Some setup: commands for plotting the dynamical system (ignore this.)

```
iterates[x10_, x20_, L_, S_] :=
    Partition[Flatten[(x[0] := {{x10}, {x20}};
            x[n_] :=S.x[n-1]; Table[x[n], {n,0, L}])], 2]
```

```
plotiter[x10_, x20_, L_, S_] := ListPlot[iterates[x10, x20, L, S],
    PlotStyle }->\mathrm{ PointSize[Large], AspectRatio }->\mathrm{ 1]
```

Constructing a matrix B as composition of a rotation and a rescaling. (In lecture this matrix was called C , but Mathematica reserves the name "C" for a constant.)

```
0=0.47312; r = 1;
```

```
\(B=\{\{x, 0\},\{0, r\}\} .\{\{\operatorname{Cos}[\theta],-\operatorname{Sin}[\theta]\},\{\operatorname{Sin}[\theta], \operatorname{Cos}[\theta]\}\} ;\)
```


$\ln [44]:=$

B // MatrixForm

Out[44]/MatrixForm=

$$
\left(\begin{array}{cc}
0.890151 & -0.455666 \\
0.455666 & 0.890151
\end{array}\right)
$$

A matrix A which is similar to B ; the two are related by the change-of-basis matrix P .

```
P={{4, 1},{-2, 1}};
```

A = P.B.Inverse [P];
A / / MatrixForm
Out[47]/MMatrixForm=

```
( 0.358541 -1.29105
```

Iterating the dynamical systems defined by B (first) and A (second) for 50 time steps, starting at the point $(1,0)$. The two pictures are related to one another by the linear transformation P.

```
plotiter[1, 0, 50, B]
```


$\ln [49]=$

plotiter [1, 0, 50, A]

The eigenvalues of A . Note they are the same as the eigenvalues of B , as they must be since the two matrices are similar.

Eigenvalues [A]

Out[50] $=\{0.890151+0.455666$ i, $0.890151-0.455666$ it $\}$

Eigenvalues [B]

The absolute values of the eigenvalues. These predict whether the dynamical system has an attracting, repelling or saddle point.

$\ln [52]:=$
 Abs [Eigenvalues [A]]

```
{1., 1.}
```

