Spectral networks in 2 and 3 dimensions

Andrew Neitzke, UT Austin

with: Dan Freed, Davide Gaiotto, Dmitry Galakhov, Pietro Longhi, Tom Mainiero, Greg Moore

String-Math 2013

Preface

Last year in joint work with D. Gaiotto and G. Moore, studying $\mathcal{N}=2$ supersymmetric field theories in 4 dimensions, we were led to the notion of spectral network.
A spectral network is a collection of curves drawn on a 2-manifold C, decorated by some extra discrete data, and obeying some local rules.

Preface

My aim today is to describe:

- what a spectral network is,
- how spectral networks are related to BPS states / DT invariants (and a recent surprise that came from them),
- how spectral networks allow one to "abelianize" flat $G L(K, \mathbb{C})$-connections on 2-manifolds (and hopefully 3-manifolds).

Our data

Suppose given a Riemann surface C and a K-fold branched covering $\Sigma \rightarrow C$, with $\Sigma \subset T^{*} C$.

Locally, Σ gives K holomorphic 1 -forms λ_{i} on C.

Our data

Slight extension: allow C to have marked points (defects) where the covering Σ goes off to ∞.

Locally, Σ gives K meromorphic 1-forms λ_{i} on C.
C determines an $\mathcal{N}=2$ supersymmetric QFT $S\left[A_{K-1}, C\right]$. Σ determines a point on its Coulomb branch.
[Witten, Gaiotto-Moore-N, Gaiotto]

Defining spectral networks

Also fix a parameter $\vartheta \in S^{1}$.
Define a network $\mathcal{W}(\Sigma, \vartheta)$ of walls on C, as follows. [Gaiotto-Moore-N]
Each wall carries a label $i j$ (locally defined on C) and obeys differential equation:

$$
\left(\lambda_{i}-\lambda_{j}\right) \dot{z}=e^{i \vartheta}
$$

Each branch point of $\Sigma \rightarrow C$ emits 3 walls

When walls of types $i j, j k$ intersect they give birth to a new wall
[Berk-Nevins-Roberts, Cecotti-Vafa]

A sample spectral network

- $C=\mathbb{C P}^{1}$ with 3 defects
- $\Sigma \rightarrow C$ 3-fold cover with 6 branch points

The case $K=2$

In the case $K=2$, the walls never cross: they are leaves of a global foliation on C.

In this case $\mathcal{W}(\Sigma, \vartheta)$ is a well-studied object: critical graph of a quadratic differential.

BPS counts via spectral networks

Fix the covering Σ and let ϑ vary. As we do so, the network $\mathcal{W}(\Sigma, \vartheta)$ sometimes jumps. The jumps occur when some of the walls hit each other head-on, i.e., the network degenerates.

BPS counts via spectral networks

Fix the covering Σ and let ϑ vary. As we do so, the network $\mathcal{W}(\Sigma, \vartheta)$ sometimes jumps. The jumps occur when some of the walls hit each other head-on, i.e., the network degenerates.

BPS counts via spectral networks

Fix the covering Σ and let ϑ vary. As we do so, the network $\mathcal{W}(\Sigma, \vartheta)$ sometimes jumps. The jumps occur when some of the walls hit each other head-on, i.e., the network degenerates.

BPS counts via spectral networks

Fix the covering Σ and let ϑ vary. As we do so, the network $\mathcal{W}(\Sigma, \vartheta)$ sometimes jumps. The jumps occur when some of the walls hit each other head-on, i.e., the network degenerates.

BPS counts via spectral networks

We define a map $\Omega_{\Sigma}: H_{1}(\Sigma, \mathbb{Z}) \rightarrow \mathbb{Z}$ which counts the degenerations of $\mathcal{W}(\Sigma, \vartheta)$ (in an appropriate sense).

