Notes on spectral networks
Andrew Neitzke

These are notes for a spring 2021 lecture series. They are a work in progress.

1. INTRODUCTORY REMARKS

WKB spectral networks

Path lifting

WKB analysis DT invariants | Clusters huantum topology

Hyperkahler metrics

The rough plan is above. It is not necessarily the logical flow of the subject — really all
arrows should point in both directions — but it is the path we will take.

The story I will explain follows along the lines of joint work with Gaiotto-Moore, Hol-
lands, Yan, Freed. Related work by Fenyes. All closely connected with ideas of Kontsevich-
Soibelman, Fock-Goncharov, Hitchin, Simpson, Voros, Ecalle, many others.

2. WKB SPECTRAL NETWORKS

2.1. Data. The data with which we work is:
e A compact Riemann surface C.
e An integer N > 1.
e A tuple ggz (¢1,...,6n) where ¢; is a meromorphic section of K&'.
We will hold C' and N fixed throughout and thus usually omit them from the notation,
but it will be important sometimes to allow 5 to vary.
¢1 does not play much of a role, so we often simplify by assuming ¢; = 0. (We should think
that NN is really standing in for gl(N), and then getting rid of ¢ is related to considering
only traceless matrices, i.e. reducing from gl(N) to sl(N).)
The case N =1 is more or less trivial at least for today. N = 2 is already interesting and
considerably simpler than N > 3.

2.2. Spectral curve.

Definition 2.1 (Spectral curve). Define the spectral curve

N
$g= {Zgbin_i:O} cT*C, (2.1)
=0

where we define ¢y = 1.
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When X g 1s smooth reduced, the projection 7 : 3 g C is a branched N-fold cover. For

N = 3 a cartoon would be:
—L

C

A(

Definition 2.2 (Simple data). We say 2 is simple if it is smooth reduced and also has
only simple ramification (ie all ramification points are of index 1) as illustrated above.

For what we will do later, the restriction to smooth reduced X 3 will be essential, while
the restriction to simple X 3 will be merely convenient.

Example 2.3 (Spectral curve for N = 2). If N = 2 and ¢; = 0, then Yg= {y?+ ¢y = 0}.
>z is smooth reduced just if ¢ has all zeroes simple, and 3 ¢ is simple iff it is smooth reduced.

When 5 is fixed we sometimes write X for 5. We let Ac C C denote the branch locus of
.

For concrete pictures and computations we sometimes choose a local trivialization of X
over some simply connected domain U C C'\ A¢, i.e. identify the components of 7—!(U)
with {1,..., N}. In particular, we can take U to be the complement of a set of “branch
cuts” emanating from the points of Ac. Then each branch cut is labeled by an element of
Sy. Paths on X are represented by paths on U with a number indicating which preimage of
the path we take; the number has to transform according to the permutation when we go
across a cut.

When ¥ is simple, these elements are all transpositions (and thus we do not have to specify
a co-orientation of the cuts).

2.3. Foliations. On a surface with a quadratic differential ¢, there is a well-known foliation.
We are going to construct a generalization of that.

Definition 2.4 (Oriented foliation for a holomorphic 1-form). For a Riemann surface
S equipped with a nowhere vanishing holomorphic 1-form p, we have the distribution ker Im p,
which integrates to give a foliation F}, of S. This foliation is oriented by Re p. For example,
if S = C and p = dz, then F), is the foliation by horizontal lines oriented to the right. Note
F_, is the same foliation with the opposite orientation.

If p has an isolated zero then we make the same definition, now getting a singular foliation.
Below are pictures of the foliation (up to conformal transformation) in a neighborhood of a
generic point, a first-order zero, or a second-order zero of p. The pattern continues: for an

2
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n-th order zero one gets 2(n + 1) “wedges” coming together. We'll call such a singularity a
2(n + 1)-fold point.

= /| A\

More generally, for ¥ € R/277Z, we also define
F! = Fgo,.

elVp

Our foliation is not going to be directly on C' but rather on a slightly complicated-sounding
covering (not so bad in practice):

Definition 2.5 (Root curve). Suppose ¥ (as above) is smooth. The root curve is the
closure of the fiber product with diagonal removed,

S={y,y) e xS :aly)=7(),y £y} CTC xT*C. (2.2)

This is a smooth (N2 — N)-sheeted branched covering of C, perhaps with some points deleted
over the poles of ¢.

There is a natural involution of ¥ given by w(y,y') = (v, y). Projection on the first and
second factors gives maps py,ps @ 2 — X%, with py = p; o p.

Example 2.6 (Root curve for N = 2). For N = 2, the root curve is just another language
for talking about ¥ and its standard covering involution: indeed the maps p;, po are both
isomorphisms 3~ Y., differing by composition with the covering involution. Under either of
these isomorphisms, moreover, y is taken to the covering involution.

