on homotopy class of ℘. Two

connections equivalent if have map of principal bundles P → P ′

commuting with the F .

If we fix a section s of P (“fix a gauge”) then F∇(℘) takes s(x) to

gs(x′) for some g ∈ G; or in short, F∇(℘) ∈ G. In particular, fixing

a basepoint x this gives a rep π1(M)→ G. There is an identification

of moduli spaces

M(M,G) = {flat G-connections}/ ∼ = {repsπ1(M)→ G}}/ ∼
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3 Abelianization on S1

Take G = GLNC.

First M = S1. Then a flat G-connection ∇ over M means a

matrix,

A ∈ GLNC
If A is generic, it can be diagonalized, in finitely many ways. Eigen-

values give local coordinates onM(M,G) = GLNC/ ∼.

In terms of ∇ this means: we can trivialize P in such a way that

all F∇(℘) are diagonal.

4 Abelianization on punctured torus

How about two matrices?

A,B ∈ GLNC

modulo simultaneous conjugation. Let’s think of A,B as giving a

representation

π1(M)→ GLNC
where M is the once-punctured torus. i.e. a flat connection ∇ over

M .

If A, B don’t commute, hopeless to simultaneously diagonalize

them. So, we won’t be able to find a global diagonal gauge. But

there’s something you can do.

Take N = 2 for a minute, so G = GL2C. Now draw a pictureW
on M :

We can find a gauge off W such that:

• parallel transports off W are diagonal;
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• parallel transports across dashed lines are strictly off-diagonal;

• parallel transports across solid lines are upper-triangular unipo-

tent.

Call such a gauge an abelianization (wrt W). Two abelianizations

are equivalent if they differ by a diagonal gauge transformation.

Facts:

• a generic A,B can be abelianized in 2 ways, up to equivalence.

• The diagonal/off-diagonal parallel transports. assemble into an

almost-flatGL1(C)-connection∇ab over a branched double cover

Σ→M .

Thus we get an element Xγ ∈ C× (up to sign) for each γ ∈
H1(Σ,Z). These are analogues of the eigenvalues for a single

matrix. They give local coordinates on moduli space M(C,G)

of pairs A, B (identify it with (C×)5).

The abelianization amounts to an isomorphism

ι : ∇ ' π∗∇ab

off the walls, which has unipotent jumps.

Similar statements for any punctured surface with an ideal trian-

gulation, and for any N . eg for N = 2, 3:

Properties:
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• theXγ give local Darboux coordinates for Atiyah-Bott-Goldman

Poisson structure on moduli spaces of representations: {Xγ,Xµ} =

〈γ, µ〉Xγ+µ. for N = 2, complexified shear coordinates. for

higher N , related to cluster coordinates [Fock-Goncharov]

• changing triangulations gives coordinate systems related by clus-

ter transformation, like (x, y)→ (x(1 + y), y).

• invariants of the representation like TrABABA−1 are finite sums

of Xγ. (So for each loop on M there’s corresponding finite bunch

of loops on Σ.)

5 Opers

Now fix a Riemann surface M = C and a meromorphic quadratic

differential φ2 on C. This determines Schrödinger operators : diff

ops D~,φ2 : K
−1/2
C → K

3/2
C , locally like ~2∂2z + φ2(z); analytic con-

tinuation of solutions gives flat SL2C-connections

∇~,φ2

and corresponding monodromy representation

ρ~,φ2 : π1(C)→ SL2C
A basic question: compute ρ~,φ2. Concretely, e.g. this could mean

computing traces TrF∇~,φ2
(℘).
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For this: define critical graph W(ϑ, φ2) as follows. C has foliation

with the leaves defined by condition: e−iϑ
√
φ2 real. Singular at zeroes

and poles of φ2. Now, suppose φ2 has only simple zeroes. Then 3-

pronged singularity:

For ϑ generic, no critical leaf ends up on another zero. Then

W(ϑ, φ2) is union of critical leaves. For convenience, suppose φ2 has

at least one pole of order ≥ 2.

Then, facts (theorem in progress with Kohei Iwaki, related to work

with Marco Gualtieri and Nikita Nikolaev):

• For ~ generic, ∇~,φ2 admits a canonical abelianization, (with

respect to the critical graph W(ϑ = arg ~, φ2)), for which the

double cover Σ is spectral curve

Σ = {λ2 + φ2 = 0} ⊂ T ∗C

• This abelianization has

Xγ(~) ∼ exp(Zγ/~ + · · · )
as ~→ 0 (in 1

2-plane centered around ϑ), where

– Zγ =
∮
γ λ, λ Liouville 1-form on T ∗C,

– · · · is a computable series in powers of ~.

Proof: a rigorous version of “exact WKB” method [Voros, Ecalle,

. . . ] using recent results on Borel summability [Koike, Schafke].

Walls are “Stokes curves.”
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This result determines the asymptotic expansion of the traces.

