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Preface
Last year in joint work with D. Gaiotto and G. Moore, studying
N = 2 supersymmetric field theories in 4 dimensions, we were
led to the notion of spectral network.

A spectral network is a collection of curves drawn on a
2-manifold C, decorated by some extra discrete data, and
obeying some local rules.
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Preface

My aim today is to describe:
I what a spectral network is,
I how spectral networks are related to BPS states / DT

invariants (and a recent surprise that came from them),
I how spectral networks allow one to “abelianize” flat

GL(K ,C)-connections on 2-manifolds (and hopefully
3-manifolds).



Our data

Suppose given a Riemann surface C and a K -fold branched
covering Σ→ C, with Σ ⊂ T ∗C.

Locally, Σ gives K holomorphic 1-forms λi on C.



Our data

Slight extension: allow C to have marked points (defects)
where the covering Σ goes off to∞.

Locally, Σ gives K meromorphic 1-forms λi on C.

C determines an N = 2 supersymmetric QFT S[AK−1,C].
Σ determines a point on its Coulomb branch.
[Witten, Gaiotto-Moore-N, Gaiotto]



Defining spectral networks
Also fix a parameter ϑ ∈ S1.
Define a networkW(Σ, ϑ) of walls on C, as follows. [Gaiotto-Moore-N]

Each branch point of Σ→ C
emits 3 walls
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Each wall carries a label ij
(locally defined on C) and
obeys differential equation:

(λi − λj)ż = eiϑ

When walls of types ij , jk intersect they give birth to a new wall
[Berk-Nevins-Roberts, Cecotti-Vafa]
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A sample spectral network
I C = CP1 with 3 defects
I Σ→ C 3-fold cover with 6 branch points
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The case K = 2

In the case K = 2, the walls never cross: they are leaves of a
global foliation on C.

In this caseW(Σ, ϑ) is a well-studied object: critical graph of a
quadratic differential. [Strebel]



BPS counts via spectral networks
Fix the covering Σ and let ϑ vary. As we do so, the network
W(Σ, ϑ) sometimes jumps. The jumps occur when some of the
walls hit each other head-on, i.e., the network degenerates.
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BPS counts via spectral networks
Fix the covering Σ and let ϑ vary. As we do so, the network
W(Σ, ϑ) sometimes jumps. The jumps occur when some of the
walls hit each other head-on, i.e., the network degenerates.
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BPS counts via spectral networks
Fix the covering Σ and let ϑ vary. As we do so, the network
W(Σ, ϑ) sometimes jumps. The jumps occur when some of the
walls hit each other head-on, i.e., the network degenerates.
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BPS counts via spectral networks
Fix the covering Σ and let ϑ vary. As we do so, the network
W(Σ, ϑ) sometimes jumps. The jumps occur when some of the
walls hit each other head-on, i.e., the network degenerates.
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BPS counts via spectral networks

We define a map ΩΣ : H1(Σ,Z)→ Z which counts the
degenerations ofW(Σ, ϑ) (in an appropriate sense).

The ΩΣ(γ) are BPS state counts in the theory S[AK−1,C].
[Klemm-Lerche-Mayr-Vafa-Warner, Gaiotto-Moore-N]

Some examples of the rules:



Donaldson-Thomas invariants
The ΩΣ(γ) are BPS state counts; equivalently, they are
expected to be generalized Donaldson-Thomas invariants for
the Fukaya category of a certain noncompact Calabi-Yau
threefold X [AK−1,C] (deformation of C2/ZK singularity fibered
over C).
[Douglas, Bridgeland, Kontsevich-Soibelman, Joyce-Song, Diaconescu-Donagi-Pantev, Bridgeland-Smith]

The objects we counted on C should lift to special Lagrangian
3-cycles in X [AK−1,C].



Another degeneration
A more exotic degeneration of spectral network, which can
occur for K > 2: [Galakhov-Longhi-Mainiero-Moore-N]

This degeneration leads to an infinite sequence of nonzero
BPS counts, not just one:

{ΩΣ(nγ)} = 3,−6,18,−84,465,−2808, . . .

They grow exponentially:

ΩΣ(nγ) ∼ (−1)n+1n−5/2 a ecn

with c = log(256
27 ), a =

√
3

8π .



Exponential growth in field theory

This degeneration occurs in a concrete example: take
C = CP1, g = A2, with (irregular) defects at z = 0 and z =∞.