Example 2.7 (Root curve for N = 3). For N = 3, the situation is already more inter-
esting: 3 is a 6-fold covering of C', while ¥ is a 3-fold covering, and the maps p;, p, are
branched double covers. Above a simple branch point p € Ag, 3 has 3 ramification points,
all of index 1 (i.e. the 6 sheets come together in 3 pairs). But these 3 ramification points
are different: one is fixed by the involution u while the other two are exchanged.

If we trivialize X locally then there is an induced local trivialization of i, labeling its
sheets by ordered pairs (i,7) with 1 <4,7 < N and i # j. So paths on ¥ can be represented
by pictures like the one below.
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Definition 2.8 (Foliation of the root curve). Let A denote the canonical (Liouville)
1-form on T™*C’; its restriction is a holomorphic 1-form on ¥. Define

p = PIA = p3A. (2.3)

p is a holomorphic 1-form on EN], with zeroes only over the branch points. Thus we have the
foliation F ;9 of 3. It has singularities only over the branch points.

Since p is the only 1-form we will use on 5> we will often drop it from the notation and
just call the foliation F7.

We have p*p = —p. It follows that p preserves the leaves of FV but reverses their orien-
tation.

Example 2.9 (Foliations for N = 2). The simplest case is N = 2. Then 3 is just a double

cover of C, and p is the covering involution. So the oriented foliation F? of 3 descends to
an unoriented foliation of C'. Around simple zeroes of ¢, it has a three-pronged structure as

shown.
N

Around poles of ¢o the behavior depends on the order of the pole as sketched below.

- L
= O X@ > %
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For ¢5 meromorphic with at least one pole of order > 2, with only simple zeroes, and
sufficiently generic, the global picture looks like:

//\\
NV

When ¢ has only order 2 poles, this picture determines an ideal triangulation of (', as in
the following picture.
4
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>

When poles of higher order are allowed, one gets a triangulation of a slightly different
surface, where we replace each order-(n+ 2) pole by a boundary circle with n marked points,
a la Fock-Goncharov — this reflects the behavior of the leaves near the singularity
shown above. An extreme case is to take C' = CP! and ¢y = P,,(2)d2? with P,, polynomial
of degree m; then we have a pole of order n +2 = m + 4 at z = oo and we get an ideal
triangulation of a disc with m + 2 marked points around the boundary, or equivalently a
triangulation of an (m + 2)-gon.

In this picture the leaves which end on the branch points play a particularly important
role: they make up the critical graph CG(1) of the quadratic differential ¢,. The notion of
spectral network is a generalization of this structure to higher V.

Example 2.10 (Foliations for N = 3). The foliation F for N = 3 looks considerably
more complicated. Around a generic point the projection of F” to C looks (topologically,
not conformally!) like:

a )
N\ \/\
/ / /
VAVAVAY
\/ /\/
\/ \
/ / /\ /

There are also some degenerate loci (caustics) where the three foliations become parallel.

Around a branch point it is hard to draw the full picture, but we can draw at least part
of the projection: it has the same three-pronged structure that we saw in the N = 2 case
above, Example 2.9.

2.4. Solitons. This subsection was actually omitted from the first lecture, but might be
useful anyway. N
If ¢ is a 1-chain on ¥, let p(c) be a 1-chain on ¥ given by

p(e) = (p1)+c = (p2)«c. (2.4)

(So if in a local trivialization ¢ carries the label ij then p(c) consists of two components, one
carrying label ¢ and one carrying label j, with the second one oppositely oriented.) Note it

has
/ A= / , (2.5)
p(c) c

Definition 2.11 (Topological solitons). Fix z € C and y,y’ € 7 '(2). A topological
soliton from y to y' is a 1-chain ¢ on 3, such that d(p(c)) =y — v.

The projection of a topological soliton from 3 to ' looks like a graph (generically trivalent),
with one leaf at z and all other leaves at branch points. The labels on the edges of the graph
5
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are constrained: there is a balancing condition at each internal vertex, and also a condition
at each branch point, coming from the condition that d(p(c)) doesn’t contain any points
lying over the internal vertices or branch points. Examples of projections of solitons obeying
the conditions are shown below.

23

A&

(A 3| ¢z

Definition 2.12 (WKB solitons). Fix z € C and y,y € 7 }(C) C . A WKB soliton
from y to y with phase ¥ is a topological soliton from ¥y to 3y’ made up of paths which travel
along the foliation F¥ (permitting turns at the singularities).

So the projection of a WKB soliton to C'is a graph as before, but now with some rigidity:
the edges are required to be leaves of the foliation with matching labels.

Definition 2.13 (WKB spectral network). The WKB spectral network W(9) is the set
of all (y,vy') € ¥ such that there exists a WKB soliton from y to ¢’ with phase 9.

Example 2.14 (WKB spectral network when N = 2). When N = 2 and ¢; = 0, all
WKB solitons are just segments whose projection runs from z to a branch point. It follows
that the projection of W(¥) to C is the critical graph CG(9).

