
M340L Final Exam Solutions, May 13, 2010

1. (10 points) The matrix A =





1 1 3 1 7 7
1 2 5 3 20 16
2 4 10 7 45 36



 is row-equivalent

to





1 0 1 0 −1 2
0 1 2 0 3 1
0 0 0 1 5 4



.

a) Are the vectors





1
1
2



,





1
2
4



, and





3
5
10



 linearly independent?

No.





3
5
10



 =





1
1
2



 + 2





1
2
4



. This can be seen from the RREF form,

as the 3rd column equals the first plus twice the second. Alternately, the
RREF form of the first three columns doesn’t have a pivot in each column.

By itself, the fact that these aren’t pivot columns doesn’t mean they can’t
be linearly independent. For instance, the third, firth and sixth columns are
linearly independent even though none of them are pivot vectors.

b) Do the vectors





1
1
2



,





1
2
4



,





3
5
10









1
3
7



,





7
20
45



 and





7
16
36



 span R3?

Yes, since the RREF form has pivots in all rows.

c) Find bases for the column space of A, for the row space of A, and for the
null space of A.

For the column space, use the pivot columns, namely





1
1
2



,





1
2
4



,





1
3
7



.

For the row space, use the nonzero rows of the RREF, namely (1, 0, 1, 0,−1, 2),
(0, 1, 2, 0, 3, 1), (0, 0, 0, 1, 5, 4).

For the null space, rewrite the equations Arrefx = 0 to get the basis


















−1
−2
1
0
0
0



















,



















1
−3
0
−5
1
0



















,



















−2
−1
0
−4
0
1



















.
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2 (15 points) Let B =











1
0
0



 ,





1
1
0



 ,





1
1
1











be a basis for R3, and let E

be the standard basis.

a. Compute the change-of-basis matrices PEB and PBE .

PEB = (b1b2b3) =





1 1 1
0 1 1
0 0 1



. PBE = P−1

EB
=





1 −1 0
0 1 −1
0 0 1



.

b. If x =





3
2
5



, what is [x]B?

[x]B = PBE [x]E =





1
−3
5



.

c. Let T : R3 → R3 be a linear transformation given by the formula T (x) =




3x1 + 2x2 + x3

2x1 − x3

x2



. Find the standard matrix of T (relative to the standard

basis).

[T ]E = (T (e1)T (e2)T (e3)) =





3 2 1
2 0 −1
0 1 0



.

d. Find the matrix of T relative to the B basis.

[T ]B = PBE [T ]EPEB =





1 3 5
2 1 0
0 1 1



. Note that you have to multiply by

PBE on one side and P )EB on the other, unlike the change-of-basis formula
for vectors, where you only multiply on one side.

3. (12 points)

For each of these square matrices, either find the inverse or explain why
the inverse does not exist.

(a)

(

3 1
4 2

)

Since the determinant is 2, the inverse is 1

2

(

2 −1
−4 3

)
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b)





1 3 5
2 1 4
3 4 9





The inverse does not exist, since the matrix only has rank 2. (The third
row is the sum of the first two, so row reduction quickly leads to a row of
zeroes.)

c)





0 0 1
0 −1 2
1 4 5





By row reducing [A|I] to [I|A−1] we get A−1 =





−13 4 1
2 −1 0
1 0 0



.

4. (10 points) (a) Write down the characteristic equation of the matrix

A =

(

3 7
1 4

)

. You do not need to find the eigenvalues or eigenvectors.

det

(

3 − λ 7
1 4 − λ

)

= λ2 − 7λ + 5, so our characteristic equation is

λ2 − 7λ + 5 = 0. Note that “λ2 − 7λ + 5,” by itself, isn’t an equation.

b) The eigenvalues of B =





1 2 2
2 −2 1
2 1 −2



 are 3 and -3. Find bases for E3

and E−3. Is B diagonalizable?

In each case we row-reduce A−λI. For λ = 3 this yields





1 0 −2
0 1 −1
0 0 0



,

hence the eigenvector





2
1
1



. For λ = −3 this yields





1 1/2 1/2
0 0 0
0 0 0



, hence

the TWO eigenvectors





−1/2
1
0



,





−1/2
0
1



.

Since there are three linearly independent eigenvectors (one for 3 and
two for -3), the matrix is diagonalizable. There are only two eigenvalues,
but there are three eigenvectors, which is what counts. This is the flip side
to a problem on the second midterm.
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5. (15 points) The matrix

(

3 3
3 −5

)

has eigenvalues λ1 = 4 and λ2 = −6

and corresponding eigenvectors b1 =

(

3
1

)

and b2 =

(

1
−3

)

.

a. Find the coordinates of

(

13
1

)

in the B = {b1,b2} basis.

Note that the vectors b1 and b2 are orthogonal, which makes decompos-

ing easy. x = x·b1

b1·b1
b1 + x·b2

b2·b2
b2 = 40

10
b1 + 10

10
b2, so [x]B =

(

4
1

)

.