The $\Omega_{\Sigma}(\gamma)$ are BPS state counts in the theory $S\left[A_{K-1}, C\right]$.
[Klemm-Lerche-Mayr-Vafa-Warner, Gaiotto-Moore-N]
Some examples of the rules:

Donaldson-Thomas invariants

The $\Omega_{\Sigma}(\gamma)$ are BPS state counts; equivalently, they are expected to be generalized Donaldson-Thomas invariants for the Fukaya category of a certain noncompact Calabi-Yau threefold $X\left[A_{K-1}, C\right]$ (deformation of $\mathbb{C}^{2} / \mathbb{Z}_{K}$ singularity fibered over C).
[Douglas, Bridgeland, Kontsevich-Soibelman, Joyce-Song, Diaconescu-Donagi-Pantev, Bridgeland-Smith]
The objects we counted on C should lift to special Lagrangian 3 -cycles in $X\left[A_{K-1}, C\right]$.

Another degeneration

A more exotic degeneration of spectral network, which can occur for $K>2$:

This degeneration leads to an infinite sequence of nonzero BPS counts, not just one:

$$
\left\{\Omega_{\Sigma}(n \gamma)\right\}=3,-6,18,-84,465,-2808, \ldots
$$

They grow exponentially:

$$
\Omega_{\Sigma}(n \gamma) \sim(-1)^{n+1} n^{-5 / 2} a e^{c n}
$$

with $c=\log \left(\frac{256}{27}\right), a=\sqrt{\frac{3}{8 \pi}}$.

Exponential growth in field theory

This degeneration occurs in a concrete example: take $C=\mathbb{C P}{ }^{1}, \mathfrak{g}=A_{2}$, with (irregular) defects at $z=0$ and $z=\infty$.

The corresponding theory is pure $\mathcal{N}=2$ super Yang-Mills with $G=S U(3)$. Thus, this theory has exponential growth in its BPS spectrum:

$$
\Omega(n \gamma) \sim e^{c n}
$$

In a non-gravitational theory, this was unexpected for us. Nothing like this was seen in $S U(2)$ Yang-Mills. [seiberg-Witen, Bial-Ferari]

It seems that going from $S U(2)$ to $S U(3)$ makes things drastically more interesting.

Exponential growth in supergravity

Exponential growth of the BPS counts would not be a surprise in supergravity theories. There one expects

$$
\Omega(n \gamma) \sim e^{c n^{2}}
$$

on grounds of black hole entropy.
[Bekenstein, Hawking, Strominger-Vafa, Maldacena-Strominger-Witten]

Exponential growth in field theory

The result bothered us, so we checked it a second way.
[Galakhov-Longhi-Mainiero-Moore-N]
The idea: as Σ is varied, Ω_{Σ} changes according to wall-crossing formula. [Dene-Moore, Kontsevich-Soibelman, Joyce-Song, Gaiotto-Moore-N., Manschot-Pioline-Sen, ...] Begin from Σ in "strong coupling" chamber, where we know $\Omega_{\Sigma}(\gamma)=1$ for $\gamma \in\left\{\gamma_{1}, \ldots, \gamma_{12}\right\}$, else $\Omega_{\Sigma}(\gamma)=0$.

Then vary Σ across a few walls, and use wall-crossing to deduce the exponentially-growing spectrum.

Algebraic equations governing field theory spectra

 So, we've found that field theory contains much crazier stuff than we thought.$$
\left\{\Omega_{\Sigma}(n \gamma)\right\}=3,-6,18,-84,465, \ldots
$$

But, there is also some new structure. To see it, define generating function

$$
P(z)=\prod_{n=1}^{\infty}\left(1-z^{n}\right)^{n \Omega(n \gamma) / 3} .
$$

It obeys

$$
P(z)=1-z P(z)^{4} .
$$

So these BPS counts are governed by algebraic equation!
[Kontsevich, Gross-Pandharipande-Siebert]
Spectral network algorithm for computing the BPS spectrum gives a natural explanation of this equation. We believe BPS spectra in all theories of class S will have similar equations, for similar reasons.

Quivers

There is another approach to BPS counts, via quiver representations.
[Denef, Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa, Cecotti-del Zotto, Cecotti-N-Vafa, ...]
Spectral networks give the same result as quivers, in cases that have been studied by both methods.

The exponentially growing BPS counts in the $S U(3)$ theory which we just discussed are related to the Kronecker 3-quiver.