2.5. Computing the WKB spectral network. In the actual lecture, the algorithm below
became the definition.

Proposition 2.15 (Algorithm for computing W(9)). If ¥ is simple, then we can com-
pute W(¥) as follows. For each branch point p € Ag, there is a unique p-fixed ramification
point 7, € 5 lying over p. p has a second-order zero at 7, so there are three leaves of F’
passing through r,. Let C be the smallest set of half-leaves of F¥ such that:

e C must include, for each p, the three half-leaves beginning at r, which are oriented
away from 7).

M
/
o

e Suppose {1,y € C are such that p;(¢1) intersects py(¢s) transversely at a point y € X,
with preimages (y,y1) € ¢1 and (y2,y) € 2. Then C must also include a third half-leaf
beginning at (y2,y1). The projection of these three half-leaves to the base C' then
looks like the picture below in a neighborhood of 7(y):
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We emphasize that the intersection point 7(y) € C is a regular point, neither a
branch point of > — C nor a singularity of gg; the only thing that is special about
this point is that it happens to be the place where p;(¢;) and po(fs) intersect.

e (This one is technical: in the generic case it will not be needed.) Suppose ¢ € C is a
half-leaf which runs into a singularity of F? at a point r € ¥, which is not p-fixed.
(In our local notation on C, this means a leaf labeled ij running into a branch point
of type jk, for k # i.) Then p has a first-order zero at r, so the foliation Fy has a
4-fold point at r. In this case C must include both of the half-leaves beginning at r
which are oriented away from r.

Then W(9) is the union of all half-leaves in C.

Remarks:

e When the ¢; are holomorphic, W(#) is usually dense on .

e When the ¢; have poles, sometimes W(1) is not dense (e.g. this happens when N = 2,
¢9 has at least one double pole, and ¥ is generic.)

e The complement of W(1) is always dense.

Some simple examples of W() = 0) with various q; and N = 2,3, 4:
(=~ 1)

These examples are misleadingly simple: the generic behavior is probably that W(4J) is
dense.

Exercise 2.1. Prove that when N = 2 and ¢ = f(z)dz?, with f a polynomial of degree
d, the projection of W(¥) to the base C consists of curves which are asymptotic to d + 2
asymptotic directions in the plane. How do those directions depend on 7

Question 2.1. Experimentally, W(?) is finite in simple enough cases. Can it be proven?

For example, suppose we take N = 3, some integer d, and (;;: (¢, @3) Where ¢p = f(2)d2?,
7
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¢3 = (2% + g(2))dz?, with deg g < d and deg f < 2. Then, relations to cluster algebras lead
to the wild guess that for d < 5 the network W( 19) only involves finitely many trajectories,
while for d > 6 it could involve infinitely many. Numerical experiments suggest the finiteness
is really true at least for d = 2,3. How to prove it?

2.6. BPS phases. Suppose that, for some ., W(9..) contains a leaf which runs into one
of the p-fixed singularities (or, in our local notation on C, an ij-leaf runs into a branch
point labeled (i7)). In this case we say that ¥ is a BPS phase. These phases are especially
important; in particular, YW(1J) changes discontinuously as 9 moves across a BPS phase 9.
A related point is that the BPS phases are exactly the phases for which the projections of
two walls can overlap on a whole segment.

Example 2.16 (BPS phases for N = 2). Here is an example of a BPS phase for N = 2.

N\ N ) /4

¥ < e ¥ =19, 9>,

The segment appearing in the middle is called a saddle connection.

Example 2.17 (BPS phases for N = 3). Here is an example of a BPS phase for N = 3.
In this case the finite object which appears is a three-stringed junction.

// \>%

3. ExacTt WKB FOR OPERS

Now we consider one place where the WKB spectral network occurs “in nature.”
Many of the needed analytical
statements are still conjectures, but there is considerable numerical evidence that things
work as claimed, at least in examples simple enough to investigate.

3.1. Data. We take the same data as before:
e A compact Riemann surface C'.
e An integer N > 1.

e A tuple gg: (¢1,...,0n) where ¢; is a meromorphic section of Kgi’i, with ¢; = 0.
8
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In addition we take two extras:

e A spin structure on C' (only necessary for N even).
e A complex projective structure on C.

3.2. Opers. Given these data, there is a canonical construction of an order N differential
operator (oper) acting on meromorphic sections,

1-N 4N
Dy Ko» — Ko7 . (3.1)

Example 3.1 (Opers for N = 2). Suppose N = 2. Choose a local coordinate patch on
C, lying in the atlas given by the complex projective structure. Let z be the coordlnate

Trivialize KA : by one of the two choices of vdz, similarly trivialize all powers K2 : by vd
and write <b2 P»(z)dz2. Relative to these tr1v1ahzat10ns D is given by

Dy = (02 + Po)ip. (3.2)
(So it looks like a meromorphic version of a Schrodinger operator.)

Example 3.2 (Opers for N = 3). Suppose N = 3 and we choose a patch and trivializations
as above. Relative to these trivializations, D 5 1s given by!