You can also do this by row-reducing

(

3 1 | 13
1 −3 | 1

)

or computing
(

3 1
1 −3

)−1 (

13
1

)

, but a lot of people who tried to solve the problem these

ways made numerical errors or forgot to divide by the determinant in the

formula for

(

3 1
1 −3

)−1

.

b. If x(n + 1) = Ax(n) and x(0) =

(

13
1

)

, find x(n) for all n. What is the

dominant eigenvector (and eigenvalue) for this problem?

Since y(0) =

(

4
1

)

, y(n) =

(

4n+1

(−6)n

)

and x(n) = 4n+1b1 + (−6)nb2.

Since | − 6| > |4|, the dominant eigenvector is b2, and the dominant eigen-
value is −6.

The fact that −6 is negative is irrelevant. (−6)n is still a lot bigger (in
magnitude) than 4n for n large, so the second term is a lot bigger than the
first. That’s what “dominant” means.

c. Suppose instead that dx
dt

= Ax. Find the general solution to this system of
differential equations. What is the dominant eigenvector (and eigenvalue)?

Differential equations and difference equations are not the same, and
there are no terms like (−6)n or 4n in this solution. The general solution is
x = c1e

4tb1 + c2e
−6tb2. (With our initial conditions, c1 would be 4 and c2

would be 1, but the question asked for a general solution.) Since 4 > −6, the
dominant eigenvector is b1 and the dominant eigenvalue is 4. Put another
way, e4t grows, while e−6t shrinks, so the dominant term is the first one.

This problem was meant to illustrate why we have different criteria for
finding the dominant mode for differential equations and for difference equa-
tions.
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6. (8 points) Let V be the subspace of R4 spanned by the three vectors

x1 =









1
0
1
−2









, x2 =









2
1
2
−1









, x3 =









5
2
1
0









. Find an orthogonal basis for V .

This is Gram-Schmidt. y1 = x1 =









1
0
1
−2









y2 = x2 −
x2·y1

y1·y1
y1 =









2
1
2
−1









− 6

6









1
0
1
−2









=









1
1
1
1









.

y3 = x3 −
x3·y1

y1·y1
y1 −

x3·y2

y2·y2
y2 =









5
2
1
0









− 6

6









1
0
1
−2









− 8

4









1
1
1
1









=









2
0
−2
0









.

Our orthogonal basis is {y1,y2,y3}.

The most common mistake was using x1 and x2 instead of y2 and y1 in
the computation of y3.

(10 points) 7a. Find all least-square solutions to









1 1
1 2
1 3
1 4









x =









7
5
7
13









.

AT A =

(

4 10
10 30

)

and ATb =

(

32
90

)

. We get our least-squares solution

by row reducing

(

4 10 | 32
10 30 | 90

)

to

(

1 0 | 3
0 1 | 2

)

, hence x̂ =

(

3
2

)

.

Most people got this right, although there were a lot of arithmetic errors,
either in computing AT A or ATb or in computing (AT A)−1.
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b. Let W be the plane in R4 spanned by









1
1
1
1









and









1
2
3
4









. Find the point in

W closest to









7
5
7
13









.

The closest point in Col(A) to b is b̂ = Ax̂ =









5
7
9
11









. You can also get

this answer by finding an orthogonal basis for W (by Gram-Schmidt) and
then using our formulas for projection.

The majority of the class got this one wrong. Note that









1
1
1
1









and









1
2
3
4









are not orthogonal, so you can’t just project onto these two vectors and
add! Also, note that this problem, while closely related to part (a), is not
the same. The answer to (a) is x̂, while the answer to (b) is Ax̂.

8. True/False (20 points, 2 pages):

a. If the columns of a square matrix are linearly independent, then the
matrix is invertible.

True. The matrix has rank n.

b. If the columns of a square matrix are linearly dependent, then 0 is an
eigenvalue of that matrix.

True. There is a nontrivial solution to Ax = 0 = 0x.

c. The product Ax of a matrix A with a vector x is a linear combination
of the columns of A.

True. That’s how we defined the product of a matrix and a vector.

d. Let A and B be matrices such that the product AB makes sense. The
null space of B is a subspace of the null space of AB.

True. If Bx = 0, then ABx = A(Bx) = 0.
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e. The rank of a matrix is the number of linearly independent rows it
has.

True. It’s also the number of linearly independent columns. They’re the
same, since the column space and the row space have the same dimension.

f. If A is a 3 × 4 matrix and b ∈ R3, then Ax = b has infinitely many
solutions.

False. Although there is a free variable, there might not be any solutions.

g. If W is a subspace of Rn and x ∈ Rn, then there is exactly one way
to write x as the sum of a vector in W and a vector in W⊥.

True. This decomposition is the point of doing projections.

h. For problems of the form x(n + 1) = Ax(n), the dominant eigenvalue
of A is the eigenvalue with greatest real part.

False. It’s the eigenvalue with the greatest norm. The greatest real part
applies to systems dx

dt
= Ax of differential equations.

i. The geometric multiplicity of an eigenvalue is at least one and is at
most the algebraic multiplicity.

True.

j. The system of equations Ax = b always has a least-squares solution.

True, since there is always a point in the column space of A that is closest
to b.
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