(The $S U(3)$ theory also contains spectra related to Kronecker m-quiver for any $m!$)

(Non-)Abelianization

A second application of spectral networks:

Let $\mathcal{M}(C, G L(K))$ be moduli of flat $G L(K, \mathbb{C})$-connections over C, with singularities at the marked points.

Let $\mathcal{M}(\Sigma, G L(1))$ be moduli of [almost] flat
$G L(1, \mathbb{C})$-connections over Σ, with singularities at preimages of marked points.

How are the two kinds of connection related?

Pushing forward

A naive (wrong) guess: pushforward - given
$\left(\mathcal{L}, \nabla^{\mathrm{ab}}\right) \in \mathcal{M}(\Sigma, G L(1))$ define $\left(\pi_{*} \mathcal{L}, \pi_{*} \nabla^{\mathrm{ab}}\right) \in \mathcal{M}\left(C^{\prime}, G L(K)\right)$:

$$
\left(\pi_{*} \mathcal{L}\right)_{z}=\bigoplus_{i=1}^{K} \mathcal{L}_{z^{(i)}}
$$

Parallel transport of $\pi_{*} \nabla^{\mathrm{ab}}$ given "sheetwise" by ∇^{ab}.

Pushing forward

Pushforward $\pi_{*} \nabla^{\mathrm{ab}}$ is a flat $G L(K)$-connection, but only over

$$
C^{\prime}=C \backslash\{\text { branch points of } \Sigma \rightarrow C\} .
$$

Can't extend $\pi_{*} \nabla^{\text {ab }}$ to the whole C, because of monodromy around branch points!

Σ

C

Cutting and gluing

To get an honest flat connection ∇ over the whole C, use a spectral network $\mathcal{W}(\Sigma, \vartheta)$.
Parallel transport of ∇ along a path $\wp \subset C$ is that of $\pi_{*} \nabla^{\mathrm{ab}}$, except that we splice in a unipotent matrix whenever \wp crosses \mathcal{W} :

Here e is an "elementary matrix whose only nonzero entry is in the ij position", or more invariantly, e: $\mathcal{L}_{Z^{(i)}} \rightarrow \mathcal{L}_{Z^{(j)}}$.

Flatness constraint

Requiring flatness for the resulting ∇ determines the unipotent "correction" matrices.
Flatness around branch point:

$$
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-b & 1
\end{array}\right)\left(\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & D_{1} \\
D_{2} & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

forces

$$
a=1 / D_{2}, \quad c=1 / D_{2}, \quad b=D_{2}
$$

Flatness constraint

Requiring flatness for the resulting ∇ determines the unipotent "correction" matrices.
Flatness around intersection of walls:

$$
\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -a^{\prime} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -c^{\prime} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -b^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
D_{1} & 0 & 0 \\
0 & D_{2} & 0 \\
0 & 0 & D_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

forces

$$
a^{\prime}=a, \quad b^{\prime}=b, \quad c^{\prime}=a b
$$

Nonabelianization map

So, by this "cutting and gluing along walls of \mathcal{W} ", we have defined a map

$$
\Psi_{\mathcal{W}}: \mathcal{M}(\Sigma, G L(1)) \rightarrow \mathcal{M}(C, G L(K))
$$

Both spaces are Poisson manifolds, and $\Psi_{\mathcal{W}}$ is a local leafwise symplectomorphism. Moreover $\mathcal{M}(\Sigma, G L(1)) \simeq\left(\mathbb{C}^{\times}\right)^{n}$.

Thus $\Psi_{\mathcal{W}}$ gives local Darboux coordinate system on $\mathcal{M}(C, G L(K))$.

Spectral coordinates

For each spectral network \mathcal{W} on C, we get a local Darboux coordinate system $\Psi_{\mathcal{W}}$ on $\mathcal{M}(C, G L(K))$.
These coordinate systems are in some sense canonical and have some applications:

- Physically, expanding holonomy of ∇ in terms of these coordinates gives the UV-IR relation for line defects, i.e. counting of framed BPS states.
- If \mathcal{W} and \mathcal{W}^{\prime} are related by a degeneration as discussed earlier, can compute the coordinate transformations relating $\Psi_{\mathcal{W}}$ to $\Psi_{\mathcal{W}^{\prime}}$. This is the key in the computation of BPS counts mentioned earlier, and in the proof that they obey the expected wall-crossing formula.
[Kontsevich-Soibelman]
- They are convenient for the purpose of studying the hyperkähler metric on \mathcal{M}.