D= (af + PO+ S0P+ p3) " (33

More generally we introduce an extra parameter h € C*, and consider the rescaling
hlg = (h2¢e, h3¢s,..., iV ¢y). Then we let D?‘; =D, 15 Soe.g. (3.2) becomes

Dip = (2 + W *Pa). (3.4)

Now the kernel of Dg acting on holomorphic sections is a rank N local system L% over

the locus C" C C where q; is holomorphic. It comes with some additional structure: namely,
along any ray going into a singularity of gz;, there is a filtration by the rates of growth of the
sections. The filtration depends on the ray in a piecewise-constant fashion: said otherwise,
there is a circle of asymptotic directions near the singularity, and this circle is divided into
arcs, with a complete filtration along each arc. We call LZ;, with this filtration data, a

decorated local system. We won’t develop this systematically here but let us discuss two key
examples.

Example 3.3 (Polynomial differentials for N = 2). Set N = 2, C = CP!, and ¢, =
(22 —1)dz2. Then C" = C, and the space of global sections of the local system Lg over C" is

a 2-dimensional vector space V.
In this case the circle around z = oo is divided into 5 arcs, as shown below when arg A = 0.
(The blue lines mark the boundaries between arcs; the middle of each arc is marked with a

red dot.)

IThe extra term %@@ might be a little surprising; one quick way to see that it needs to be there
is to consider the covariance of this expression under Mobius transformations. It also arises from naive
quantization of the curve ¥ using the symmetric ordering prescription.

9
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2

4

Thus V gets 5 complete flags, which just means 5 distinct lines ¢1,...,¢5 C V. ¢; consists
of those sections of Lg which decay exponentially as z — oo in the ¢-th arc. Thus the
isomorphism class of the decorated local system L:; is a point of Confs(CP') (note, this
CP! ~ P(V) has nothing to do with C!)

Example 3.4 (Polynomial differentials more generally). In a similar way, if we take
¢y = P»(z)dz? where P, is a polynomial of degree d, we get d + 2 asymptotic arcs and a
point of Conf g (CP).

More generally, when C' = CP! and ¢ = (¢, . .., ¢n) consists of sufficiently generic polyno-
mial differentials, the pattern of filtrations that one gets around z = oo is more complicated.
If ¢ is a sufficiently low-degree perturbation of (0,0,...,0,2%dz") then I hope that LZ is

equivalent to a point of Gr(N,K + N)/(C*)X*N. The case above was the case N = 2,
K = d, where Gr(2,d + 2)/(C*)%*2 ~ Conf4,5(CP*).

3.3. The Riemann-Hilbert map. The map $ — L(g is called the Riemann-Hilbert map.
We are interested in computing this map practically.

As a practical matter this could mean computing the trace of holonomy around some
loop, or some invariants of the filtrations around irregular singularities. Here is one concrete
example:

Example 3.5 (Cross-ratio question for polynomial differentials). Say N =2, C' =
CP!, ¢ = (2* — 1)dz? as in Example 3.3. Then we ask: what is the corresponding point
LZ» € Conf5(CP")? Concretely, we choose a coordinate system on Confs(CP') and ask, what

are the invariant cross-ratios
T(€1,€2,€3,€5), T(£5,€1,€3,€4)? (35)

3.4. Formal WKB solutions. How do we study the Riemann-Hilbert map? We need a
practical understanding of the solutions of Dzt = 0. The basic idea: consider

Dgw =0 (3.6)

instead, and expand in series around A = 0. We make the following ansatz:

L
wlgggmal(z7 h) = exp (h_l/ /\formal(h)) (37)
Yo

where
eycml(z)CX
10
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° S\formal(h) is a 1-form on X 7, written as a formal power series in A,

/N\formal<h) = Z hn)\n (38)
n=0

with each A\, a 1-form on X 5 and Ag = A the original Liouville form.

The equation (3.6), expanded in powers of h, determines the A, recursively.

Example 3.6 (WKB ansatz when N = 2). In the case N = 2, the equation we are
solving is (3.4). Then the leading-order term in our ansatz is

IEND Nexp( / \/—_Pgdz) (3.9)

which indeed solves Equation 3.4 to leading order. Then plugging in the full ansatz (3.7)
gives®
A2 Ty + HOX = 0, (3.10)

which determines

; 5P — AP Py
Mtormar(F (\/—P2 - h— W2/ —P—t ) Tz (3.11)

32}
(Note /— P, is single-valued on ¥.)

Exercise 3.1. Derive the series (3.11) up to the order shown. Write it out more explicitly
in the case where P»(z) = z. (In this case the equation (3.4) is the Airy equation, and the
desired solutions are the Airy and Biry functions.)

Formally, this works for each y € 77 1(2), and thus gives N solutions in any simply
connected domain.

3.5. Borel summation. The crucial fact about (3.8) is that (whenever there exists at least
one branch point) it necessarily has zero radius of convergence. Nevertheless, one can try to
make it into an honest 1-form, by the procedure of Borel summation. The key claim is that
this can actually be done, but only away from the spectral network:

Conjecture 3.7 (Borel summability of WKB series). The series S\formaJ(y, h) is Borel
summable to an actual 1-form A(y, k), except when y € py(W(J = argh)).