The corresponding theory is pure N = 2 super Yang-Mills with
G = SU(3). Thus, this theory has exponential growth in its BPS
spectrum:

Ω(nγ) ∼ ecn

In a non-gravitational theory, this was unexpected for us.
Nothing like this was seen in SU(2) Yang-Mills. [Seiberg-Witten, Bilal-Ferrari]

It seems that going from SU(2) to SU(3) makes things
drastically more interesting.



Exponential growth in supergravity

Exponential growth of the BPS counts would not be a surprise
in supergravity theories. There one expects

Ω(nγ) ∼ ecn2

on grounds of black hole entropy.
[Bekenstein, Hawking, Strominger-Vafa, Maldacena-Strominger-Witten]



Exponential growth in field theory
The result bothered us, so we checked it a second way.
[Galakhov-Longhi-Mainiero-Moore-N]

The idea: as Σ is varied, ΩΣ changes according to wall-crossing
formula. [Denef-Moore, Kontsevich-Soibelman, Joyce-Song, Gaiotto-Moore-N., Manschot-Pioline-Sen, ...]

Begin from Σ in “strong coupling” chamber, where we know
ΩΣ(γ) = 1 for γ ∈ {γ1, . . . , γ12}, else ΩΣ(γ) = 0.

Then vary Σ across a few walls, and use wall-crossing to
deduce the exponentially-growing spectrum.
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Algebraic equations governing field theory spectra
So, we’ve found that field theory contains much crazier stuff
than we thought.

{ΩΣ(nγ)} = 3,−6,18,−84,465, . . .

But, there is also some new structure. To see it, define
generating function

P(z) =
∞∏

n=1

(1− zn)nΩ(nγ)/3.

It obeys
P(z) = 1− zP(z)4.

So these BPS counts are governed by algebraic equation!
[Kontsevich, Gross-Pandharipande-Siebert]

Spectral network algorithm for computing the BPS spectrum
gives a natural explanation of this equation. We believe BPS
spectra in all theories of class S will have similar equations, for
similar reasons.



Quivers

There is another approach to BPS counts, via quiver
representations.
[Denef, Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa, Cecotti-del Zotto, Cecotti-N-Vafa, ...]

Spectral networks give the same result as quivers, in cases that
have been studied by both methods.

The exponentially growing BPS counts in the SU(3) theory
which we just discussed are related to the Kronecker 3-quiver.

(The SU(3) theory also contains spectra related to Kronecker
m-quiver for any m!)



(Non-)Abelianization

A second application of spectral networks:

LetM(C,GL(K )) be moduli of flat GL(K ,C)-connections over
C, with singularities at the marked points.

LetM(Σ,GL(1)) be moduli of [almost] flat
GL(1,C)-connections over Σ, with singularities at preimages of
marked points.

How are the two kinds of connection related?



Pushing forward
A naive (wrong) guess: pushforward — given
(L,∇ab) ∈M(Σ,GL(1)) define (π∗L, π∗∇ab) ∈M(C′,GL(K )):

(π∗L)z =
K⊕

i=1

Lz(i)

Parallel transport of π∗∇ab given “sheetwise” by ∇ab.



Pushing forward

Pushforward π∗∇ab is a flat GL(K )-connection, but only over

C′ = C \ {branch points of Σ→ C}.

Can’t extend π∗∇ab to the whole C, because of monodromy
around branch points!



Cutting and gluing
To get an honest flat connection ∇ over the whole C, use a
spectral networkW(Σ, ϑ).
Parallel transport of ∇ along a path ℘ ⊂ C is that of π∗∇ab,
except that we splice in a unipotent matrix whenever ℘ crosses
W:

P∇,℘ = Pπ∗∇ab,℘1
(1 + e)Pπ∗∇ab,℘2

Here e is an “elementary matrix whose only nonzero entry is in
the ij position”, or more invariantly, e : Lz(i) → Lz(j) .



Flatness constraint
Requiring flatness for the resulting ∇ determines the unipotent
“correction” matrices.
Flatness around branch point:

(
1 a
0 1

)(
1 0
−b 1

)(
1 c
0 1

)(
0 D1

D2 0

)
=

(
1 0
0 1

)
forces

a = 1/D2, c = 1/D2, b = D2



Flatness constraint
Requiring flatness for the resulting ∇ determines the unipotent
“correction” matrices.
Flatness around intersection of walls:

1 a 0
0 1 0
0 0 1

1 0 0
0 1 b
0 0 1

1 −a′ 0
0 1 0
0 0 1

1 0 −c′

0 1 0
0 0 1

1 0 0
0 1 −b′

0 0 1

D1 0 0
0 D2 0
0 0 D3

 =

1 0 0
0 1 0
0 0 1


forces [Cecotti-Vafa]

a′ = a, b′ = b, c′ = ab



Nonabelianization map

So, by this “cutting and gluing along walls ofW”, we have
defined a map

ΨW :M(Σ,GL(1))→M(C,GL(K ))

Both spaces are Poisson manifolds, and ΨW is a local leafwise
symplectomorphism. MoreoverM(Σ,GL(1)) ' (C×)n.

