Some setup: commands for plotting the dynamical system (ignore this.)

```
iterates[x10_, x20_, L_, S_] :=
    Partition[Flatten[(x[0] := {{x10}, {x20}};
        x[n_] :=S.x[n-1]; Table[x[n], {n, 0, L}]) ], 2]
multiiterates[x0s_, L_, S_] := Flatten[
    Table[iterates[x0s\llbracketi, 1], x0s\llbracketi, 2\rrbracket, L, S], {i, 1, Length[x0s]}], 1]
```

```
plotmultiiter[x0s_, L_, S_] := Show[
```

plotmultiiter[x0s_, L_, S_] := Show[
ListPlot[multiiterates[x0s, L, S], PlotStyle }->\mathrm{ PointSize[Large],
AspectRatio }->1\mathrm{ , PlotRange }->{{-5,5}, {-5, 5}}], ListPlot
x0s, PlotStyle }->\mathrm{ {Red, PointSize[Large]}, AspectRatio }->\mathrm{ 1]]

```

Constructing a diagonal matrix B. (In lecture this matrix was called D, but Mathematica reserves the name "D" for the differentiation operator.)
```

\lambda1 = 1.14; \lambda2 = 0.87;

```
```

B = {{\lambda1, 0}, {0, \lambda2}};

```

\section*{B // MatrixForm}

\section*{Out[280]//MatrixForm=}
\[
\left(\begin{array}{cc}
1.14 & 0 \\
0 & 0.87
\end{array}\right)
\]

A matrix \(A\) which is similar to \(B\); the two are related by the change-of-basis matrix \(P\).
```

P={{1, 1},{-1, 1}};

```
```

A = P.B.Inverse[P];

```

\section*{A / / MatrixForm}

Out[283]/MatrixForm=
```

(1.005 -0.135

```

Iterating the dynamical systems defined by B (first) and A (second) for 10 time steps, with a few different choices of initial condition. The initial points are shown in red. The two pictures are related to one another by the linear transformation \(P\).
```

startingpoints = {{1, 0}, {-1, 0},
{0, 1}, {0, -1}, {1, 1}, {1, -1}, {-1, -1}, {-1, 1}};

```
\(\ln [285]:=\)
plotmultiiter[startingpoints, 10, B]

plotmultiiter[Transpose[P.Transpose[startingpoints]], 10, A]


The eigenvalues of \(A\). Note they are the same as the eigenvalues of \(B\), as they must be since the two matrices are similar.

\section*{\(\ln [287]:=\)}

\section*{Eigenvalues [A]}
```

Out[287]= {1.14, 0.87}

```

\section*{\(\ln [288]\) := Eigenvalues [B]}

\section*{Out[288]= \(\quad\{1.14,0.87\}\)}

The absolute values of the eigenvalues. These predict whether the dynamical system has an attracting, repelling or saddle point.

\section*{\(\ln [289]:=\) Abs [Eigenvalues [A]]}
Out[289]= \(\{1.14,0.87\}\)```