Proposition 3.8 (Borel summability when N = 2 with enough poles). Suppose
N = 2, ¢, has at least one double pole, and no residue m? of ¢o has argm = 9. Then
Conjecture 3.7 is true.

Question 3.1. Can we establish Conjecture 3.7 more generally?

(From now on let’s reduce the notation by writing W = W(JY = argh), L = Lg, X=%z)

%In the equation below &\ is a quadratic differential on X, whose definition involves the complex projective
structure on C; in a coordinate on C' in the atlas determined by the projective structure, we would write it
as O\ = 7% (0, (m\/dz)d2?).

11
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For z ¢ (W) this works for each y € 77(2), and thus the ansatz

YW (2, h) = exp (ffl /y y :\(h)) (3.12)

gives N distinct solutions in any simply connected domain away from 7(W). These solutions
depend on the basepoints yy we choose, but changing 1y just changes them by a scalar
multiple.

Conjecture 3.9 (Linear independence of solutions given by WKB ansatz). The
solutions Y™ (z, k) for y € 7~ !(z) form a linearly independent set.

Thus they give a decomposition of the N-dimensional space of solutions into N distin-
guished lines. Said more geometrically: we have a local system A over X\ p;(W), whose
sections are the solutions of the equation

(d— AN\ = 0. (3.13)
Then what we found is that

Lleveow) = meAlcveom)- (3.14)

This is like saying that one can canonically diagonalize the local system L away from w(W).

Moreover, suppose ¥ = arg h is not a BPS phase; then there is a canonical way of patching
A across p1(W) to get a rank 1 local system on ¥\ 77!(A¢), with holonomy —1 around
each point of 771(A¢g). We call this an almost-local system over 3. Then, for a loop
v e Hi (X \ 7 (A¢),Z) we define

X, = Hol, A. (3.15)
The holonomy X, is a function we can say something about:

Conjecture 3.10 (Asymptotic expansion of abelian holonomies). If J = argh is not
a BPS phase, then the series

Zormal(p) = i A" 7{ An (3.16)
n=0 v
is Borel summable to a function Z,(h), and
X, = exp(Z,/h). (3.17)
Moreover, fw A1 € mZ. In particular,

X, ~ texp(Z,/h) (3.18)

as h — 0.
Moreover the X, are useful in practice:

Example 3.11 (Abelian holonomies as cross-ratios). Return to Example 3.5. The two

cross-ratios can be expressed as
12



Lectures on spectral networks

T(£17€27€37€5> - X’yl; T<€57£17€3J£4) - X’)’2' (319)

Cluster aficionados will recognize this picture: according to [Fock-Goncharov] one should
associate a “cluster” coordinate system on Confs(CP') to every triangulation of the penta-

gon. The cross-ratios (X,,, X,,) are the cluster coordinates associated with the triangulation
determined by W:

So what we have seen is that these coordinates are in some sense the natural coordinates
for analysis of opers. Indeed this turns out to be true more generally:

Proposition 3.12 (Abelian holonomies as cluster coordinates). Suppose N = 2, ¢,
has at least one pole of order > 2, ¢5 has only simple zeroes, and ¥ = argh is not a
BPS phase. Then the spectral network VW determines an ideal triangulation of a blown-up
version of C, as we discussed above. For an internal edge F of the triangulation, there
is a corresponding cycle vz shown in the figure. Then the abelian holonomy X, is the
Fock-Goncharov coordinate Xg(L). (As above, it can be expressed as a cross-ratio between
distinguished sections associated to the four vertices of the quadrilateral.)
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We expect a similar relation between the X, and cluster coordinates for N > 2 at least
in sufficiently nice (finite) cases. This kind of relation is known in some examples. For
instance one can recover cluster coordinates on Gr(3,6) this way, or on moduli spaces of flat
SL(N)-connections with complete flags on the boundary, a la Fock-Goncharov.

4. PATH LIFTING

Where are we now? We started with:

e A compact Riemann surface C,
e An integer N > 1,
e A tuple ¢ = (¢bo,...,¢n) where ¢; is a meromorphic section of K&,

and

e A spin structure on C' (only necessary for N even),
e A complex projective structure on C'.

From these data we built:

e A rank N local system L = LZ? over C,

-

e A spectral network W = W(9J, ¢) on C,
e (Depending on conjectures in some cases), a rank 1 local system A = Ag over the

spectral cover X = X 3

The idea was that L is something difficult we want to study (eg a Schrodinger equation),
and we simplify by replacing it with A which is easier to study.

How can we describe the relation between them directly, without referring to WKB, Borel
summation etc?

At least when W is finite, the full local system L can be expressed in a precise way in
terms of A, as we now describe. What is involved is a way of lifting paths from C to 3.
Naively lifting paths would not be homotopy invariant: when we perturb a path across a
branch point, we change the homotopy classes of its lifts.

