
1 Preface

Subject of black hole quasinormal modes has been around for a

while. Around 2002 it was suggested that the very highly damped

modes might have some relevance for quantum gravity. I’ll describe

some computations in classical GR which were motivated by this

conjecture. The results seem to contradict the simplest version of the

conjecture, but still appear suggestive. I’ll give a few speculations

about what the result could mean.

2 Area quantization

The idea of area quantization is usually attributed to Bekenstein.

In view of the formula

S = A/4G

it seems natural to suppose that the degrees of freedom responsible

for the microstates of the black hole really live on the horizon. In fact,

suppose the horizon is a “brick wall” built from elementary objects

each of which has k states. Then there will be a minimum amount

of energy that the black hole can emit:

dU = TdS = T log k

where T = TH is the Hawking temperature (and we set kB = 1).

One therefore is tempted to hunt for a characteristic frequency of

this form.

3 Quasinormal frequencies

The most obvious frequencies attached to a black hole are the

quasinormal modes. These describe the “ringing” of the black hole
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when perturbed (at linear order), say by a small fluctuation of the

metric, or a scalar field in the black hole background. The quasinor-

mal frequencies ω are complex; real part gives oscillation while the

imaginary part gives speed of exponential decay.

Numerical computations of the quasinormal frequencies for the

Schwarzschild black hole in d = 4 yielded an interesting result: an

infinite tower of quasinormal modes which asymptotically approach

[Hod]

ω = TH

(
log 3 + 2πi

(
n +

1

2

))
.

This was regarded as possible vindication for the idea of black hole

area quantization, with k = 3 — and even for its realization in loop

quantum gravity, if you use SO(3) [Dreyer].

This naturally leads to the questions: Is the numerical result in-

deed true analytically? Does it also hold for other types of black

hole?

The first question was answered in the affirmative [Motl], using

however a somewhat technical approach which looked difficult to

understand and generalize. To answer the second question we in-

troduced a new method for computing the asymptotic quasinormal

frequencies.

4 The computation

We are studying the dynamics of some perturbation φ of the black

hole — say a massless scalar field propagating in the black hole space-

time. To be concrete discuss Schwarzschild in d = 4. Separate vari-

ables in Laplace equation: writing

φ(r, θ, ϕ, t) = rψ(r)Ylm(θ, ϕ)eiωt
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the radial ψ(r) obeys a second-order differential equation in r. It has

an irregular singularity at r =∞, regular singularities at r = rH and

r = 0. Introducing “tortoise coordinate” x(r) = r + rH log(r− rH),

the equation can be written[
− ∂2

∂x2
+ V [r(x)]− ω2

]
ψ(x) = 0

with the potential

V (r) =

(
1− 1

r

)(
l(l + 1)

r2
+

1

r3

)
.

Then define transmission and reflection coefficients T (ω), R(ω) as

usual:

ψ ∼ T (ω)e+iωx as x→ −∞, ψ ∼ e+iωx+R(ω)e−iωx as x→ +∞

The quasinormal modes are the simultaneous poles of T (ω), R(ω).

Roughly such a pole should correspond to a solution which is purely

outgoing at both x→ ±∞. If there are no bound states (as for the

black hole case) then these solutions can occur only for Imω > 0.

But they are rather subtle to find (or even define) since we are asking

for the exponentially small solution to be absent. Can try to make

sense of this by studying the power series expansion around r = 1:

leads to an infinite continued fraction equation on ω.

We take a different approach. Define the boundary condition at

spatial infinity (irregular singularity) by analytic continuation to the

line ωx ∈ R where the two solutions e±iωx are oscillatory; then it’s

easy to say what it means for one to be absent. Define the boundary

condition at the horizon (regular singularity) by the monodromy in

the complex r-plane. Then in the large Imω limit we can study the

equation by following a WKB contour from infinity to r = 0 and
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around the horizon. Requiring that this gives the expected mon-

odromy leads to a constraint on ω.

Note that the WKB contour has to pass through a turning point

which (in large Imω limit) comes extremely close to the coordinate

“singularity” at r = 0!

5 Results

For the Schwarzschild black hole in arbitrary dimension d, one

finds

eβω + 3 = 0

agreeing with the numerical prediction for d = 4.

For other black holes it’s more complicated. For example, Reissner-

Nordstrom in d = 4:

eβω + 2 + 3eβIω = 0

Kerr in d = 4 [Keshet-Hod, Neitzke-Keshet]:

eβ1ω+µ1 + 1 = 0

and a similar formula for total transmission modes,

eβ2ω+µ2 + 1 = 0

where β1,2, µ1,2 obey

1

2
(β1 + β2) = β,

1

2
(β1µ1 + β2µ2) = βµ (µ = mΩ)

and are given by certain elliptic integrals. (For example, β1,2 are

inverse transit times along certain complexified null geodesics, con-

necting the WKB turning points; similarly µ1,2 related to angular

distance along these geodesics.)
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All these results also confirmed numerically. (And similar formulas

for other spins of perturbation.) Moreover the method has been

extended to various other situations (dilaton gravity, AdS and dS

black holes etc.)

The results seem to defy a simple interpretation in terms of area

quantization: in particular they don’t lead to any single characteristic

frequency. However, they are still suggestively simple: so what do

they mean?

6 Greybody factors

One possible interpretation emerges when we consider not just the

quasinormal frequency but the full transmission amplitude T (ω) at

large Imω. (It is determined by a monodromy calculation similar

to that described above.) This amplitude determines the “greybody

factor” which filters the spectrum of Hawking radiation:

σ(ω) ∝ T (ω)T (−ω)

eβω − 1
Historically this greybody factor has often been considered as an

annoyance which is obscuring the perfect thermal spectrum. But it

has also served as a clue to the quantum description of certain black

holes!

For example, consider string theory on T 4×S1. Get a 6-parameter

family of solutions by studying objects with three charges Q1, Q5, n,

mass M , and internal volumes V , R. Letting g denote string cou-

pling, consider the semiclassical limit g → 0 with fixed gQ1, gQ5,

g2n: if they are large then this is a black hole well described by

classical action (Einstein-Maxwell plus dilaton), if small then well

described by string perturbation theory. So try calculating the ra-

diation from the black hole using string perturbation theory. (In a
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further “dilute gas” limit.) At low enough energies ω (and say for

` = 0), this computation gives

σ(ω) ∝ 1

(eβLω − 1)(eβRω − 1)

which doesn’t look like the thermal spectrum; in fact it contains in-

formation about the underlying SCFT describing the degrees of free-

dom of the black hole (“effective string” with excitations traveling

around to the left and the right, which have to interact with one an-

other to create a quantum of Hawking radiation, with characteristic

temperatures βL, βR.)

Now compare this to the Hawking computation, including the

classically-computed greybody factor:

T (ω)T (−ω) ∝ eβω − 1

(eβLω − 1)(eβRω − 1)

We see that the spectrum of Hawking radiation computed using semi-

classical spacetime action actually agrees with this SCFT spectrum!

So: reversing the historical order, you might say that the classical

computation of the greybody factor gave a clue about an underlying

quantum mechanical description of the black hole.

What would that description be? Our results for Schwarzschild

and Reissner-Nordstrom make it look rather exotic, e.g. “tripled

Fermi statistics”, excitations involving both inner and outer hori-

zons. For Kerr the situation seems a bit more conventional: two

subsystems labeled by β1,2, µ1,2 which interact with the environment

only through processes with dU1 = dU2 and dN1 = dN2. Then the

outside observer sees a system characterized by β, µ. This answer is

in some sense more stable against small perturbations.
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