(They have Stokes phenomena, i.e. it depends on how ~ → 0:

dominated by the term with largest Re(Zγ/~).) With more work, can

try to bootstrap into an actual computation of the traces themselves.

Conjecture: similar picture for higher-degree equations. In this

case each wall is carrying a label ij which tells what kind of unipotent

matrix goes there. New phenomenon: scattering of the walls.

In general the networks which appear here are not related to tri-

angulations. Some interesting new combinatorics.

6 3-manifolds

Abelianization seems to be useful for 3-manifolds too (work in

progress with Dan Freed).

The picture is similar to before: 3-manifold M , branched double

covering Σ→M , network W ⊂M of codimension-1 walls, relation

ι : ∇ ' π∗∇ab off W . But, a new phenomenon: the connections

∇ab which we consider have to be singular at some circles Si ⊂ Σ.

(Double-covering pieces of wall connecting branch loci.)

Holonomy obeys relation:
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7 Triangulated 3-manifolds

Basic example: an ideal triangulation of a 3-manifold (glue to-

gether tetrahedra along their faces, with vertices deleted.) For every

such manifold there is an associatedW . Double cover X →M now

branched over a 1-manifold which threads through the tetrahedron.

In the interior of the tetrahedron, two walls meet head-on, in a line

segment, double-covered by a circle Si.

e.g. M = figure-eight knot complement S3 \ K, glued together

from 2 tetrahedra.

Now want to study flat SL2C-connections over M , by abelian-

ization. For example, M is hyperbolic [Riley-Thurston], so it has a
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particular flat PSL2C-connection ∇. Can lift it to SL2C. Can we

construct it? Not so trivial, since

π1(M) = 〈A,B|A−1BAB−1AB = BA−1BA〉

How to make matrices obeying these conditions? Idea: build it by

starting with∇ab. This means giving a class ∈ H1(Σ\S,C) obeying

the constraints at each Si. Determined by its values Xi on loops

around Si.

But the Xi have to obey our constraints. This leads to a system of

algebraic equations (Thurston gluing equations). e.g. for figure-eight

knot complement, if we also ask for PSL2C-unipotent holonomy

around the boundary torus:

X1 = X2 = X , X (1−X ) = 1

thus

X = eπi/3

(NB, this is different from the surface case where we got a moduli

space: here expected dimension is zero.)
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8 Chern-Simons

Let G = SLNC. Suppose given a closed 3-manifold M carrying

a G-connection ∇.

Then we can consider the (level 1) Chern-Simons invariant.

Since G has π0 = π1 = π2 = 0 every G-bundle over M is triv-

ial, thus we can represent ∇ as d + A for A ∈ Ω1(g), and then the

Chern-Simons invariant is

CS(∇) =
1

8π2

∫
M

Tr(A ∧ dA +
2

3
A ∧ A ∧ A)

The choice of trivialization makes a difference, but changes CS(∇)

by something in Z, so what’s well defined is

CS(∇) ∈ C/Z

The figure-eight knot just described was slightly different: M has

boundary, PSL2C-unipotent holonomy on boundary. Here, can sim-

ilarly define CS(∇) ∈ C/14Z.

For the ∇ coming from a hyperbolic structure,

CS(∇) = (real) + i vol(M)/4π2

i.e. this is a “complexified volume.”

Question: how to actually compute CS(∇)?

9 Chern-Simons by abelianization

Theorem (in progress with Dan Freed): if we haveW on M and a

flat∇ overM , abelianized by some∇ab over Σ, can computeCS(∇).

This computation is “easy” and gives CS(∇) = CS(∇ab), except
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for additional contributions from the Si. The additional contribution

is, loosely speaking 1
4π2
Li2(Xi).

Upon choosing a trivialization of the line bundle L over X this

recovers dilogarithmic formulas for hyperbolic volumes. Choices of

branch of Li2 get dictated by trivialization of L.

For example, figure-eight knot complement: get

CS(∇) =
1

4π2
(Li2(e

πi/3) + Li2(e
πi/3)) ≈ 2.02988i

recovering the hyperbolic volume (NB we take different branches for

the two dilogs!)

Related to [Dupont, Neumann, Zickert]; higher rank version re-

lated to [Garoufalidis-Thurston-Zickert] in case of triangulations.

10 Chern-Simons and topological strings

What we said: SL(N,C) Chern-Simons theory on M related to

GL(1,C) Chern-Simons on Σ → M , deformed by some funny sin-

gular behavior.

This deformation would arise naturally in A model topological

string: if Σ ⊂ T ∗M , and equip T ∗M with almost complex structure,

get a deformation of Chern-Simons, where the Si are the boundaries

of holomorphic discs in T ∗M [Witten, Ooguri-Vafa].

So hopefully all the story of abelianization has a natural meaning

in topological string (Floer theory).

Key open question here: can we say something about quantum

complex Chern-Simons using this idea?
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