But there is a way of repairing this problem using the extra data of the network W: this

is the path-lifting rule.
To formulate it we need a little notation:

Definition 4.1 (Path categories). For Y C X:

e Let Path(X,Y) be the category of paths in X with endpoints in Y, enriched over
abelian groups (so Hom(y,y') is the abelian group of formal Z-linear combinations
of paths from y to ' in X, and composition is extended linearly).

e Given a map 7 : Z — X, let Path?(X,Y) be the category of paths in Z with
endpoints in 771(Y"), where Hom(y, /) is the abelian group of formal Z-linear com-
binations of paths from any 2z € 77!(y) to any 2’ € 7~!(y/) in Z, with composition
taken to be zero for paths which don’t concatenate.

14
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Proposition 4.2 (WKB path-lifting rule). If W is finite, then there exists a “path-
lifting” functor

F : Path(C,C \ 7(W)) — Path™(C,C \ 7(W)) (4.1)
such that:

e [ is almost-homotopy-invariant, i.e. if P ~ P’ then F(P) ~% F(P’), where ~%
means ordinary homotopy except that if we move a path across a point of 77!(A¢)
we get a sign —1.

e For any path P, all terms in F'(P) are obtained by splicing paths p(c), where c is a
WKB soliton with phase ¥, into lifts of P.

We don'’t define “splicing” carefully here, but we do indicate the most fundamental and
important example:

X NP X I X ks
¢ WA, 2 I (12)- - - == =% (12)- - - --2%
S A A,

Q, 2

In this example F(P) = Q1 + Q2 + Qs.

Exercise 4.1. Check that for the path P’ shown below, which has P ~ P’, indeed F(P) ~*
F(P"). (Note this is a purely topological exercise.)

(This one helps to explain the need for the birth of extra half-leaves at intersection points;
indeed, the homotopy invariance could not have worked without them.)

Question 4.1. Can we formulate a version of the path-lifting rule which works without the
finiteness assumption?

The path-lifting functor is unique when 1 is not a BPS phase. Otherwise some more care
is needed with the definition of splicing, and there can be multiple choices; in particular one
gets two different ones by taking the limits ¥ — 9.

4.1. Path lifting vs WKB.

Definition 4.3 (Nonabelianization map). Given an almost-local system A over X, we
define a local system L = Naby(A) over C'\ m(W) as follows: for an open set U, L(U) =
A(rm=1(U)); for a path P from U to U’, the map L(P) : L(U) — L(U’) is A(F(P)).

This is a purely topological operation, and for a fixed W it is often easy to define and
study. But it agrees with what we get from WKB analysis:
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Proposition 4.4 (WKB and nonabelianization). The A = A(zh-; and L = LZ? which we
considered above are related by L = Naby(A) where W = W(J = argh, 5)

Corollary 4.5 (Expansions of traces of holonomies). Suppose P is a closed loop on C.
Then
nLP) = Y QPA)x, (4.2)
VEH:(,Z)

for some (computable) Q(P,~) € Z.

In particular, since we know the asymptotic expansion of X, as i — 0, this allows us to
determine the asymptotic expansion of Tr L(P) as h — 0.

5. DONALDSON-THOMAS-TYPE INVARIANTS

5.1. Chamber structure. We have been discussing a decorated GL(N)-local system Lg
over C' and a GL(1)-almost-local system A% over %, related by LZ =N abg(Ag). Work-

ing modulo equivalence we get the corresponding map on moduli spaces of decorated local
systems, of the form

Naby: M™ (S5 GL(1)) = M(C,GL(N)).
N abg depends only on the topology of the spectral network W(¢ = arg h, gg)

Conjecture 5.1. The map N ab% is a local symplectomorphism, with respect to the natural
(Atiyah-Bott) structures on the two moduli spaces.

This is true for N = 2, just because we already know the Fock-Goncharov coordinates
are Darboux coordinates. There is an idea of proof in the spectral networks paper; I believe
working on real proof.
It follows that F g is at least locally invertible, to give a map

Abl: M(C,GL(N)) = M™(S5 GL(1)) ~ (C*)" (5.1)

We think of Abg as giving a local coordinate system on M(C,GL(N)). We discussed some
of these coordinate systems earlier (cluster cooordinates).

-,

So we have a decomposition of the parameter-space of (1, ¢) into chambers. Each chamber

is labeled by a topology of the spectral network W(4¢, 5) The walls are the locus where
is a BPS phase. Each wall w is labeled by some birational automorphism a,, of the torus
M™(E;,GL(1)), determined by the relation

Gt =a,0G (5.2)

where G are the coordinate systems on the two sides of the wall.
The walls may be dense in some part of the parameter space, but as usual there are some
nice enough examples where they are not.