Thus ΨW gives local Darboux coordinate system on
M(C,GL(K )).



Spectral coordinates

For each spectral networkW on C, we get a local Darboux
coordinate system ΨW onM(C,GL(K )).

These coordinate systems are in some sense canonical and
have some applications:

I Physically, expanding holonomy of ∇ in terms of these
coordinates gives the UV-IR relation for line defects, i.e.
counting of framed BPS states.

I IfW andW ′ are related by a degeneration as discussed
earlier, can compute the coordinate transformations
relating ΨW to ΨW ′ . This is the key in the computation of
BPS counts mentioned earlier, and in the proof that they
obey the expected wall-crossing formula. [Kontsevich-Soibelman]

I They are convenient for the purpose of studying the
hyperkähler metric onM.



(Non-)Abelianization for connections over 3-manifolds

It seems that there is also a version for 3-manifolds.
[Freed-N in progress]

Given:

I 3-manifold M
I K -fold branched cover X → M
I 3d spectral networkW on M

get a map between GL(1)-connections ∇ab over X and
GL(K )-connections ∇ over M.



(Non-)Abelianization for connections over 3-manifolds

GL(1)-connection ∇ab over X is not quite flat: it has
delta-function curvature at some codimension-2 loci S ⊂ X
(scars), where ij and ji walls collide.

Simplest case: S ⊂ X a circle (framed), ∇ab has holonomy X
around S, 1−X around circle linking S.

∇ab with this kind of holonomy correspond to solutions of some
algebraic equations in C×-valued variables.



(Non-)Abelianization for connections over 3-manifolds

Given such a GL(1)-connection ∇ab over X , we build a
GL(K )-connection ∇ on M: start with π∗∇ab and splice in
unipotent matrices at the walls ofW.

Parallel to the 2-d case discussed before.



Triangulated hyperbolic 3-manifolds

Suppose M is a triangulated hyperbolic 3-manifold, with cusps.

It is known that SL(2)-connections ∇ over M correspond to
solutions of algebraic equations: one shape variable Xi ∈ C×
for each tetrahedron, one gluing equation for each edge.
[W. Thurston]

(There is a similar picture for SL(K )-connections, K > 2.)
[Dimofte-Gabella-Goncharov, Garoufalidis-D. Thurston-Zickert]

We believe our 3d nonabelianization map recovers these
equations, at least for K = 2. Expect there is a double cover
X → M, and canonical associated 3d spectral network, with
one scar Si ⊂ X for each tetrahedron. [Cecotti-Cordova-Vafa]

The shape variables are the holonomies of ∇ab around
components Si . The gluing equations come from relations in
H1(X \ S,Z).



Abelianization for Chern-Simons theory

The classical SL(2) Chern-Simons action evaluated on ∇ is
(very roughly)

∑
i Li2(Xi). [Neumann, Dupont, Zickert, ...]

We expect that this is part of a more general story: whenever
∇ab and ∇ are related by nonabelianization (with only simple
scars),

GL(K ) Chern-Simons action of ∇ is equal to
GL(1) Chern-Simons action for ∇ab plus

∑
i Li2(Xi).

[Witten, Ooguri-Vafa, Cecotti-Vafa]

(Lack of gauge invariance in the first term compensated by
branch choice in the second term, so that the sum is really
canonically defined.)

A similar equivalence for quantum Chern-Simons has been
proposed before. [Cecotti-Cordova-Vafa]



Physics of 3d spectral networks

This construction raises a question in physics.

2d spectral network has a clear meaning in terms of BPS states
living on the canonical surface defect in a theory of class
S[AK−1]. [Gaiotto, Alday-Gaiotto-Gukov-Tachikawa-Verlinde, Gaiotto-Moore-N]

What does the 3d spectral network mean? Does it have a
natural interpretation in a theory of class R[AK−1]?
[Dimofte-Gaiotto-Gukov, Cecotti-Cordova-Vafa]



Summation

I Spectral networks are a new geometric structure naturally
associated to a branched cover Σ→ C, Σ ⊂ T ∗C.

I They can be used to compute BPS counts of theories of
class S / DT invariants of CY 3-folds.

I They can also be used to (non)abelianize flat connections
over 2-manifolds, and (hopefully) 3-manifolds.
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