
Data

Fix the group G = U(K), GC = GL(K,C). Fix a real surface C

with n ≥ 0 punctures, and two semisimple orbits mi ⊂ gC, mR
i ⊂ g

at each puncture zi. Fix a rank K Hermitian bundle E over C, of

degree 0.

The Hitchin system

Associated to these data there is a hyperkähler space: Hitchin

integrable system, [Hitchin, Simpson]

M =Md(G,C)

Defined as space of solutions of a hard PDE. Look at unitary con-

nections D in E and ϕ ∈ Ω1,0(EndE), with simple poles at the zi
(residues mR

i , mi resp), obeying:

FD + [ϕ, ϕ†] = 0,

∂̄Dϕ = 0,

modulo G-gauge.

M is hyperkähler, so it has a family of Kähler structures

(M, Iζ, ωζ)

parameterized by ζ ∈ CP1. For all ζ ∈ CP1, (M, Iζ, ωζ) is a Calabi-

Yau manifold (even holomorphic symplectic). For |ζ| = 1,

• (M, ωζ) is a paradigm example of SYZ philosophy: it’s a special

Lagrangian fibration

M→ B
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where B is the space of spectral curves

Σ = {det(ϕ− λ) = 0} ⊂ T ∗C

So a generic u ∈ B means a K-fold cover π : Σu → C with

Σu ⊂ T ∗C. Fiber over u ∈ B is

Mu = Picd Σu

Singular fibers when Σu is singular.

• (M, Iζ) is concretely accessible space: for ζ ∈ C× have

(M, Iζ) 'M[(GL(K,C), C)

moduli space of flat GC-connections, with monodromy around

zi given by

µi = exp(mi/ζ + imR
i + m̄iζ)

Scattering diagram

In joint work with [Gaiotto-Moore] we investigated M(G,C)

from the point of view of supersymmetric quantum field theory. We

draw a “scattering diagram” D on B. Countably many walls of real

codimension 1, maybe dense. Walls emanate from locus where Σu is

singular.
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What is D? Moral answer first: a neighborhood of zero section in

T ∗C is hyperkähler; imagine Σu lies in this neighborhood, then

D = {u : there are Iζ-hol curves ending on Σu} ⊂ B.

The real definition of D is a tropical version of this.

NB: really a family of scattering diagrams Dζ , since ζ ∈ C× can

vary. Today, just focus on one — say, ζ = 1.

Canonical coordinate

Given

(u, ζ) ∈ (B × C×) \ D
there is (conjecturally — but proven for K = 2 and for some u

with K > 2) a canonical holomorphic Darboux coordinate system

on (M, Iζ) in some neighborhood U of π−1(u), meaning a map

Ψu : U → T = H1(Σu,C×) ' (C×)2n.

The coordinate systems Ψu are best understood as (local) maps on

moduli spaces of flat connections,

Ψu :M[(GL(K,C), C)→M[(GL(1,C),Σu).

To construct Ψu, first build another network of walls, W(u) ⊂ C.

Defined by (tropical version of):

W(u) = {z : there are Iζ-hol bigons ending on Σu and π−1(z)} ⊂ C.

3



Then

Ψu : ∇ 7→ ∇ab

such that there is an isomorphism ι : ∇ ' π∗∇ab on C \W(u), and

parallel transports of∇ are those of π∗∇ab (diagonal) plus corrections

from holomorphic discs (nilpotent).

This is “almost-diagonalization” of ∇: expresses GL(K)-parallel

transports of ∇ on C in terms of GL(1)-parallel transports of ∇ab

on Σ. e.g. for closed curves:

TrHol℘∇ =
∑

γ∈H1(Σ,Z)

Ω(℘, γ)Holγ∇ab

TrHol℘∇ :M[(GL(K,C))→ C like “canonical theta function” in

sense of [Gross-Hacking-Keel]; Ω(℘, γ) like counts of broken lines

(hopefully literally equal to those counts).

So what we’ve said: W(u) produces a map of path groupoid al-

gebras

Fu : Z[π≤1(C)]→ Z[π≤1(Σ)]
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When u crosses a wall in D, the topology of W(u) changes.

Then Fu jumps by an automorphism of Z[π≤1(Σ)] determined by

the holomorphic curves ending on Σu. e.g. for a single disc, it’s:

If we’re only interested in the holonomies of GL(1)-connections

∇ab, enough to pass to the subquotient Z[H1(Σ)]. Then this auto-

morphism becomes X version of cluster transformation:

Xγ → Xγ(1 + Xµ)〈γ,µ〉

But on the full Z[π≤1(Σ)] it’s some noncommutative version of clus-

ter transformation. Similar ideas discussed by [Goncharov-Kontsevich].

Clusters

In some cases, the Ψu are objects known in the cluster world.

Best-known example is a slight variant of what I said: take G =

SU(2) instead of G = U(2), and fix a Riemann surface C with n ≥ 1

punctures. Then by the same construction, we have local coordinates

Ψu :M[(SL(2,C), C)→M[(GL(1,C),Σu)
odd.
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On the other hand it’s known that (a cover of)M[(PSL(2,C), C)

is X-cluster variety [Fock-Goncharov, Fomin-Shapiro-Thurston]:

• One seed for every ideal triangulation T of C.

• Cluster coordinates XT
E associated to the edges of the triangu-

lations.

• Mutations for flips of triangulations.

Each u ∈ B gives an ideal triangulation T (u) of C — determined by

the spectral network W(u), via picture like

The cluster coordinates of ∇ are among the holonomies of Ψu(∇):

X
T (u)
E = HolγEΨu(∇)

Recently [Berenstein-Retakh] introduced a noncommutative ver-

sion of the corresponding cluster algebra [Fomin-Shapiro-Thurston].

Preliminarily, it looks like it fits into the above structure. Namely:

fix u and consider a subalgebra of Z[π≤1(Σu)], consisting of lifts of

the edges in the triangulation T (u). This gives four generators for
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each edge, corresponding to the xij, xji, x
−1
ij , x

−1
ji in the Berenstein-

Retakh algebra. Their “triangle relation” comes from relation in

Z[π≤1(Σu)]. Applying the noncommutative cluster transformation

above when we change triangulations then gives the “noncommuta-

tive Plucker relations” used by Berenstein-Retakh relating different

noncommutative clusters.

There is also an extension to higher rank K: for some special

u, Ψu gives cluster coordinates introduced in [Fock-Goncharov].

(Unlike K = 2, these u are not an open dense subset of B.) A

noncommutative version of this hasn’t been discussed anywhere yet

as far as I know; seems natural to try again taking paths which begin

and end at preimages of punctures.
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