Example 5.2 (Cubic N = 2 example). If we take C' = CP!, ¢ = 2% + 2 + v and let u
vary with fixed small imaginary part, we get a picture with the topology below.
16
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9

s

0 > ?e(uj

5.2. Automorphisms. What are the automorphisms of M™ (X3, GL(1)) attached to the
walls?

Example 5.3 (BPS automorphisms from saddle connections when N = 2).In
case N = 2, the simplest kind of wall w arises from a saddle connection for the quadratic
differential ¢o, i.e. a geodesic in the metric |¢o| connecting two zeroes. Such a saddle
connection appears at the phase where the spectral network jumps, as in the figure:

Let the charge of the saddle connection be the cycle v € H;(X,7Z) in the figure. Note
V. = arg Z.,. (5.3)
This jump of the spectral network corresponds to the automorphism
ay = Ky X, = X, (1 — X)) (5.4)
This is also (essentially) an example of a cluster transformation.

Example 5.4 (BPS automorphisms from trees). When N > 2 we can have saddle
connections but also trees with more interesting topologies, e.g.:

A tree gives the same kind of automorphism as a saddle connection,

ay = K, : X, = X, (1 — X,)#7 (5.5)
17
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Example 5.5 (BPS automorphism from ring domain). When N = 2, a wall associated
to a ring domain gives an automorphism

aw =K% X, — X,(1 - X,)~m7) (5.6)
This is not a cluster transformation, but it plays the same role in the theory as an honest

cluster transformation.

When N > 2 we can have more interesting objects with a loop attached, which still give
the automorphism above. But we can also have more complicated topologies with multiple
loops, which can lead to more complicated automorphisms.

5.3. BPS invariants. Whatever the automorphisms are, we organize them into a collection
of numbers, as follows.

Definition 5.6 (BPS invariants). Fix ¢ such that Zy | Zy, = ~ || 7. Then for each
wall w at ¢ let a,, be the attached automorphism, and define integers Q(v; ¢) by
y = H KS(W;@ (5.7)
vETw

For ~ which do not appear in a,, for any wall w at q;, we set Q(v; g;) =0.

-

There is an algorithm (described in the spectral network paper) for computing Q(v; ¢)
from the topology of the spectral network.

-

Conjecture 5.7 (Integrality of BPS invariants). All Q(v; ¢) € Z.
Example 5.8 (BPS invariants when N = 2). When N = 2,

Q(7; ¢2) = #{¢2 saddle connections with charge v} — 2#{ ¢ ring domains with charge v}
(5.8)

Example 5.9 (BPS invariants in the cubic N = 2 example). In the cubic N = 2
example from above, holding Im(u) fixed and varying Re(u), we have:

e for small Re(u), Q(£v1) = 1, Q(£72) = 1, all others zero;
o for large Re(u), Q(£v) =1, Q(£y) =1, Q(£(y1 + 12)) = 1, all others zero.

If we let u vary in the whole plane we have a picture like:

(

e/
o DAri+2

lrere

These invariants are counting the saddle connections; so a saddle connection can appear
or disappear when we vary u. This is the wall-crossing phenomenon.

Note our picture implies some constraints on the wall-crossing phenomenon: given two
homotopic paths in the parameter space, the associated automorphisms have to be the
18
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same. For example, applying this in the N = 2 cubic example to the two paths indicated
below

g
X( O/Yl
s'_Xi‘“,‘z.
\
, —>—
?{L"‘) e Z
requires the identity
Ky Ky, = Koy Koy 40, K, (5.9)

which is indeed true (it just uses the fact that (7;,72) = 1). In principle, if we know all the
Q(; qb) for some ¢, we can use this type of constraint to determine all the Q(; ¢ ). Said
otherwise, we expect the Q(~; gb) to satisty the Kontsevich-Soibelman wall-crossing formula.

The Kontsevich-Soibelman formula was originally written in the context of DT theory.
The following theorem says this is not just a coincidence.

Theorem 5.10 (BPS invariants are DT invariants when N = 2). (Roughly)
Fix a topological surface S with marked points p;, labeled by integers n;, with at
least one n; > 2. Then there is a triangulated 3CY category C such that:

e for each (complex structure on S and meromorphic ¢, with a pole of order n; at p;
for each i), there is a corresponding stability condition on C,

e the BPS invariants 2(7; ¢2) are the generalized Donaldson-Thomas invariants asso-
ciated to this category and stability condition.

Very recently it was shown that the same theorem is also true without the marked points.

The invariants Q(~; gz?) in case N > 2 are much less explored — though some examples
computed . In particu-
lar, they should be DT invariants as in N = 2 but this is not known yet. Unlike N = 2 they
can have exponential growth as function of ||v||.

5.4. Riemann-Hilbert problem. Now let’s return to the family of GL(N)-local systems
LZ» obtained from opers, abelianized by GL(1)-local systems Ag, with holonomy functions

X, (k). From what we have said we expect the following properties for X, (h):
X, (h) ~ exp(Z,/h) as b — 0.

[ ]
e X (h) is piecewise analytic, with jumps by the automorphisms a,, at the walls w at
0.

19
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We might also optimistically hope for the following, which is true in some interesting

examples:
e X, (h) has “moderate growth” as h — oo.