(Non-)Abelianization for connections over 3-manifolds

It seems that there is also a version for 3-manifolds.
[Freed-N in progress]
Given:

- 3-manifold M
- K-fold branched cover $X \rightarrow M$
- 3d spectral network \mathcal{W} on M
get a map between $G L(1)$-connections $\nabla^{\text {ab }}$ over X and $G L(K)$-connections ∇ over M.

(Non-)Abelianization for connections over 3-manifolds

$G L(1)$-connection ∇^{ab} over X is not quite flat: it has delta-function curvature at some codimension-2 loci $S \subset X$ (scars), where $i j$ and $j i$ walls collide.

Simplest case: $S \subset X$ a circle (framed), $\nabla^{\text {ab }}$ has holonomy \mathcal{X} around $S, 1-\mathcal{X}$ around circle linking S.

∇^{ab} with this kind of holonomy correspond to solutions of some algebraic equations in \mathbb{C}^{\times}-valued variables.

(Non-)Abelianization for connections over 3-manifolds

Given such a $G L(1)$-connection $\nabla^{\text {ab }}$ over X, we build a $G L(K)$-connection ∇ on M : start with $\pi_{*} \nabla^{\mathrm{ab}}$ and splice in unipotent matrices at the walls of \mathcal{W}.

Parallel to the 2-d case discussed before.

Triangulated hyperbolic 3-manifolds

Suppose M is a triangulated hyperbolic 3-manifold, with cusps. It is known that $S L(2)$-connections ∇ over M correspond to solutions of algebraic equations: one shape variable $\mathcal{X}_{i} \in \mathbb{C}^{\times}$ for each tetrahedron, one gluing equation for each edge.
[W. Thurston]
(There is a similar picture for $S L(K)$-connections, $K>2$.)
[Dimofte-Gabella-Goncharov, Garoufalidis-D. Thurston-Zickert]
We believe our 3d nonabelianization map recovers these equations, at least for $K=2$. Expect there is a double cover $X \rightarrow M$, and canonical associated 3d spectral network, with one scar $S_{i} \subset X$ for each tetrahedron.
The shape variables are the holonomies of ∇^{ab} around components S_{i}. The gluing equations come from relations in $H^{1}(X \backslash S, \mathbb{Z})$.

Abelianization for Chern-Simons theory

The classical $S L(2)$ Chern-Simons action evaluated on ∇ is (very roughly) $\sum_{i} \operatorname{Li}_{2}\left(\mathcal{X}_{i}\right)$.

We expect that this is part of a more general story: whenever ∇^{ab} and ∇ are related by nonabelianization (with only simple scars),
$G L(K)$ Chern-Simons action of ∇ is equal to $G L(1)$ Chern-Simons action for $\nabla^{\text {ab }}$ plus $\sum_{i} \operatorname{Li}_{2}\left(\mathcal{X}_{i}\right)$.
[Witten, Ooguri-Vafa, Cecotti-Vafa]
(Lack of gauge invariance in the first term compensated by branch choice in the second term, so that the sum is really canonically defined.)

A similar equivalence for quantum Chern-Simons has been proposed before.

Physics of 3d spectral networks

This construction raises a question in physics.

2d spectral network has a clear meaning in terms of BPS states living on the canonical surface defect in a theory of class
$S\left[A_{K-1}\right]$.
[Gaiotto, Alday-Gaiotto-Gukov-Tachikawa-Verlinde, Gaiotto-Moore-N]

What does the 3d spectral network mean? Does it have a natural interpretation in a theory of class $R\left[A_{K-1}\right]$?
[Dimofte-Gaiotto-Gukov, Cecotti-Cordova-Vafa]

Summation

- Spectral networks are a new geometric structure naturally associated to a branched cover $\Sigma \rightarrow C, \Sigma \subset T^{*} C$.
- They can be used to compute BPS counts of theories of class S / DT invariants of CY 3-folds.
- They can also be used to (non)abelianize flat connections over 2-manifolds, and (hopefully) 3-manifolds.