These conditions can be thought of as defining a Riemann-Hilbert problem: given just the
Z., and the automorphisms a,,, can we find X, (h)? This problem has been studied recently
(GNIN, Gaiotto, Dumas-Neitzke, Bridgeland, .| and in simple experiments (mostly with
N =2 and N = 3) it seems that the answer is yes; so this gives a way of computing the
monodromy of L?? just in terms of the periods Z, and the automorphisms a,,, i.e. the DT

Invariants.
E.g. the figure below from [Dumas-Neitzke) in an N = 3 case, where we took C' = CP?,
¢y = 0, ¢3 = 1(2* — 322 — 2)dz?, argh = 0.1. We computed by integrating the ODE

2

directly vs. solving the Riemann-Hilbert problem and compared the results, finding good

agreement.

(A, Ay) opers at v = 0.1: Relative difference for small i

(A, A,) opers at v = 0.1: Results for small /
30T % % % % » % » » o
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10
. 10
15
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.......
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= o00f ¥ s A i i i I I T I I Y 0
2 R, _,...-':::lZZZ:
P S e w‘-";giaiiilli IEEEEEEEE B EEE
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] [
(A2, ;) opers at v = 0.1: Results for large " (2. A,) opers at i = 0.1: Relative difference for large '
100 < ¥
10"
107 10
T gt d s 10
g
S
10 10
20
10
10 10 oo
g . * ﬁn“ !
w0 %»’u*- X R
- 1012
10 *
1
15

(In this case the relevant moduli space of decorated local systems is Gr(3,6)/(C*)®, and
the quantities X, plotted here can be thought of as cluster coordinates on the curve A —
L] € Gr(3,6)/(C*)".)
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6. HYPERKAHLER METRICS

Finally we very briefly consider the moduli space of Higgs bundles. So, fix a compact
Riemann surface C. Then there is an associated moduli space

M (C,GL(N)) = {(E, ¢) stable : E holomorphic GL(N)-bundle over C,p € H*(End EQKc)}/ ~
(6.1)
There is also a “ramified” version where C' has marked points z1, ..., z;, some asymptotic
data around the punctures (we won’t specify this precisely), F is a parabolic bundle and ¢ is
meromorphic. In either case M (C, GL(N)) is known to be hyperkahler
— this means it has a family of holomorphic symplectic structures (I¢, @®)
labeled by ¢ € CP!, obeying some relations.
One description of the holomorphic symplectic structure (I¢,w¢): given a Higgs bundle
(E, ) there is an associated Hermitian metric h in E such that the family of connections

Vipw = ¢l + Du+ (o (6.2)

is flat (here Dj denotes the Chern connection). To find this metric (and thus to find the
connection VEE S0)) directly, one has have to solve an elliptic PDE on C. At any rate,

(E,p) — Vwa gives a map

NAHS : MH(C,GL(N)) — M(C,GL(N)) (6.3)

and then
w® = (NAH®)*wp (6.4)

with wyp the standard Atiyah-Bott form.
So to determine the hyperkahler structure it is enough to determine the connections VfE )

up to equivalence, or their corresponding local systems LfE’w). The idea: we can study this

family without actually solving Hitchin’s PDE, using WKB methods much like what we
discussed for the family LZ?' Indeed the behavior here as ¢ — 0 is very similar to the
behavior as h — 0 we had before.

Indeed let gz_g be the coefficients in the characteristic polynomial of ¢; then we hope for
the same kind of structure as before, i.e. LfEW) can be abelianized by a rank 1 almost-

local system A%E’SD) over the spectral curve ¥. (We could also say this in the language of
(-connections, and then as ¢ — 0 this abelianization of (-connections should go over to the
usual abelianization of Higgs bundles.) Then the X, (¢) give Darboux coordinates for @*.

In particular, for fixed (E, ¢) lying on the Hitchin section the functions X, (¢) should obey
a Riemann-Hilbert problem like the one we had above, but now with a symmetry between
¢ =0 and ¢ = o0:

o X (¢) ~exp(Z,/¢) as ¢ — 0.

e X (() is piecewise analytic, with jumps by the automorphisms a,, at the walls w at
6. a

o X (C) ~exp(Z,() as ( — o0.

Then solving this Riemann-Hilbert problem gives a computation of w¢. This gives some
interesting information about it (e.g. asymptotics).
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This can also be tested numerically, eg the figure below from |[Dumas-Neitzke| shows the

0 1
2—c 0
family one has Kahler metric g(c)|dc|?.

case of Higgs bundles ¢ = dz, E trivialized, in the plane; restricted to this

. DE -, DE _ _IEQ
60 9 o ‘e ¢ gr-yg
’ x g®Q | 0.00010{ ,*
. gt < .
50 ¢ g
0.00008
.
10
0.00006 °
30 e, .
.l. .
. 0.00004 L . .
20 S
- x
10 0.00002
0 0.00000
0 1 2 3 0 1 2 3
& c

FIGURE 18. Left: The metric coefficient g(c) for A = 0 and ¢ € R;. The
blue marks show values of g(c¢) computed using two methods: the direct PDE
approach and the integral equations. The dashed line shows the semiflat ap-
proximation. Right: The absolute difference g°F — g'®Q.
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